
Package ‘fsemipar’
February 21, 2024

Type Package

Title Estimation, Variable Selection and Prediction for Functional
Semiparametric Models

Version 1.0.1

Date 2024-02-17

Author German Aneiros [aut],
Silvia Novo [aut, cre]

Depends R (>= 3.5.0), splines, gtools, grpreg, DiceKriging, graphics,
stats

Maintainer Silvia Novo <snovo@est-econ.uc3m.es>

Description Routines for estimation or simultaneous estimation and variable selection of several func-
tional semiparametric models with scalar response, such as the functional single-
index model, the semi-functional partial linear model or the semi-functional partial linear single-
index model. In addition, it includes algorithms for dealing with scalar covariates with linear ef-
fect coming from the discretization of a curve in the cases of the linear model, the multi-
functional partial linear model and the multi-functional partial linear single-index model.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2024-02-21 10:20:02 UTC

R topics documented:
fsemipar-package . 2
FASSMR.kernel.fit . 4
FASSMR.kNN.fit . 9
fsemipar.internal . 14
fsim.kernel.fit . 15
fsim.kernel.test . 18
fsim.kNN.fit . 21
fsim.kNN.test . 24
IASSMR.kernel.fit . 27

1

2 fsemipar-package

IASSMR.kNN.fit . 33
lm.pels.fit . 39
plot.classes . 41
predict.fsim . 44
predict.IASSMR . 45
predict.lm . 48
predict.mfplm . 50
predict.sfpl . 52
predict.sfplsim.FASSMR . 54
print.summary.fsim . 57
print.summary.lm . 58
print.summary.mfpl . 59
print.summary.mfplsim . 60
print.summary.sfpl . 62
print.summary.sfplsim . 63
projec . 64
PVS.fit . 66
PVS.kernel.fit . 70
PVS.kNN.fit . 76
semimetric.projec . 81
sfpl.kernel.fit . 83
sfpl.kNN.fit . 87
sfplsim.kernel.fit . 90
sfplsim.kNN.fit . 95
Sugar . 100
Tecator . 101

Index 103

fsemipar-package Estimation, Variable Selection and Prediction for Functional Semi-
parametric Models

Description

This package is devoted to estimation or simultaneous estimation and variable selection of several
functional semiparametric models with scalar response, such as the functional single-index model,
the semi-functional partial linear model or the semi-functional partial linear single-index model.
It also contains algorithms for addressing estimation and variable selection in the linear model,
the multi-functional partial linear model, and the multi-functional partial linear single-index model
when the scalar covariates with linear effects come from the discretization of a curve. In addition,
the package has routines for kernel- and kNN-based estimation with Nadaraya-Watson weights of
models with a nonparametric component. It also contains functions to compute predictions from all
the considered models and estimation procedures.

fsemipar-package 3

Details

The package could be divided in several tematic sections:

1. Estimation and prediction of the functional single-index model.

• projec.
• semimetric.projec.
• fsim.kernel.fit and fsim.kNN.fit.
• fsim.kernel.test and fsim.kNN.test.
• predict, summary and print methods for fsim.kernel and fsim.kNN classes.

2. Variable selection, estimation and prediction of the semi-functional partial linear single-index
model.

• sfplsim.kernel.fit and sfplsim.kNN.fit.
• predict, summary and print methods for sfplsim.kernel and sfplsim.kNN classes.

3. Variable selection, estimation and prediction of the semi-functional partial linear model.

• sfpl.kernel.fit and sfpl.kNN.fit.
• predict, summary and print methods for sfpl.kernel and sfpl.kNN classes.

4. Variable selection, estimation and prediction of the linear model.

• lm.pels.fit.
• predict, summary and print methods for lm.pels class.

5. Variable selection, estimation and prediction of the linear model with covariates coming from
the discretisation of a curve.

• PVS.fit.
• predict, summary and print methods for PVS class.

6. Variable selection, estimation and prediction of the multi-functional partial linear model.

• PVS.kernel.fit and PVS.kNN.fit.
• predict, summary and print methods for PVS.kernel and PVS.kNN classes.

7. Variable selection, estimation and prediction of the multi-functional partial linear single-index
model.

• FASSMR.kernel.fit and FASSMR.kNN.fit.
• IASSMR.kernel.fit and IASSMR.kNN.fit.
• predict, summary and print methods for FASSMR.kernel, FASSMR.kNN, IASSMR.kernel

and IASSMR.kNN classes.

8. Two datasets: Tecator and Sugar.

Author(s)

German Aneiros [aut], Silvia Novo [aut, cre]

Maintainer: Silvia Novo <snovo@est-econ.uc3m.es>

4 FASSMR.kernel.fit

References

Aneiros, G. and Vieu, P., (2014) Variable selection in infinite-dimensional problems, Statistics and
Probability Letters, 94, 12–20. doi:10.1016/j.spl.2014.06.025.

Aneiros, G., Ferraty, F., and Vieu, P., (2015) Variable selection in partial linear regression with
functional covariate, Statistics, 49 1322–1347, doi:10.1080/02331888.2014.998675.

Aneiros, G., and Vieu, P., (2015) Partial linear modelling with multi-functional covariates. Compu-
tational Statistics, 30, 647–671. doi:10.1007/s0018001505688.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single-index regression, Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

Novo, S., Aneiros, G., and Vieu, P., (2021) Sparse semiparametric regression when predictors are
mixture of functional and high-dimensional variables, TEST, 30, 481–504, doi:10.1007/s11749020-
00728w.

Novo, S., Aneiros, G., and Vieu, P., (2021) A kNN procedure in semiparametric functional data
analysis, Statistics and Probability Letters, 171, 109028, doi:10.1016/j.spl.2020.109028.

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression, Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

FASSMR.kernel.fit FASSMR with kernel estimation

Description

This function computes the fast algorithm for sparse semiparametric multi-functional regression
(FASSMR) with kernel estimation.

This algorithm involves the penalised least-squares regularization procedure combined with kernel
estimation with Nadaraya-Watson weights. The procedure requires the B-spline representation to
estimate the functional index θ0 and an objective criterion (criterion) to select the initial number
of covariates in the reduced model (w.opt), the bandwidth (h.opt) and the penalisation parameter
(lambda.opt).

Usage

FASSMR.kernel.fit(x, z, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3, t0 = NULL, min.q.h = 0.05,max.q.h = 0.5,
h.seq = NULL, num.h = 10, range.grid = NULL, kind.of.kernel = "quad",
nknot = NULL, lambda.min = NULL,lambda.min.h = NULL,
lambda.min.l = NULL, factor.pn = 1, nlambda = 100, vn = ncol(z),
nfolds = 10, seed = 123,wn = c(10, 15, 20), criterion = c("GCV", "BIC",
"AIC", "k-fold-CV"), penalty = c("grLasso", "grMCP",
"grSCAD", "gel", "cMCP", "gBridge", "gLasso", "gMCP"),
max.iter = 1000)

https://doi.org/10.1016/j.spl.2014.06.025
https://doi.org/10.1080/02331888.2014.998675
https://doi.org/10.1007/s00180-015-0568-8
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1016/j.spl.2020.109028
https://doi.org/10.1111/anzs.12355

FASSMR.kernel.fit 5

Arguments

x Matrix containing the observations of the functional covariate collected by row
(functional single-index component).

z Matrix containing the observations of the functional covariate that is discretised
collected by row (linear component).

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for the B-spline representation of θ0. The default is 3.

t0 Value in the domain of the functional indexes at which we evaluate them to build
the set Θn. We assume θ0(t0) > 0 for some arbitrary t0 in the domain to ensure
model identifiability. If t0=NULL, then mean(range.grid) is considered.

min.q.h Order of the quantile of the set of distances between curves (computed with the
projection semi-metric) which gives the lower end of the sequence in which the
bandwidth is selected. The default is 0.05.

max.q.h Order of the quantile of the set of distances between curves (computed with the
projection semi-metric) which gives the upper end of the sequence in which the
bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwiths in the grid. The default is
10.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

6 FASSMR.kernel.fit

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values of the sequence in which lambda.opt
is selected. The default is 100.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
Default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). Default is 123.

wn A vector of positive integers indicating the eligible number of covariates of the
reduced model. See the section Details. The default is c(10,15,20).

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). Default is 1000.

Details

The multi-functional partial linear single-index model (MFPLSIM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) + r (〈θ0, Xi〉) + εi, (i = 1, . . . , n).

where

• Yi is a real random response and Xi denotes a random element belonging to some separable
Hilbert space H with inner product denoted by 〈·, ·〉. The second functional predictor ζi is
supposed to be a random curve defined on some interval [a, b] which is observed at the points
a ≤ t1 < · · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn)> is a vector of unknown real coefficients and r(·) denotes a smooth
unknown link function. In addition, θ0 is an unknown functional direction inH.

• εi denotes the random error.

In the MFPLSIM, we assume that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} form
part of the model. Therefore, we must select the relevant variables in the linear component (the
impact points of the curve ζ on the response) and estimate the model.

In this function, the MFPLSIM is fitted using the FASSMR algorithm. The main idea of this al-
gorithm is to consider a reduced model, with only some (very few) linear covariates (but covering
the entire discretization interval of ζ), and discarding directly the other linear covariates (since one
expect that they contain very similar information about the response).

FASSMR.kernel.fit 7

To explain the algorithm we assume, without lost of generality, that the number pn of linear covari-
ates can be expressed as follows: pn = qnwn with qn and wn integers. The previous consideration
allows to build a subset of the initial pn linear covariates, which contains only wn equally spaced
discretized observations of ζ covering the whole interval [a, b]. This subset is the following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number z.

We consider the following reduced model, which involves only the linear covariates belonging to
R1
n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + r1

(〈
θ10 ,Xi

〉)
+ ε1i .

The program receives the eligible numbers of linear covariates for building the reduced model
through the argument wn. Then, the penalised least-squares variable selection procedure, with kernel
estimation, is applied to the reduced model. This is done by means of the function sfplsim.kernel.fit,
which requires remaining arguments (for details, see the documentation of the function sfplsim.kernel.fit).
The estimates obtained after that are the outputs of the FASSMR algorithm. For further details on
this algorithm, see Novo et al. (2021).

Remark: If the condition pn = wnqn fails, the function considers not fixed qn = qn,k values
k = 1, . . . , wn, when pn/wn is not an integer number. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est β̂ (i. e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
h.opt and vn.opt are used).

beta.red Estimate of β1
0 in the reduced model when the optimal tuning parameters w.opt,

lambda.opt, h.opt and vn.opt are used.

theta.est Coefficients of θ̂ in the B-spline basis (i. e. estimate of θ0when the optimal
tuning parameters w.opt, lambda.opt, h.opt and vn.opt are used): a vector
of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth (when w.opt is considered).

w.opt Selected size forR1
n.

lambda.opt Selected value of the penalisation parameter (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, h.opt
and vn.opt.

8 FASSMR.kernel.fit

vn.opt Selected value of vn (when w.opt is considered).

beta.w Estimate of β1
0 for each value of the sequence wn.

theta.w Estimate of θ10 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

IC.w Value of the criterion function for each value of the sequence wn.
indexes.beta.nonnull.w

Indexes of the non-zero linear coefficients for each value of the sequence wn.

lambda.w Selected value of penalisation parameter for each value of the sequence wn.

h.w Selected bandwidth for each value of the sequence wn.

index01 Indexes of the covariates (in the whole set of pn) used to buildR1
n for each value

of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

See Also

See also sfplsim.kernel.fit, predict.FASSMR.kernel, plot.FASSMR.kernel and IASSMR.kernel.fit.

Alternative method FASSMR.kNN.fit.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]

https://doi.org/10.1111/anzs.12355

FASSMR.kNN.fit 9

y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit <- FASSMR.kernel.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

nknot.theta=2,lambda.min.h=0.03, lambda.min.l=0.03,
max.q.h=0.35,num.h = 10, nknot=20,criterion="BIC",
penalty="grSCAD",max.iter=5000)

proc.time()-ptm

fit
names(fit)

FASSMR.kNN.fit FASSMR with kNN estimation

Description

This function computes the fast algorithm for sparse semiparametric multi-functional regression
(FASSMR) with kNN estimation.

This algorithm involves the penalised least-squares regularization procedure combined with k-
nearest neighbours (kNN) estimation with Nadaraya-Watson weights. The procedure requires the
B-spline representation to estimate the functional index θ0 and an objective criterion (criterion)
to select the initial number of covariates in the reduced model (w.opt), the number of neighbours
(k.opt) and the penalisation parameter (lambda.opt).

Usage

FASSMR.kNN.fit(x, z, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3, t0 = NULL, knearest = NULL, min.knn = 2, max.knn = NULL,
step = NULL, range.grid = NULL, kind.of.kernel = "quad", nknot = NULL,
lambda.min = NULL, lambda.min.h= NULL, lambda.min.l = NULL,
factor.pn = 1, nlambda = 100, vn = ncol(z), nfolds = 10, seed = 123,
wn = c(10, 15, 20), criterion = c("GCV", "BIC", "AIC", "k-fold-CV"),
penalty = c("grLasso", "grMCP", "grSCAD", "gel", "cMCP",
"gBridge", "gLasso", "gMCP"), max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate collected by row
(functional single-index component).

z Matrix containing the observations of the functional covariate that is discretised
collected by row (linear component).

y Vector containing the scalar response.

10 FASSMR.kNN.fit

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for the B-spline representation of θ0. The default is 3.

t0 Value in the domain of the functional indexes at which we evaluate them to build
the set Θn. We assume θ0(t0) > 0 for some arbitrary t0 in the domain to ensure
model identifiability. If t0=NULL, then mean(range.grid) is considered.

knearest Vector of positive integers containing the sequence in which the number of
nearest neighbours k.opt is selected. If knearest=NULL, then knearest <-
seq(from =min.knn, to = max.knn, by = step).

min.knn Positive integer indicating the minumum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
smaller than the sample size). The default is 2.

max.knn Positive integer indicating the maximum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
larger than min.kNN and smaller than the sample size, n). The default is max.knn
<- n%/%2.

step Positive integer used to build the sequence of k-nearest neighbours in the follow-
ing way: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,...
The default is step<-ceiling(n/100).

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values of the sequence in which lambda.opt
is selected. The default is 100.

FASSMR.kNN.fit 11

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
Default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). Default is 123.

wn A vector of positive integers indicating the eligible number of covariates of the
reduced model. See the section Details. The default is c(10,15,20).

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). Default is 1000.

Details

The multi-functional partial linear single-index model (MFPLSIM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) + r (〈θ0, Xi〉) + εi, (i = 1, . . . , n).

where

• Yi is a real random response and Xi denotes a random element belonging to some separable
Hilbert space H with inner product denoted by 〈·, ·〉. The second functional predictor ζi is
supposed to be a random curve defined on some interval [a, b] which is observed at the points
a ≤ t1 < · · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn)> is a vector of unknown real coefficients and r(·) denotes a smooth
unknown link function. In addition, θ0 is an unknown functional direction inH.

• εi denotes the random error.

In the MFPLSIM, we assume that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} form
part of the model. Therefore, we must select the relevant variables in the linear component (the
impact points of the curve ζ on the response) and estimate the model.

In this function, the MFPLSIM is fitted using the FASSMR algorithm. The main idea of this al-
gorithm is to consider a reduced model, with only some (very few) linear covariates (but covering
the entire discretization interval of ζ), and discarding directly the other linear covariates (since one
expect that they contain very similar information about the response).

To explain the algorithm we assume, without lost of generality, that the number pn of linear covari-
ates can be expressed as follows: pn = qnwn with qn and wn integers. The previous consideration
allows to build a subset of the initial pn linear covariates, which contains only wn equally spaced
discretized observations of ζ covering the whole interval [a, b]. This subset is the following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number z.

12 FASSMR.kNN.fit

In this way, we consider the following reduced model, which involves only the linear covariates
belonging toR1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + r1

(〈
θ10 ,Xi

〉)
+ ε1i .

The eligible numbers of linear covariates to build the reduced model are provided to the program
in the argument wn. Then, the penalised least-squares variable selection procedure, with kNN es-
timation, is applied to the reduced model. This is done by means of the function sfplsim.kNN.fit,
which requires remaining arguments (for details, see the documentation of the function sfplsim.kNN.fit).
The estimates obtained after that are the outputs of the FASSMR algorithm. For further details on
this algorithm, see Novo et al. (2021).

Remark: If the condition pn = wnqn fails, the function considers not fixed qn = qn,k values
k = 1, . . . , wn, when pn/wn is not an integer number. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est β̂ (i. e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
k.opt and vn.opt are used).

beta.red Estimate of β1
0 in the reduced model when the optimal tuning parameters w.opt,

lambda.opt, k.opt and vn.opt are used.

theta.est Coefficients of θ̂ in the B-spline basis (i. e. estimate of θ0 when the optimal
tuning parameters w.opt, lambda.opt, k.opt and vn.opt are used): a vector
of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours (when w.opt is considered).

w.opt Selected size forR1
n.

lambda.opt Selected value of the penalisation parameter (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, k.opt
and vn.opt.

vn.opt Selected value of vn (when w.opt is considered).

beta.w Estimate of β1
0 for each value of the sequence wn (i.e. for each number of co-

variates in the reduced model).

theta.w Estimate of θ10 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

IC.w Value of the criterion function for each value of the sequence wn.

FASSMR.kNN.fit 13

indexes.beta.nonnull.w

Indexes of the non-zero linear coefficients for each value of the sequence wn.

lambda.w Selected value of penalisation parameter for each value of the sequence wn.

k.w Selected number of neighbours for each value of the sequence wn.

index01 Indexes of the covariates (in the whole set of pn) used to buildR1
n for each value

of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

See Also

See also sfplsim.kNN.fit, predict.FASSMR.kNN, plot.FASSMR.kNN and IASSMR.kNN.fit.

Alternative method FASSMR.kernel.fit

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- FASSMR.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

https://doi.org/10.1111/anzs.12355

14 fsemipar.internal

nknot.theta=2,lambda.min.h=0.03, lambda.min.l=0.03,
max.knn=20,nknot=20,criterion="BIC", penalty="grSCAD",max.iter=5000)

proc.time()-ptm

fit
names(fit)

fsemipar.internal Package fsemipar internal functions

Description

List of the internal functions. The construction of this code is based on that by F. Ferraty, which is
available on his website https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/
index.html.

Details

• approx.spline.deriv

• Bspline.ini

• fnp.kernel.fit

• fnp.kernel.fit.test

• fnp.kernel.test

• fnp.kNN.fit

• fnp.kNN.fit.test

• fnp.kNN.fit.test.loc

• fnp.kNN.GCV

• fnp.kNN.test

• fsim.kernel.fit.fixedtheta

• fsim.kNN.fit.fixedtheta

• fun.kernel

• fun.kernel.fixedtheta

• fun.kNN

• fun.kNN.fixedtheta

• funopare.kNN

• H.fnp.kernel

• H.fnp.kNN

• H.fsim.kernel

• H.fsim.kNN

https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html
https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html

fsim.kernel.fit 15

• interp.spline.deriv

• normaliza

• quad

• semimetric.deriv

• semimetric.interv

• semimetric.pca

• sfplsim.kernel.fit.fixedtheta

• sfplsim.kNN.fit.fixedtheta

• Splinemlf

• symsolve

fsim.kernel.fit Functional single-index model fit using kernel estimation

Description

This function fits a functional single-index model (FSIM) between a functional explanatory variable
and scalar response. The function uses kernel estimation with Nadaraya-Watson weights, a B-spline
representation to estimate the functional index θ0 and the cross-validation (CV) criterion to select
the bandwidth (h.opt) and the coefficients of the functional index in the spline basis (theta.est).

Usage

fsim.kernel.fit(x, y, seed.coeff = c(-1, 0, 1), nknot.theta = 3,
order.Bspline = 3, t0 = NULL, min.q.h = 0.05, max.q.h = 0.5,
h.seq = NULL, num.h = 10, kind.of.kernel = "quad", range.grid = NULL,
nknot = NULL)

Arguments

x Matrix containing the observations of the functional covariate (i.e. curves) col-
lected by row.

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for the B-spline representation of θ0. The default is 3.

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

t0 Value in the domain of the functional indexes at which we evaluate them to build
the set Θn. We assume θ0(t0) > 0 for some arbitrary t0 in the domain to ensure
model identifiability. If t0=NULL, then mean(range.grid) is considered.

16 fsim.kernel.fit

min.q.h Order of the quantile of the set of distances between curves (computed with the
projection semi-metric) which gives the lower end of the sequence in which the
bandwidth is selected. The default is 0.05.

max.q.h Order of the quantile of the set of distances between curves (computed with the
projection semi-metric) which gives the upper end of the sequence in which the
bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwiths in the grid. The default is
10.

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(〈θ0, Xi〉) + εi, i = 1, . . . , n,

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with inner product 〈·, ·〉, ε denotes the random error, θ0 ∈ H is the unknown functional index
and r(·) denotes the unknown smooth link function.

The FSIM is fitted using the kNN estimator

r̂h,θ̂(x) =

n∑
i=1

wn,h,θ̂(x,Xi)Yi, ∀x ∈ H,

with Nadaraya-Watson weights

wn,h,θ̂(x,Xi) =
K
(
h−1dθ̂ (Xi, x)

)∑n
i=1K

(
h−1dθ̂ (Xi, x)

) ,
where

• the real positive number h is the bandwidth.

• K is a kernel function (see the argument kind.of.kernel).

• dθ̂(x1, x2) = |〈θ̂, x1−x2〉| is the projection semi-metric, computed using semimetric.projec

and θ̂ is an estimate of θ0.

fsim.kernel.fit 17

The procedure requires the estimation of the function-parameter θ0. Therefore, we use B-spline
representation to build a set Θn of eligible functional indexes. The dimension of the B-spline basis
is order.Bspline+nknot.theta and the set of eligible coefficients is obtained by calibrating (to
ensure the identifiability of the model) the set of initial coefficients given in seed.coeff. The larger
this set, the higher the size of Θn. Since our approach requires intensive computation, we need a
trade-off between the size of Θn and the performance of the estimator. For that, Ait-Saidi et al.
(2008) suggested considering order.Bspline=3 and seed.coeff=c(-1,0,1). For details on the
construction of Θn see Novo et al. (2019).

We obtain the estimated coefficients of θ0 in the spline basis (theta.est) and the selected band-
width (h.opt) by minimising the CV criterion.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

theta.est Coefficients of θ̂ in the B-spline basis: a vector of length(order.Bspline+nknot.theta).

h.opt Selected bandwidth.

r.squared Coefficient of determination.

var.res Redidual variance.

df Residual degrees of freedom.

yhat.cv Predicted values for the scalar response using leave-one-out samples.

CV.opt Minimum value of the CV function, i.e. the value of CV for theta.est and
h.opt.

CV.values Vector containing CV values for each functional index in Θn and the value of h
that minimises the CV for such index (i.e. CV.values[j] contains the value of
the CV function corresponding to theta.seq.norm[j,] and the best value of
the h.seq for this functional index according to the CV criterion).

H Hat matrix.

m.opt Index of θ̂ in the set Θn.

theta.seq.norm The vector theta.seq.norm[j,] contains the coefficientes in the B-spline basis
of the jth functional index in Θn.

h.seq Sequence of eligible values for h.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

18 fsim.kernel.test

References

Ait-Saidi, A., Ferraty, F., Kassa, R., and Vieu, P. (2008) Cross-validated estimations in the single-
functional index model. Statistics, 42(6), 475–494, doi:10.1080/02331880801980377.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also fsim.kernel.test, predict.fsim.kernel, plot.fsim.kernel.

Alternative procedure fsim.kNN.fit.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

#FSIM fit. With nknot.theta=2 and range.grid=c(850,1050),
#Theta_n contains 108 thetas.
ptm<-proc.time()
fit<-fsim.kernel.fit(y[1:160],x=X[1:160,],max.q.h=0.35, nknot=20,
range.grid=c(850,1050),nknot.theta=2)
proc.time()-ptm
fit
names(fit)

fsim.kernel.test Functional single-index kernel predictor

Description

Provides predictions when we compute a functional single-index model (FSIM) using the nonpara-
metric kernel procedure between a scalar response and a functional covariate given a functional
index (θ), a global bandwidth (h) and new observations of the functional covariate (x.test).

Usage

fsim.kernel.test(x, y, x.test, y.test, theta = theta, nknot.theta = 3,
order.Bspline = 3, h = 0.5, kind.of.kernel = "quad", range.grid = NULL,
nknot = NULL)

https://doi.org/10.1080/02331880801980377
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

fsim.kernel.test 19

Arguments

x Matrix containing the observations of the functional covariate that correspond
to the training sample collected by row.

y Vector containing the scalar responses in the training sample.

x.test Matrix containing the observations of the functional covariate that correspond
to the testing sample collected by row.

y.test (optional) Vector/matrix containing the scalar responses in the testing sample.

theta Vector containing the coefficients of θ in a B-spline basis, so that length(theta)=order.Bspline+nknot.theta

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for B-spline representation of θ. The default is 3.

order.Bspline Positive integer giving the order of the B-spline basis functions for the B-spline
representation of θ. This is the number of coefficients in each piecewise poly-
nomial segment. The default is 3.

h Positive real number indicating the global bandwidth.

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(〈θ0, Xi〉) + εi, i = 1, . . . , n,

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with inner product 〈·, ·〉, ε denotes the random error, θ0 ∈ H is the unknown functional index,
r(·) denotes the unknown smooth link function and n is the training sample size.

Given θ ∈ H, h > 0 and a testing sample {Xj , j = 1, . . . , ntest}, the predicted responses (see the
value y.estimated.test) can be computed using the kernel procedure by means of

r̂h,θ(Xj) =

n∑
i=1

wn,h,θ(Xj , Xi)Yi, j = 1, . . . , ntest,

with Nadaraya-Watson weights

wn,h,θ(Xj , Xi) =
K
(
h−1dθ (Xi, Xj)

)∑n
i=1K (h−1dθ (Xi, Xj))

,

where

20 fsim.kernel.test

• K is a kernel function (see the argument kind.of.kernel).

• for x1, x2 ∈ H, dθ(x1, x2) = |〈θ, x1 − x2〉| is the projection semi-metric, computed using
semimetric.projec.

If the argument y.test is given to the program (i. e. if(!is.null(y.test))), the function pro-
vides the mean squared error of prediction (see the value MSE.test) calculated as mean((y.test-y.estimated.test)^2).

Value
y.estimated.test

Predicted responses.

MSE.test Mean squared error between predicted and observed responses in the testing
sample.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also fsim.kernel.fit and predict.fsim.kernel.

Alternative procedure fsim.kNN.test.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

train<-1:160
test<-161:215

#FSIM fit. With nknot.theta=2 and range.grid=c(850,1050),
#Theta_n contains 108 thetas.
ptm<-proc.time()
fit<-fsim.kernel.fit(y=y[train],x=X[train,],max.q.h=0.35, nknot=20,

range.grid=c(850,1050),nknot.theta=2)
proc.time()-ptm
fit

#FSIM prediction
test<-fsim.kernel.test(y=y[train],x=X[train,],x.test=X[test,],y.test=y[test],

https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

fsim.kNN.fit 21

theta=fit$theta.est,h=fit$h.opt,nknot.theta=2,nknot=20,
range.grid=c(850,1050))

#MSEP
test$MSE.test

fsim.kNN.fit Functional single-index model fit using kNN estimation

Description

This function fits a functional single-index model (FSIM) between a functional explanatory vari-
able and scalar response. The function uses k-nearest neighbours (kNN) estimation with Nadaraya-
Watson weights, a B-spline representation to estimate the functional index θ0 and the cross-validation
(CV) criterion to select the number of neighbours (k.opt) and the coefficients of the functional in-
dex in the spline basis (theta.est).

Usage

fsim.kNN.fit(x, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3, t0 = NULL, min.knn = 2, max.knn = NULL, knearest = NULL,
step = NULL, kind.of.kernel = "quad", range.grid = NULL, nknot = NULL)

Arguments

x Matrix containing the observations of the functional covariate collected by row.

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The coef-
ficients for the B-spline representation of each eligible functional index θ ∈ Θn

are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for the B-spline representation of θ0. The default is 3.

t0 Value in the domain of the functional indexes at which we evaluate them to build
the set Θn. We assume θ0(t0) > 0 for some arbitrary t0 in the domain to ensure
model identifiability. If t0=NULL, then mean(range.grid) is considered.

min.knn Positive integer indicating the smallest value of the sequence in which the num-
ber of nearest neighbours k.opt is selected (thus, this number must be smaller
than the sample size). The default is 2.

max.knn Positive integer indicating the largest value of the sequence in which the number
of nearest neighbours k.opt is selected (thus, this number must be larger than
min.kNN and smaller than the sample size, n). The default is max.knn <- n%/%2.

22 fsim.kNN.fit

knearest Vector of positive integers containing the sequence in which the number of
nearest neighbours k.opt is selected. If knearest=NULL, then knearest <-
seq(from =min.knn, to = max.knn, by = step).

step Positive integer used to build the sequence of k-nearest neighbours in the follow-
ing way: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,...
The default is step<-ceiling(n/100).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(〈θ0, Xi〉) + εi, i = 1, . . . , n,

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with inner product 〈·, ·〉, ε denotes the random error, θ0 ∈ H is the unknown functional index
and r(·) denotes the unknown smooth link function.

The FSIM is fitted using the kNN estimator

r̂k,θ̂(x) =

n∑
i=1

wn,k,θ̂(x,Xi)Yi, ∀x ∈ H,

with Nadaraya-Watson weights

wn,k,θ̂(x,Xi) =
K
(
H−1
k,x,θ̂

dθ̂ (Xi, x)
)

∑n
i=1K

(
H−1
k,x,θ̂

dθ̂ (Xi, x)
) ,

where

• the positive integer k is a smoothing factor, representing the number of nearest neighbours.

• K is a kernel function (see the argument kind.of.kernel).

• dθ̂(x1, x2) = |〈θ̂, x1−x2〉| is the projection semi-metric, computed using semimetric.projec

and θ̂ is an estimate of θ0.

• Hk,x,θ̂ = min{h ∈ R+ such that
∑n
i=1 1Bθ̂(x,h)(Xi) = k}, where 1Bθ̂(x,h)(·) is the indica-

tor function of the open ball created with the projection semi-metric with centre x ∈ H and
radius h.

fsim.kNN.fit 23

The procedure requires the estimation of the function-parameter θ0. Therefore, we use B-spline
representation to build a set Θn of eligible functional indexes. The dimension of the B-spline basis
is order.Bspline+nknot.theta and the set of eligible coefficients is obtained by calibrating (to
ensure the identifiability of the model) the set of initial coefficients given in seed.coeff. The larger
this set, the higher the size of Θn. Since our approach requires intensive computation, we need a
trade-off between the size of Θn and the performance of the estimator. For that, Ait-Saidi et al.
(2008) suggested considering order.Bspline=3 and seed.coeff=c(-1,0,1). For details on the
construction of Θn see Novo et al. (2019).

We obtain the estimated coefficients of θ0 in the spline basis (theta.est) and the selected number
of neighbours (k.opt) by minimising the CV criterion.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

theta.est Coefficients of θ̂ in the B-spline basis: a vector of length(order.Bspline+nknot.theta).

k.opt Selected number of nearest neighbours.

r.squared Coefficient of determination.

var.res Redidual variance.

df Residual degrees of freedom.

yhat.cv Predicted values for the scalar response using leave-one-out samples.

CV.opt Minimum value of the CV function, i.e. the value of CV for theta.est and
k.opt.

CV.values Vector containing CV values for each functional index in Θn and the value of k
that minimises the CV for such index (i.e. CV.values[j] contains the value of
the CV function corresponding to theta.seq.norm[j,] and the best value of
the k.seq for this functional index according to the CV criterion).

H Hat matrix.

m.opt Index of θ̂ in the set Θn.

theta.seq.norm The vector theta.seq.norm[j,] contains the coefficientes in the B-spline basis
of the jth functional index in Θn.

k.seq Sequence of eligible values for k.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

24 fsim.kNN.test

References

Ait-Saidi, A., Ferraty, F., Kassa, R., and Vieu, P. (2008) Cross-validated estimations in the single-
functional index model, Statistics, 42(6), 475–494, doi:10.1080/02331880801980377.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression, Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also fsim.kNN.test, predict.fsim.kNN, plot.fsim.kNN.

Alternative procedure fsim.kernel.fit.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

#FSIM fit. With nknot.theta=2 and range.grid=c(850,1050),
#Theta_n contains 108 thetas.
ptm<-proc.time()
fit<-fsim.kNN.fit(y=y[1:160],x=X[1:160,],max.knn=20,nknot.theta=2,nknot=20,
range.grid=c(850,1050))
proc.time()-ptm
fit
names(fit)

fsim.kNN.test Functional single-index kNN predictor

Description

Provides predictions when we compute a functional single-index model (FSIM) using the kNN
procedure between a scalar response and a functional covariate given a functional index (θ), a
global number of neighbours (k) and new observations of the functional covariate (x.test).

Usage

fsim.kNN.test(x, y, x.test, y.test = NULL, theta, order.Bspline = 3,
nknot.theta = 3, k = 4, kind.of.kernel = "quad", range.grid = NULL,
nknot = NULL)

https://doi.org/10.1080/02331880801980377
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

fsim.kNN.test 25

Arguments

x Matrix containing the observations of the functional covariate that correspond
to the training sample collected by row.

y Vector containing the scalar responses in the training sample.

x.test Matrix containing the observations of the functional covariate that correspond
to the testing sample collected by row.

y.test (optional) Vector/matrix containing the scalar responses in the testing sample.

theta Vector containing the coefficients of θ in a B-spline basis, so that length(theta)=order.Bspline+nknot.theta.

order.Bspline Positive integer giving the order of the B-spline basis functions for the B-spline
representation of θ. This is the number of coefficients in each piecewise poly-
nomial segment. The default is 3.

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for B-spline representation of θ. The default is 3.

k Positive integer indicating the global number of neighbours.

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

Details

The functional single-index model (FSIM) is given by the expression:

Yi = r(〈θ0, Xi〉) + εi, i = 1, . . . , n,

where Yi denotes a scalar response, Xi is a functional covariate valued in a separable Hilbert space
H with inner product 〈·, ·〉, ε denotes the random error, θ0 ∈ H is the unknown functional index,
r(·) denotes the unknown smooth link function and n is the training sample size.

Given θ ∈ H, 1 < k < n and a testing sample {Xj , j = 1, . . . , ntest}, the predicted responses
(see the value y.estimated.test) can be computed using the kNN procedure by means of

r̂k,θ(Xj) =

n∑
i=1

wn,k,θ(Xj , Xi)Yi, j = 1, . . . , ntest,

with Nadaraya-Watson weights

wn,k,θ(Xj , Xi) =
K
(
H−1k,Xj ,θdθ (Xi, Xj)

)
∑n
i=1K

(
H−1k,Xj ,θdθ (Xi, Xj)

) ,
where

26 fsim.kNN.test

• K is a kernel function (see the argument kind.of.kernel).

• for x1, x2 ∈ H, dθ(x1, x2) = |〈θ, x1 − x2〉| is the projection semi-metric, computed using
semimetric.projec.

• Hk,x,θ = min
{
h ∈ R+ such that

∑n
i=1 1Bθ(x,h)(Xi) = k

}
, where 1Bθ(x,h)(·) is the indica-

tor function of the open ball created with the projection semi-metric with centre x ∈ H and
radius h.

If the argument y.test is given to the program (i. e. if(!is.null(y.test))), the function pro-
vides the mean squared error of prediction (see the value MSE.test) calculated as mean((y.test-y.estimated.test)^2).

Value
y.estimated.test

Predicted responses.

MSE.test Mean squared error between predicted and observed responses in the testing
sample.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also fsim.kNN.fit and predict.fsim.kNN.

Alternative procedure fsim.kernel.test.

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

train<-1:160
test<-161:215

#FSIM fit. With nknot.theta=2 and range.grid=c(850,1050),
#Theta_n contains 108 thetas.
ptm<-proc.time()
fit<-fsim.kNN.fit(y=y[train],x=X[train,],max.knn=20,nknot.theta=2,nknot=20,

range.grid=c(850,1050))
proc.time()-ptm

https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

IASSMR.kernel.fit 27

fit

#FSIM prediction
test<-fsim.kNN.test(y=y[train],x=X[train,],x.test=X[test,],y.test=y[test],

theta=fit$theta.est,k=fit$k.opt,nknot.theta=2,order.Bspline=3,nknot=20,
range.grid=c(850,1050))

#MSEP
test$MSE.test

IASSMR.kernel.fit IASSMR with kernel estimation

Description

This function computes the improved algorithm for sparse semiparametric multi-functional regres-
sion (IASSMR) with kernel estimation.

This algorithm involves the penalised least-squares regularization procedure combined with kernel
estimation with Nadaraya-Watson weights. The procedure requires the B-spline representation to
estimate the functional index θ0 and an objective criterion (criterion) to select the number of
covariates in the reduced model (w.opt), the bandwidth (h.opt) and the penalisation parameter
(lambda.opt).

Usage

IASSMR.kernel.fit(x, z, y, train.1=NULL, train.2=NULL, seed.coeff = c(-1, 0, 1),
order.Bspline = 3, nknot.theta = 3, t0 = NULL,min.q.h = 0.05,
max.q.h = 0.5, h.seq = NULL, num.h = 10, range.grid = NULL,
kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL,
lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1,
nlambda = 100, vn = ncol(z), nfolds = 10, seed = 123, wn = c(10, 15, 20),
criterion = c("GCV", "BIC", "AIC", "k-fold-CV"),
penalty = c("grLasso", "grMCP", "grSCAD", "gel", "cMCP", "gBridge",
"gLasso", "gMCP"),max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate collected by row
(functional single-index component).

z Matrix containing the observations of the functional covariate that is discretised
collected by row (linear component).

y Vector containing the scalar response.

train.1 Indexes of the data used as the training sample in the 1st step. The default is
train.1<-1:ceiling(n/2).

28 IASSMR.kernel.fit

train.2 Indexes of the data used as the training sample in the 2nd step. The default is
train.2<-(ceiling(n/2)+1):n.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for the B-spline representation of θ0. The default is 3.

t0 Value in the domain of the functional indexes at which we evaluate them to build
the set Θn. We assume θ0(t0) > 0 for some arbitrary t0 in the domain to ensure
model identifiability. If t0=NULL, then mean(range.grid) is considered.

min.q.h Order of the quantile of the set of distances between curves (computed with the
projection semi-metric) which gives the lower end of the sequence in which the
bandwidth is selected. The default is 0.05.

max.q.h Order of the quantile of the set of distances between curves (computed with the
projection semi-metric) which gives the upper end of the sequence in which the
bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwiths in the grid. The default is
10.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values of the sequence in which lambda.opt
is selected. The default is 100.

IASSMR.kernel.fit 29

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
The default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). The default is 123.

wn A vector of positive integers indicating the eligible number of covariates of the
reduced model. See the section Details. The default is c(10,15,20).

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). Default is 1000.

Details

The multi-functional partial linear single-index model (MFPLSIM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) + r (〈θ0, Xi〉) + εi, (i = 1, . . . , n)

where

• Yi is a real random response and Xi denotes a random element belonging to some separable
Hilbert space H with inner product denoted by 〈·, ·〉. The second functional predictor ζi is
supposed to be a random curve defined on some interval [a, b] which is observed at the points
a ≤ t1 < · · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn)> is a vector of unknown real coefficients and r(·) denotes a smooth
unknown link function. In addition, θ0 is an unknown functional index inH.

• εi denotes the random error.

In the MFPLSIM, we assume that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} form
part of the model. Therefore, we must select the relevant variables in the linear component (the
impact points of the curve ζ on the response) and estimate the model.

In this function, the MFPLSIM is fitted using the IASSMR. The IASSMR (version of the PVS
algorithm for semiparametric regression) is an algorithm with two steps, so we split the sample into
two independent subsamples (asymptotically of the same size n1 ∼ n2 ∼ n/2), one of them to be
used in the first stage of the method and the other in the second stage.

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.
Note that these two subsamples are specified to the programme by means of the arguments train.1
and train.2. The superscript s with s = 1,2 indicates the stage of the method in which the sample,
function, variable or parameter is involved.

To explain the algorithm we assume, without lost of generality, that the number pn of linear covari-
ates can be expressed as follows: pn = qnwn with qn and wn integers.

30 IASSMR.kernel.fit

1. First step. The fast algorithm for sparse semiparametric multi-functional regression (FASSMR)
combined with kernel estimation is applied using only the subsample E1 (see the documenta-
tion of the function FASSMR.kernel.fit). Specifically:

• Consider a subset of the initial pn linear covariates, which contains only wn equally
spaced discretized observations of ζ covering the whole interval [a, b]. This subset is the
following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z.The size (cardinal) of this subset is provided to the program in the argument wn (which
contains a sequence of eligible sizes).

• Consider the following reduced model, which involves only the wn linear covariates be-
longing toR1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + r1

(〈
θ10 , Xi

〉)
+ ε1i .

The penalised least-squares variable selection procedure, with kernel estimation, is ap-
plied to the reduced model. This is done by means of the function sfplsim.kernel.fit,
which requires the remaining arguments (for details, see the documentation of the func-
tion sfplsim.kernel.fit). The estimates obtained after that are the outputs of the first
step of the algorithm.

2. Second step. The variables selected in the first step and the variables in the neighbourhood
of the ones selected are included. Then the penalised least-squares procedure, combined with
kernel estimation, is carried out again. For that, we consider only the subsample E2. Specifi-
cally:

• Consider a new set of variables :

R2
n =

⋃
{k,β̂1

0k 6=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn =](R2
n), we can rename the variables inR2

n as follows:

R2
n =

{
ζ(t21), . . . , ζ(t2rn)

}
,

• Consider the following model, which involves only the linear covariates belonging toR2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) + r2

(〈
θ20 , Xi

〉)
+ ε2i .

The penalized least-squares variable selection procedure, with kernel estimation, is ap-
plied to this model by means of the function sfplsim.kernel.fit.

The outputs of the second step are the estimates of the MFPLSIM obtained with the IASSMR
algorithm. For further details on this algorithm, see Novo et al. (2021).

Remark: If the condition pn = wnqn fails, the function considers not fixed qn = qn,k values
k = 1, . . . , wn, when pn/wn is not an integer number. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

IASSMR.kernel.fit 31

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est β̂ (i. e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
h.opt and vn.opt are used).

theta.est Coefficients of θ̂ in the B-spline basis (i. e. estimate of θ0when the optimal
tuning parameters w.opt, lambda.opt, h.opt and vn.opt are used): a vector
of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth (when w.opt is considered).

w.opt Selected size forR1
n.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, h.opt
and vn.opt.

vn.opt Selected value of vn in the second step (when w.opt is considered).

beta2 Estimate of β2
0 for each value of the sequence wn.

theta2 Estimate of θ20 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

h2 Selected bandwidth in the second step of the algorithm for each value of the
sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the whole set of pn) used to buildR2
n for each value

of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

theta1 Estimate of θ10 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

h1 Selected bandwidth in the first step of the algorithm for each value of the se-
quence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

index01 Indexes of the covariates (in the whole set of pn) used to buildR1
n for each value

of the sequence wn.

32 IASSMR.kernel.fit

index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each
value of the sequence wn.

... Further outputs to apply S3 methods.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

See Also

See also sfplsim.kernel.fit, predict.IASSMR.kernel, plot.IASSMR.kernel and FASSMR.kernel.fit.

Alternative methods IASSMR.kNN.fit, FASSMR.kernel.fit and FASSMR.kNN.fit.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- IASSMR.kernel.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,nknot.theta=2,lambda.min.h=0.03,
lambda.min.l=0.03, max.q.h=0.35, num.h = 10, nknot=20,
criterion="BIC", penalty="grSCAD", max.iter=5000)

proc.time()-ptm

https://doi.org/10.1111/anzs.12355

IASSMR.kNN.fit 33

fit
names(fit)

IASSMR.kNN.fit IASSMR with kNN estimation

Description

This function computes the improved algorithm for sparse semiparametric multi-functional regres-
sion (IASSMR) with kNN estimation.

This algorithm involves the penalised least-squares regularization procedure combined with k-
nearest neighbours (kNN) estimation with Nadaraya-Watson weights. The procedure requires the
B-spline representation to estimate the functional index θ0 and an objective criterion (criterion)
to select the number of covariates in the reduced model (w.opt), the number of neighbours (k.opt)
and the penalisation parameter (lambda.opt).

Usage

IASSMR.kNN.fit(x, z, y, train.1=NULL, train.2=NULL, seed.coeff = c(-1, 0, 1),
order.Bspline = 3, nknot.theta = 3, t0 = NULL, knearest = NULL,
min.knn = 2, max.knn = NULL, step = NULL, range.grid = NULL,
kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL,
lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1,
nlambda = 100,vn = ncol(z), nfolds = 10, seed = 123, wn = c(10, 15, 20),
criterion = c("GCV", "BIC", "AIC", "k-fold-CV"),
penalty = c("grLasso", "grMCP", "grSCAD", "gel", "cMCP",
"gBridge", "gLasso", "gMCP"), max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate collected by row
(functional single-index component).

z Matrix containing the observations of the functional covariate that is discretised
collected by row (linear component).

y Vector containing the scalar response.

train.1 Indexes of the data used as the training sample in the 1st step. The default is
train.1<-1:ceiling(n/2).

train.2 Indexes of the data used as the training sample in the 2nd step. The default is
train.2<-(ceiling(n/2)+1):n.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

34 IASSMR.kNN.fit

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for the B-spline representation of θ0. The default is 3.

t0 Value in the domain of the functional indexes at which we evaluate them to build
the set Θn. We assume θ0(t0) > 0 for some arbitrary t0 in the domain to ensure
model identifiability. If t0=NULL, then mean(range.grid) is considered.

knearest Vector of positive integers containing the sequence in which the number of
nearest neighbours k.opt is selected. If knearest=NULL, then knearest <-
seq(from =min.knn, to = max.knn, by = step).

min.knn Positive integer indicating the minumum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
smaller than the sample size). The default is 2.

max.knn Positive integer indicating the maximum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
larger than min.kNN and smaller than the sample size). The default is max.knn
<- n%/%2, being n = n1 in the 1st step and n = n2 in the 2nd step of the method
(see section Details).

step Positive integer used to build the sequence of k-nearest neighbours in the follow-
ing way: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,...
The default is step<-ceiling(n/100).

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values of the sequence in which lambda.opt
is selected. The default is 100.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

IASSMR.kNN.fit 35

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
Default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). Default is 123.

wn A vector of positive integers indicating the eligible number of covariates of the
reduced model. See the section Details. The default is c(10,15,20).

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). Default is 1000.

Details

The multi-functional partial linear single-index model (MFPLSIM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) + r (〈θ0, Xi〉) + εi, (i = 1, . . . , n)

where

• Yi is a real random response and Xi denotes a random element belonging to some separable
Hilbert space H with inner product denoted by 〈·, ·〉. The second functional predictor ζi is
supposed to be a random curve defined on some interval [a, b] which is observed at the points
a ≤ t1 < · · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn)> is a vector of unknown real coefficients and r(·) denotes a smooth
unknown link function. In addition, θ0 is an unknown functional index inH.

• εi denotes the random error.

In the MFPLSIM, we assume that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} form
part of the model. Therefore, we must select the relevant variables in the linear component (the
impact points of the curve ζ on the response) and estimate the model.

In this function, the MFPLSIM is fitted using the IASSMR. The IASSMR (version of the PVS
algorithm for semiparametric regression) is an algorithm with two steps, so we split the sample into
two independent subsamples (asymptotically of the same size n1 ∼ n2 ∼ n/2), one of them to be
used in the first stage of the method and the other in the second stage.

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.

Note that these two subsamples are specified to the programme by means of the arguments train.1
and train.2. The superscript s with s = 1,2 indicates the stage of the method in which the sample,
function, variable or parameter is involved.

To explain the algorithm we assume, without lost of generality, that the number pn of linear covari-
ates can be expressed as follows: pn = qnwn with qn and wn integers.

36 IASSMR.kNN.fit

1. First step. The fast algorithm for sparse semiparametric multi-functional regression (FASSMR)
combined with kNN estimation is applied using only the subsample E1 (see the documentation
of the function FASSMR.kNN.fit). Specifically:

• Consider a subset of the initial pn linear covariates, which contains only wn equally
spaced discretized observations of ζ covering the whole interval [a, b]. This subset is the
following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z.The size (cardinal) of this subset is provided to the program in the argument wn (which
contains a sequence of eligible sizes).

• Consider the following reduced model, which involves only the wn linear covariates be-
longing toR1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + r1

(〈
θ10 , Xi

〉)
+ ε1i .

The penalised least-squares variable selection procedure, with kNN estimation, is ap-
plied to the reduced model. This is done by means of the function sfplsim.kNN.fit,
which requires the remaining arguments (for details, see the documentation of the func-
tion sfplsim.kNN.fit). The estimates obtained after that are the outputs of the first step
of the algorithm.

2. Second step. The variables selected in the first step and the variables in the neighbourhood
of the ones selected are included. Then the penalised least-squares procedure, combined with
kNN estimation, is carried out again. For that, we consider only the subsample E2. Specifi-
cally:

• Consider a new set of variables:

R2
n =

⋃
{k,β̂1

0k 6=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn =](R2
n), we can rename the variables inR2

n as follows:

R2
n =

{
ζ(t21), . . . , ζ(t2rn)

}
,

• Consider the following model, which involves only the linear covariates belonging toR2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) + r2

(〈
θ20 , Xi

〉)
+ ε2i .

The penalized least-squares variable selection procedure, with kNN estimation, is applied
to this model by means of the function sfplsim.kNN.fit.

The outputs of the second step are the estimates of the MFPLSIM obtained with the IASSMR
algorithm. For further details on this algorithm, see Novo et al. (2021).

Remark: If the condition pn = wnqn fails, the function considers not fixed qn = qn,k values
k = 1, . . . , wn, when pn/wn is not an integer number. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

IASSMR.kNN.fit 37

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est β̂ (i.e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
vn.opt and k.opt are used).

theta.est Coefficients of θ̂ in the B-spline basis (i. e. estimate of θ0when the optimal
tuning parameters w.opt, lambda.opt, vn.opt and k.opt are used): a vector
of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours (when w.opt is considered).

w.opt Selected initial number of covariates in the reduced model.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, vn.opt
and k.opt.

vn.opt Selected value of vn in the second step (when w.opt is considered).

beta2 Estimate of β2
0 for each value of the sequence wn.

theta2 Estimate of θ20 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

knn2 Selected number of neighbours in the second step of the algorithm for each value
of the sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the whole set of pn) used to buildR2
n for each value

of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

theta1 Estimate of θ10 for each value of the sequence wn (i.e. its coefficients in the
B-spline basis).

knn1 Selected number of neighbours in the first step of the algorithm for each value
of the sequence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

index01 Indexes of the covariates (in the whole set of pn) used to buildR1
n for each value

of the sequence wn.

38 IASSMR.kNN.fit

index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each
value of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

See Also

See also sfplsim.kNN.fit, predict.IASSMR.kNN, plot.IASSMR.kNN and FASSMR.kNN.fit.

Alternative method IASSMR.kernel.fit

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- IASSMR.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,nknot.theta=2,lambda.min.h=0.07,
lambda.min.l=0.07, max.knn=20, nknot=20,criterion="BIC",
penalty="grSCAD", max.iter=5000)

proc.time()-ptm

fit

https://doi.org/10.1111/anzs.12355

lm.pels.fit 39

names(fit)

lm.pels.fit Linear model fit

Description

This function fits a sparse linear model between a scalar response and a vector of scalar covariates.
The function uses the penalised least-squares regularization procedure. The method requires an
objective criterion (criterion) to select the regularization parameter (lambda.opt).

Usage

lm.pels.fit(z, y, lambda.min = NULL, lambda.min.h = NULL,
lambda.min.l = NULL, factor.pn =1, nlambda = 100,lambda.seq = NULL,
vn = ncol(z), nfolds = 10, seed = 123, criterion = c("GCV", "BIC",
"AIC", "k-fold-CV"), penalty = c("grLasso", "grMCP",
"grSCAD", "gel", "cMCP", "gBridge", "gLasso", "gMCP"),
max.iter = 1000)

Arguments

z Matrix containing the observations of the covariates collected by row.

y Vector containing the scalar response.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default is 1.

nlambda Positive integer indicating the number of values of the sequence in which lambda.opt
is selected. The default is 100.

lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,
then the programme builds the sequence automatically using lambda.min and
nlambda.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

40 lm.pels.fit

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
The default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). The default is 123.

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). The default is 1000.

Details

The sparse linear model (SLM) is given by the expression:

Yi = Zi1β01 + · · ·+ Zipnβ0pn + εi i = 1, . . . , n,

where Yi denotes a scalar response, Zi1, . . . , Zipn are real random covariates. In this equation,
β0 = (β01, . . . , β0pn)> is a vector of unknown real parameters and εi is the random error.

In this function, the SLM is fitted using the penalised least-squares approach by minimising

Q (β) =
1

2
(Y − Zβ)

>
(Y − Zβ) + n

pn∑
j=1

Pλjn (|βj |) , (1)

where β = (β1, . . . , βpn)>, Pλjn (·) is a penalty function (specified in the argument penalty) and
λjn > 0 is a tuning parameter. To reduce the quantity of tuning parameters, λj , to be selected for
each sample, we consider λj = λσ̂β0,j,OLS

, where β0,j,OLS denotes the OLS estimate of β0,j and
σ̂β0,j,OLS

is the estimated standard deviation; λ is selected using the objetive criterion specified in
the argument criterion.

For further details on the estimation procedure of the SLM, see, for instance, Fan and Li. (2001) or
Fan and Lv (2011).

Remark: We should note that if we set lambda.seq= 0, we can obtain the non-penalised estimation
of the model, i.e. the OLS estimation. It is convenient to use lambda.seq 6= 0 when one suspects
there are irrelevant variables.

Value

call The matched call.
fitted.values Estimated scalar response.
residuals Differences between y and the fitted.values

beta.est Estimate of β0 when the optimal penalisation parameter lambda.opt and vn.opt
are used.

indexes.beta.nonnull

Indexes of the non-zero β̂j .
lambda.opt Selected value of lambda.
IC Value of the criterion function considered to select lambda.opt and vn.opt.
vn.opt Selected value of vn.
...

plot.classes 41

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Fan, J., and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle prop-
erties. Journal of the American Statistical Association, 96, 1348–1360, doi:10.1198/016214501753382273.

Fan, J., and Lv, J. (2011) Nonconcave penalized likelihood with NP-dimensionality, IEEE Trans-
actions on Information Theory, 57(8), 5467–5484, https://ieeexplore.ieee.org/document/
5961830.

See Also

See also PVS.fit.

Examples

data("Tecator")
y<-Tecator$fat
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#LM fit.
ptm=proc.time()
fit<-lm.pels.fit(z=z.com[train,], y=y[train],lambda.min.h=0.02,

lambda.min.l=0.01,factor.pn=2, max.iter=5000, criterion="BIC",
penalty="grSCAD")

proc.time()-ptm

#Results
fit
names(fit)

plot.classes Plot outputs from regression estimation methods

https://doi.org/10.1198/016214501753382273
https://ieeexplore.ieee.org/document/5961830
https://ieeexplore.ieee.org/document/5961830

42 plot.classes

Description

plot function for FASSMR.kernel.fit, FASSMR.kNN.fit, fsim.kernel.fit, fsim.kNN.fit, IASSMR.kernel.fit,
IASSMR.kNN.fit, lm.pels.fit, PVS.fit, PVS.kernel.fit, PVS.kNN.fit, sfpl.kernel.fit,
sfpl.kNN.fit,sfplsim.kernel.fit and sfplsim.kNN.fit.

Usage

S3 method for class 'FASSMR.kernel'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'FASSMR.kNN'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'fsim.kernel'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'fsim.kNN'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'IASSMR.kernel'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'IASSMR.kNN'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'lm.pels'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'PVS'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'PVS.kernel'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'PVS.kNN'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'sfpl.kernel'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'sfpl.kNN'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'sfplsim.kernel'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

S3 method for class 'sfplsim.kNN'
plot(x, cex.axis = 1.5, cex.lab = 1.5, cex = 2, col = 1, cex.main = 1.5, ...)

plot.classes 43

Arguments

x Output of the functions mentioned in the Description (i.e. an object of the
class FASSMR.kernel, FASSMR.kNN, fsim.kernel,fsim.kNN, IASSMR.kernel,
IASSMR.kNN, lm.pels, PVS, PVS.kernel, PVS.kNN, sfpl.kernel,sfpl.kNN,
sfplsim.kernel or sfplsim.kNN).

cex.axis The magnification to be used for axis annotation relative to the current setting
of cex. The default is 1.5.

cex.lab The magnification to be used for x and y labels relative to the current setting of
cex. The default is 1.5.

cex A numerical value giving the amount by which plotting text and symbols should
be magnified. The default is 2.

col A specification for the default plotting color. The default is color=1.

cex.main The magnification to be used for main titles relative to the current setting of cex.
The default is 1.5.

... Further arguments passed to or from other methods.

Value

The functions return different graphical representations.

• For the classes fsim.kNN and fsim.kernel:

1. The estimated functional index: θ̂.
2. The regression fit.

• For the classes FASSMR.kernel, FASSMR.kNN, IASSMR.kernel, IASSMR.kNN, sfplsim.kernel
and sfplsim.kNN.

1. The response over the fitted.values.
2. The residuals over the fitted.values.
3. The estimated functional index: θ̂.

• For the classes lm.pels, PVS, PVS.kernel, PVS.kNN, sfpl.kernel and sfpl.kNN.

1. The response over the fitted.values.
2. The residuals over the fitted.values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

FASSMR.kernel.fit, FASSMR.kNN.fit, fsim.kernel.fit, fsim.kNN.fit, IASSMR.kernel.fit,
IASSMR.kNN.fit, lm.pels.fit, PVS.fit, PVS.kernel.fit, PVS.kNN.fit, sfpl.kernel.fit,
sfpl.kNN.fit, sfplsim.kernel.fit and sfplsim.kNN.fit.

44 predict.fsim

predict.fsim Prediction from functional single-index model estimates

Description

predict method for functional single-index regression fitted using fsim.kernel.fit or fsim.kNN.fit.

Usage

S3 method for class 'fsim.kernel'
predict(object, newdata = NULL, y.test = NULL, ...)
S3 method for class 'fsim.kNN'
predict(object, newdata = NULL, y.test = NULL, ...)

Arguments

object Output of the fsim.kernel.fit or fsim.kNN.fit functions (i.e. an object of
the class fsim.kernel or fsim.kNN).

newdata A matrix containing new observations of the functional covariate collected by
row.

y.test (optional) A vector containing the new observations of the response.

... Further arguments passed to or from other methods.

Details

The prediction is computed using the functions fsim.kernel.test and fsim.kernel.fit, respec-
tively.

Value

The function returns the predicted values of the response (y) for newdata. If !is.null(y.test),
it also provides the mean squared error of prediction (MSEP) computed as mean((y-y.test)^2). If
is.null(newdata) the function returns the fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

fsim.kernel.fit and fsim.kernel.test or fsim.kNN.fit and fsim.kNN.test.

predict.IASSMR 45

Examples

data(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra2

train<-1:160
test<-161:215

#FSIM fit.
fit.kernel<-fsim.kernel.fit(y[train],x=X[train,],max.q.h=0.35, nknot=20,
range.grid=c(850,1050),nknot.theta=4)
fit.kNN<-fsim.kNN.fit(y=y[train],x=X[train,],max.knn=20,nknot.theta=4,
nknot=20,range.grid=c(850,1050))

test<-161:215

pred.kernel<-predict(fit.kernel,newdata=X[test,],y.test=y[test])
pred.kernel$MSEP
pred.kNN<-predict(fit.kNN,newdata=X[test,],y.test=y[test])
pred.kNN$MSEP

predict.IASSMR Prediction from multi-functional partial linear single-index model

Description

predict method for the multi-functional partial linear single-index model fitted using IASSMR.kernel.fit
or IASSMR.kNN.fit.

Usage

S3 method for class 'IASSMR.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'IASSMR.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, knearest.n = object$knearest,
min.knn.n = object$min.knn, max.knn.n = object$max.knn.n,
step.n = object$step, ...)

Arguments

object Output of the functions mentioned in the Description (i.e. an object of the
class IASSMR.kernel or IASSMR.kNN).

46 predict.IASSMR

newdata.x A matrix containing new observations of the functional covariate in the func-
tional single-index component collected by row.

newdata.z Matrix containing the new observations of the scalar covariates coming from the
discretisation of a curve collected by row.

y.test (optional) A vector containing the new observations of the response.

option Allows the choice between 1, 2 and 3. The default is 1. See the section Details.

... Further arguments.

knearest.n Only used for objects IASSMR.kNN if option=2 or option=3: vector of positive
integers containing the sequence in which the number of nearest neighbours
k.opt is selected. The default is object$knearest.

min.knn.n Only used for objects IASSMR.kNN if option=2 or option=3: positive integer
indicating the minumum value of the sequence in which the number of nearest
neighbours k.opt is selected (thus, this number must be smaller than the sample
size). The default is object$min.knn.

max.knn.n Only used for objects IASSMR.kNN if option=2 or option=3: positive integer
indicating the maximum value of the sequence in which the number of nearest
neighbours k.opt is selected (thus, this number must be larger than min.kNN
and smaller than the sample size). The default is object$max.knn.

step.n Only used for objects IASSMR.kNN if option=2 or option=3: positive inte-
ger used to build the sequence of k-nearest neighbours in the following way:
min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,.... The
default is object$step.

Details

To obtain the predictions of the response for newdata.x and newdata.z, three options are provided:

• If option=1, we mantain all the estimates (k.opt or h.opt, theta.est and beta.est) to
predict the functional single-index component of the model. As we use the estimates of the
second step of the algorithm, only the train.2 is used as training sample to predict. Then,
it should be noted that k.opt or h.opt could not be suitable to predict the functional single-
index component of the model.

• If option=2, we mantain theta.est and beta.est, while the tunning parameter (h or k)
is seleted again to predict the functional single-index component of the model. This selec-
tion is performed using the cross-validation criterion in the functional single-index model
associated and the complete training sample (i.e. train=c(train.1,train.2)). As we use
the whole training sample (not just a subsample of it), the sample size is modified and, as
a consequence, the parameters knearest, min.knn, max.knn, step given to the function
IASSMR.kNN.fit may need to be provided again to compute predictions. For that, we add
the arguments knearest.n, min.knn.n, max.knn.n, step.mn.

• If option=3, we mantain only the indexes of the relevant variables selected by the IASSMR.
We estimate again the linear coefficients and the functional index by means of sfplsim.kernel.fit
or sfplsim.kNN.fit, respectively, without penalisation (setting lambda.seq=0) and using
the whole training sample (train=c(train.1,train.2)). The method provides two predic-
tions (and MSEPs):

– a) The prediction associated to option=1 for sfplsim.kernel or sfplsim.kNN class.

predict.IASSMR 47

– b) The prediction associated to option=2 for sfplsim.kernel or sfplsim.kNN class.

(see the documentation of the functions predict.sfplsim.kernel and predict.sfplsim.kNN)

Value

The function returns the predicted values of the response (y) for newdata.x and newdata.z. If
!is.null(y.test), it also provides the mean squared error of prediction (MSEP) computed as
mean((y-y.test)^2). If option=3 two sets of predictions are provided (and two MSEP), in cor-
respondence with the items a) and b) mentioned in the section Details. If is.null(newdata.x)
or is.null(newdata.z), the function returns the fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

sfplsim.kernel.fit, sfplsim.kNN.fit, IASSMR.kernel.fit, IASSMR.kNN.fit.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216
test<-217:266

#Fit
fit.kernel<-IASSMR.kernel.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,nknot.theta=2,lambda.min.h=0.03,
lambda.min.l=0.03, max.q.h=0.35, num.h = 10, nknot=20,
criterion="BIC", penalty="grSCAD", max.iter=5000)

fit.kNN<- IASSMR.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

48 predict.lm

train.1=1:108,train.2=109:216,nknot.theta=2,lambda.min.h=0.07,
lambda.min.l=0.07, max.knn=20, nknot=20,criterion="BIC",
penalty="grSCAD", max.iter=5000)

#Predictions
predict(fit.kernel,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)
predict(fit.kNN,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)

predict.lm Prediction from linear model estimates

Description

predict method for:

• Linear model (LM) fitted using lm.pels.fit.

• Linear model with covariates coming from the discretization of a curve fitted using PVS.fit.

Usage

S3 method for class 'lm.pels'
predict(object, newdata = NULL, y.test = NULL, ...)
S3 method for class 'PVS'
predict(object, newdata = NULL, y.test = NULL, ...)

Arguments

object Output of the lm.pels.fit or PVS.fit functions (i.e. an object of the class
lm.pels or PVS)

newdata Matrix containing the new observations of the scalar covariates (LM) or of the
scalar covariates coming from the discretisation of a curve, collected by row.

y.test (optional) A vector containing the new observations of the response.

... Further arguments passed to or from other methods.

Value

The function returns the predicted values of the response (y) for newdata. If !is.null(y.test),
it also provides the mean squared error of prediction (MSEP) computed as mean((y-y.test)^2). If
is.null(newdata) the function returns the fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

predict.lm 49

See Also

lm.pels.fit and PVS.fit.

Examples

data("Tecator")
y<-Tecator$fat
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160
test<-161:215

#LM fit.
fit<-lm.pels.fit(z=z.com[train,], y=y[train],lambda.min.h=0.02,lambda.min.l=0.01,

factor.pn=2, max.iter=5000, criterion="BIC", penalty="grSCAD")

#Predictions
predict(fit,newdata=z.com[test,],y.test=y[test])

data(Sugar)

y<-Sugar$ash
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216
test<-217:266

#Fit
fit.pvs<-PVS.fit(z=z.sug[train,], y=y.sug[train],train.1=1:108,train.2=109:216,

lambda.min.h=0.2,criterion="BIC", penalty="grSCAD", max.iter=5000)

#Predictions
predict(fit.pvs,newdata=z.sug[test,],y.test=y.sug[test])

50 predict.mfplm

predict.mfplm Prediction from multi-functional partial linear model

Description

predict method for the multi-functional partial linear model fitted using PVS.kernel.fit or
PVS.kNN.fit.

Usage

S3 method for class 'PVS.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'PVS.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, knearest.n = object$knearest,
min.knn.n = object$min.knn, max.knn.n = object$max.knn.n,
step.n = object$step, ...)

Arguments

object Output of the functions mentioned in the Description (i.e. an object of the
class PVS.kernel or PVS.kNN).

newdata.x A matrix containing new observations of the functional covariate in the func-
tional nonparametric component collected by row.

newdata.z Matrix containing the new observations of the scalar covariates coming from the
discretisation of a curve collected by row.

y.test (optional) A vector containing the new observations of the response.

option Allows the choice between 1, 2 and 3 in the case of PVS.kernel objects and
between 1, 2, 3, and 4 in PVS.kNN objects. The default is 1. See the section
Details.

... Further arguments.

knearest.n Only used for objects PVS.kNN if option=2, option=3 or option=4: vector of
positive integers containing the sequence in which the number of nearest neigh-
bours k.opt is selected. The default is object$knearest.

min.knn.n Only used for objects PVS.kNN if option=2, option=3 or option=4: positive
integer indicating the minumum value of the sequence in which the number of
nearest neighbours k.opt is selected (thus, this number must be smaller than the
sample size). The default is object$min.knn.

max.knn.n Only used for objects PVS.kNN if option=2, option=3 or option=4: positive
integer indicating the maximum value of the sequence in which the number
of nearest neighbours k.opt is selected (thus, this number must be larger than
min.kNN and smaller than the sample size). The default is object$max.knn.

predict.mfplm 51

step.n Only used for objects PVS.kNN if option=2, option=3 or option=4: positive
integer used to build the sequence of k-nearest neighbours in the following way:
min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,.... The
default is object$step.

Details

To obtain the predictions of the response for newdata.x and newdata.z, the following options are
provided:

• If option=1, we mantain all the estimates (k.opt or h.opt and beta.est) to predict the
functional nonparametric component of the model. As we use the estimates of the second
step of the algorithm, only the train.2 is used as training sample to predict. Then, it should
be noted that k.opt or h.opt could not be suitable to predict the functional nonparametric
component of the model.

• If option=2, we mantain beta.est, while the tunning parameter (h or k) is seleted again to
predict the functional nonparametric component of the model. This selection is performed
using the cross-validation criterion in the functional nonparametric model associated and the
complete training sample (i.e. train=c(train.1,train.2)), obtaining a global selection for
h or k. As we use the whole training sample (not just a subsample of it), the sample size is
modified and, as a consequence, the parameters knearest, min.knn, max.knn, step given
to the function IASSMR.kNN.fit may need to be provided again to compute predictions. For
that, we add the arguments knearest.n, min.knn.n, max.knn.n, step.mn.

• If option=3, we mantain only the indexes of the relevant variables selected by the IASSMR.
We estimate again the linear coefficients by means of sfpl.kernel.fit or sfpl.kNN.fit,
respectively, without penalisation (setting lambda.seq=0) and using the whole training sam-
ple (train=c(train.1,train.2)). The method provides two predictions (and MSEPs):

– a) The prediction associated to option=1 for sfpl.kernel or sfpl.kNN class.
– b) The prediction associated to option=2 for sfpl.kernel or sfpl.kNN class.

(see the documentation of the functions predict.sfpl.kernel and predict.sfpl.kNN)

• If option=4 (option only available for the class PVS.kNN) we mantain beta.est, while the
tunning parameter k is seleted again to predict the functional nonparametric component of the
model. This selection is performed using the cross-validation criterion in the functional non-
parametric model associated and the complete training sample (i.e. train=c(train.1,train.2)),
obtaining a local selection for k.

Value

The function returns the predicted values of the response (y) for newdata.x and newdata.z. If
!is.null(y.test), it also provides the mean squared error of prediction (MSEP) computed as
mean((y-y.test)^2). If option=3, two sets of predictions are provided (and two MSEP), in cor-
respondence with the items a) and b) mentioned in the section Details. If is.null(newdata.x)
or is.null(newdata.z), the function returns the fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

52 predict.sfpl

See Also

PVS.kernel.fit, sfpl.kernel.fit and predict.sfpl.kernel or PVS.kNN.fit, sfpl.kNN.fit
and predict.sfpl.kNN.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216
test<-217:266

#Fit
fit.kernel<- PVS.kernel.fit(x=x.sug[train,],z=z.sug[train,],

y=y.sug[train],train.1=1:108,train.2=109:216,
lambda.min.h=0.03,lambda.min.l=0.03,
max.q.h=0.35,num.h = 10, nknot=20,criterion="BIC",
penalty="grSCAD",max.iter=5000)

fit.kNN<- PVS.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],
train.1=1:108,train.2=109:216,lambda.min.h=0.07,
lambda.min.l=0.07, nknot=20,criterion="BIC", penalty="grSCAD",
max.iter=5000)

#Preditions
predict(fit.kernel,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)
predict(fit.kNN,newdata.x=x.sug[test,],newdata.z=z.sug[test,],y.test=y.sug[test],option=2)

predict.sfpl Predictions from semi-functional partial linear regression

Description

predict method for the semi-functional partial linear model (SFPLM) fitted using sfpl.kernel.fit
or sfpl.kNN.fit.

predict.sfpl 53

Usage

S3 method for class 'sfpl.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'sfpl.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

Arguments

object Output of the functions mentioned in the Description (i.e. an object of the
class sfpl.kernel or sfpl.kNN.

newdata.x A matrix containing new observations of the functional covariate in the functional-
single index component collected by row.

newdata.z Matrix containing the new observations of the scalar covariate collected by row.

y.test (optional) A vector containing the new observations of the response.

option Allows the choice between 1 and 2 in sfpl.kernel objects, and 1, 2 and 3 in
sfpl.kNN objects. The default is 1. See the section Details.

... Further arguments passed to or from other methods.

Details

To obtain the predictions of the response for newdata.x and newdata.z, the following options are
provided:

• If option=1, we mantain all the estimations (k.opt or h.opt and beta.est) to predict the
functional nonparametric component of the model.

• If option=2, we mantain beta.est, while the tunning parameter (h or k) is seleted again to
predict the functional nonparametric component of the model. This selection is performed us-
ing the cross-validation criterion in the functional nonparametric model associated, obtaining
a global selection for h or k.

In the case of sfpl.kNN objects if option=3, we mantain beta.est, while the tunning parameter
k is seleted again to predict the functional nonparametric component of the model. This selection
is performed using the cross-validation criterion in the functional nonparametric model associated,
performing a local selection for k.

Value

The function returns the predicted values of the response (y) for newdata.x and newdata.z. If
!is.null(y.test), it also provides the mean squared error of prediction (MSEP) computed as
mean((y-y.test)^2). If is.null(newdata.x) or is.null(newdata.z), the function returns the
fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

54 predict.sfplsim.FASSMR

See Also

sfpl.kernel.fit and sfpl.kNN.fit

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160
test<-161:215

#Fit
fit.kernel<-sfpl.kernel.fit(x=X[train,], z=z.com[train,], y=y[train],q=2,

max.q.h=0.35,lambda.min.h=0.02,lambda.min.l=0.01,
factor.pn=2, max.iter=5000, criterion="BIC", penalty="grSCAD",nknot=20)

fit.kNN<-sfpl.kNN.fit(y=y[train],x=X[train,], z=z.com[train,],q=2,
max.knn=20,lambda.min.h=0.02,lambda.min.l=0.01, factor.pn=2,
criterion="BIC",range.grid=c(850,1050), penalty="grSCAD",
nknot=20, max.iter=5000)

#Predictions
predict(fit.kernel,newdata.x=X[test,],newdata.z=z.com[test,],y.test=y[test],

option=2)
predict(fit.kNN,newdata.x=X[test,],newdata.z=z.com[test,],y.test=y[test],

option=2)

predict.sfplsim.FASSMR

Prediction from functional semiparametric model estimates

Description

predict method for:

• Semi-functional partial linear single-index model (SFPLSIM) fitted using sfplsim.kernel.fit
or sfplsim.kNN.fit.

• Multi-functional partial linear single-index regression (MFPLSIM) fitted using FASSMR.kernel.fit
or FASSMR.kNN.fit.

predict.sfplsim.FASSMR 55

Usage

S3 method for class 'sfplsim.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'sfplsim.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'FASSMR.kernel'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

S3 method for class 'FASSMR.kNN'
predict(object, newdata.x = NULL, newdata.z = NULL,
y.test = NULL, option = NULL, ...)

Arguments

object Output of the functions mentioned in the Description (i.e. an object of the
class sfplsim.kernel, sfplsim.kNN, FASSMR.kernel or FASSMR.kNN).

newdata.x A matrix containing new observations of the functional covariate in the functional-
single index component collected by row.

newdata.z Matrix containing the new observations of the scalar covariates (SFPLSIM) or
of the scalar covariates coming from the discretisation of a curve (MFPLSIM),
collected by row.

y.test (optional) A vector containing the new observations of the response.
option Allows the choice between 1 and 2. The default is 1. See the section Details.
... Further arguments passed to or from other methods.

Details

To obtain the predictions of the response for newdata.x and newdata.z, two options are provided:

• If option=1, we mantain all the estimations (k.opt or h.opt, theta.est and beta.est) to
predict the functional single-index component of the model.

• If option=2, we mantain theta.est and beta.est, while the tuning parameter (h or k) is
selected again to predict the functional single-index component of the model. This selection is
performed using the cross-validation criterion in the functional single-index model associated.

Value

The function returns the predicted values of the response (y) for newdata.x and newdata.z. If
!is.null(y.test), it also provides the mean squared error of prediction (MSEP) computed as
mean((y-y.test)^2). If is.null(newdata.x) or is.null(newdata.z), the function returns the
fitted values.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

56 predict.sfplsim.FASSMR

See Also

sfplsim.kernel.fit, sfplsim.kNN.fit, FASSMR.kernel.fit or FASSMR.kNN.fit.

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra2
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160
test<-161:215

#SFPLSIM fit. Convergence errors for some theta are obtained.
s.fit.kernel<-sfplsim.kernel.fit(x=X[train,], z=z.com[train,], y=y[train],

max.q.h=0.35,lambda.min.h=0.02,lambda.min.l=0.01,
factor.pn=2, max.iter=5000, nknot.theta=4,criterion="BIC",
penalty="grSCAD",nknot=20)

s.fit.kNN<-sfplsim.kNN.fit(y=y[train],x=X[train,], z=z.com[train,],
max.knn=20,lambda.min.h=0.02,lambda.min.l=0.01, factor.pn=2,
nknot.theta=4,criterion="BIC",range.grid=c(850,1050), penalty="grSCAD",
nknot=20, max.iter=5000)

predict(s.fit.kernel,newdata.x=X[test,],newdata.z=z.com[test,],
y.test=y[test],option=2)

predict(s.fit.kNN,newdata.x=X[test,],newdata.z=z.com[test,],
y.test=y[test],option=2)

data(Sugar)
y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

print.summary.fsim 57

test<-217:266

m.fit.kernel <- FASSMR.kernel.fit(x=x.sug[train,],z=z.sug[train,],
y=y.sug[train], nknot.theta=2,lambda.min.h=0.03,
lambda.min.l=0.03, max.q.h=0.35,num.h = 10,
nknot=20,criterion="BIC", penalty="grSCAD",max.iter=5000)

m.fit.kNN<- FASSMR.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],
nknot.theta=2,lambda.min.h=0.03, lambda.min.l=0.03,
max.knn=20,nknot=20,criterion="BIC", penalty="grSCAD",max.iter=5000)

predict(m.fit.kernel,newdata.x=x.sug[test,],newdata.z=z.sug[test,],
y.test=y.sug[test],option=2)

predict(m.fit.kNN,newdata.x=x.sug[test,],newdata.z=z.sug[test,],
y.test=y.sug[test],option=2)

print.summary.fsim Summarize information from functional single-index model (FSIM) es-
timation methods

Description

summary and print functions for fsim.kNN.fit and fsim.kernel.fit.

Usage

S3 method for class 'fsim.kernel'
print(x, ...)
S3 method for class 'fsim.kNN'
print(x, ...)
S3 method for class 'fsim.kernel'
summary(object, ...)
S3 method for class 'fsim.kNN'
summary(object, ...)

Arguments

x Output of the fsim.kernel.fit or fsim.kNN.fit functions (i.e. an object of
the class fsim.kernel or fsim.kNN).

... Further arguments.

object Output of the fsim.kernel.fit or fsim.kNN.fit functions (i.e. an object of
the class fsim.kernel or fsim.kNN).

58 print.summary.lm

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• Coefficients of θ̂ in the B-spline basis (theta.est: a vector of length(order.Bspline+nknot.theta).

• Minimum value of the CV function, i.e. the value of CV for theta.est and h.opt/k.opt.

• R squared.

• Residual variance.

• Residual degrees of freedom.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

fsim.kernel.fit and fsim.kNN.fit.

print.summary.lm Summarize information from linear model estimation methods

Description

summary and print functions for lm.pels.fit and PVS.fit.

Usage

S3 method for class 'lm.pels'
print(x, ...)
S3 method for class 'PVS'
print(x, ...)
S3 method for class 'lm.pels'
summary(object, ...)
S3 method for class 'PVS'
summary(object, ...)

Arguments

x Output of the lm.pels.fit or PVS.fit functions (i.e. an object of the class
lm.pels or PVS).

... Further arguments.

object Output of the lm.pels.fit or PVS.fit functions (i.e. an object of the class
lm.pels or PVS).

print.summary.mfpl 59

Value

• The matched call.
• The estimated intercept of the model.
• The estimated vector of linear coefficients (beta.est).
• The number of non-zero components in beta.est.
• The indexes of the non-zero components in beta.est.
• The optimal value of the penalisation parameter (lambda.opt).
• The optimal value of the criterion function, i. e. the value obtained with lambda.opt and
vn.opt (and w.opt in the case of the PVS).

• Minimum value of the penalized profile least-squares function. That is, the value obtained
using beta.est.

• The penalty function used.
• The criterion used to select the penalisation parameter and vn.
• The optimal value of vn in the case of the lm.pels object.

In the case of the PVS objects, these functions also return the optimal initial number of covariates
to build the reduced model in the first step of the algorithm (w.opt). This value is also selected by
means of the criterion used to select the penalisation parameter.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

lm.pels.fit and PVS.fit.

print.summary.mfpl Summarize information from multi-functional partial linear model
(MFPLM) estimation methods

Description

summary and print functions for PVS.kernel.fit and PVS.kNN.fit.

Usage

S3 method for class 'PVS.kernel'
print(x, ...)
S3 method for class 'PVS.kNN'
print(x, ...)
S3 method for class 'PVS.kernel'
summary(object, ...)
S3 method for class 'PVS.kNN'
summary(object, ...)

60 print.summary.mfplsim

Arguments

x Output of the PVS.kernel.fit or PVS.kNN.fit functions (i.e. an object of the
class PVS.kernel or PVS.kNN).

... Further arguments.

object Output of the PVS.kernel.fit or PVS.kNN.fit functions (i.e. an object of the
class PVS.kernel or PVS.kNN).

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• The optimal initial number of covariates to build the reduced model (w.opt).

• The estimated vector of linear coefficients (beta.est).

• The number of non-zero components in beta.est.

• The indexes of the non-zero components in beta.est.

• The optimal value of the penalisation parameter (lambda.opt).

• The optimal value of the criterion function, i. e. the value obtained with w.opt, lambda.opt,
vn.opt and h.opt/k.opt

• Minimum value of the penalized profile least-squares function. That is, the value obtained
using beta.est.

• The penalty function used.

• The criterion used to select the initial number of covariates used to build the reduced model,
the tunning parameter, the penalisation parameter and vn.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

PVS.kernel.fit and PVS.kNN.fit.

print.summary.mfplsim Summarize information from multi-functional partial linear single-
index model (MFPLSIM) estimation methods

Description

summary and print functions for FASSMR.kernel.fit, FASSMR.kNN.fit, IASSMR.kernel.fit
and IASSMR.kNN.fit.

print.summary.mfplsim 61

Usage

S3 method for class 'FASSMR.kernel'
print(x, ...)
S3 method for class 'FASSMR.kNN'
print(x, ...)
S3 method for class 'IASSMR.kernel'
print(x, ...)
S3 method for class 'IASSMR.kNN'
print(x, ...)
S3 method for class 'FASSMR.kernel'
summary(object, ...)
S3 method for class 'FASSMR.kNN'
summary(object, ...)
S3 method for class 'IASSMR.kernel'
summary(object, ...)
S3 method for class 'IASSMR.kNN'
summary(object, ...)

Arguments

x Output of the FASSMR.kernel.fit, FASSMR.kNN.fit, IASSMR.kernel.fit or
IASSMR.kNN.fit functions (i.e. an object of the class FASSMR.kernel, FASSMR.kNN,
IASSMR.kernel or IASSMR.kNN).

... Further arguments passed to or from other methods.

object Output of the FASSMR.kernel.fit, FASSMR.kNN.fit, IASSMR.kernel.fit or
IASSMR.kNN.fit functions (i.e. an object of the class FASSMR.kernel, FASSMR.kNN,
IASSMR.kernel or IASSMR.kNN).

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• The optimal initial number of covariates to build the reduced model (w.opt).

• Coefficients of θ̂ in the B-spline basis (theta.est): a vector of length(order.Bspline+nknot.theta).

• The estimated vector of linear coefficients (beta.est).

• The number of non-zero components in beta.est.

• The indexes of the non-zero components in beta.est.

• The optimal value of the penalisation parameter (lambda.opt).

• The optimal value of the criterion function, i. e. the value obtained with w.opt, lambda.opt,
vn.opt and h.opt/k.opt

• Minimum value of the penalized profile least-squares function. That is, the value obtained
using theta.est and beta.est.

• The penalty function used.

• The criterion used to select the initial number of covariates used to build the reduced model,
the tunning parameter, the penalisation parameter and Vn.

62 print.summary.sfpl

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

FASSMR.kernel.fit, FASSMR.kNN.fit, IASSMR.kernel.fit and IASSMR.kNN.fit.

print.summary.sfpl Summarize information from semi-functional partial linear model (SF-
PLM) estimation methods

Description

summary and print functions for sfpl.kNN.fit and sfpl.kernel.fit.

Usage

S3 method for class 'sfpl.kernel'
print(x, ...)
S3 method for class 'sfpl.kNN'
print(x, ...)
S3 method for class 'sfpl.kernel'
summary(object, ...)
S3 method for class 'sfpl.kNN'
summary(object, ...)

Arguments

x Output of the sfpl.kernel.fit or sfpl.kNN.fit functions (i.e. an object of
the class sfpl.kernel or sfpl.kNN).

... Further arguments.

object Output of the sfpl.kernel.fit or sfpl.kNN.fit functions (i.e. an object of
the class sfpl.kernel or sfpl.kNN).

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• The estimated vector of linear coefficients (beta.est).

• The number of non-zero components in beta.est.

• The indexes of the non-zero components in beta.est.

• The optimal value of the penalisation parameter (lambda.opt).

print.summary.sfplsim 63

• The optimal value of the criterion function, i. e. the value obtained with lambda.opt, vn.opt
and h.opt/k.opt

• Minimum value of the penalized profile least-squares function. That is, the value obtained
using beta.est.

• The penalty function used.

• The criterion used to select the tunning parameter, the penalisation parameter and vn.

• The optimal value of vn.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

sfpl.kernel.fit and sfpl.kNN.fit.

print.summary.sfplsim Summarize information from semi-functional partial linear single-
index model (SFPLSIM) estimation methods

Description

summary and print functions for sfplsim.kNN.fit and sfplsim.kernel.fit.

Usage

S3 method for class 'sfplsim.kernel'
print(x, ...)
S3 method for class 'sfplsim.kNN'
print(x, ...)
S3 method for class 'sfplsim.kernel'
summary(object, ...)
S3 method for class 'sfplsim.kNN'
summary(object, ...)

Arguments

x Output of the sfplsim.kernel.fit or sfplsim.kNN.fit functions (i.e. an
object of the class sfplsim.kernel or sfplsim.kNN).

... Further arguments.

object Output of the sfplsim.kernel.fit or sfplsim.kNN.fit functions (i.e. an
object of the class sfplsim.kernel or sfplsim.kNN).

64 projec

Value

• The matched call.

• The optimal value of the tunning parameter (h.opt or k.opt).

• Coefficients of θ̂ in the B-spline basis (theta.est): a vector of length(order.Bspline+nknot.theta).

• The estimated vector of linear coefficients (beta.est).

• The number of non-zero components in beta.est.

• The indexes of the non-zero components in beta.est.

• The optimal value of the penalisation parameter (lambda.opt).

• The optimal value of the criterion function, i. e. the value obtained with lambda.opt, vn.opt
and h.opt/k.opt

• Minimum value of the penalized profile least-squares function. That is, the value obtained
using theta.est and beta.est.

• The penalty function used.

• The criterion used to select the tunning parameter, the penalisation parameter and vn.

• The optimal value of vn.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

See Also

sfplsim.kernel.fit and sfplsim.kNN.fit.

projec Inner product computation

Description

Computes the inner product between each curve collected in data and a particular curve θ.

Usage

projec(data, theta, order.Bspline = 3, nknot.theta = 3, range.grid = NULL, nknot = NULL)

projec 65

Arguments

data Matrix containing functional data collected by row
theta Vector containing the coefficients of θ in a B-spline basis, so that length(theta)=order.Bspline+nknot.theta
order.Bspline Positive integer giving the order of the B-spline basis functions for the B-spline

representation of θ. This is the number of coefficients in each piecewise poly-
nomial segment. The default is 3.

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis. The default is 3.

range.grid Vector of length 2 containing the range of the discretization of the functional
data. If range.grid=NULL, then range.grid=c(1,p) is considered, where p is
the size of the discretization size of data (i.e. ncol(data)).

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional data. The default value is (p - order.Bspline -
1)%/%2.

Value

A matrix with the inner products.

Note

The construction of this code is based on that by Frederic Ferraty, which is available on his website
https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also semimetric.projec.

Examples

data("Tecator")
names(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra

#length(theta)=6=order.Bspline+nknot.theta
projec(X,theta=c(1,0,0,1,1,-1),nknot.theta=3,nknot=20,range.grid=c(850,1050))

https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

66 PVS.fit

PVS.fit PVS estimation

Description

This function computes the partitioning variable selection algorithm (PVS) for sparse linear regres-
sion with covariates with functional origin.

This algorithm involves the penalised least-squares regularization procedure, which requires an
objective criterion (criterion) to select the number of covariates in the reduced model w.opt and
the penalisation parameter lambda.opt.

Usage

PVS.fit(z, y, train.1, train.2, lambda.min = NULL, lambda.min.h = NULL,
lambda.min.l = NULL, factor.pn = 1, nlambda = 100, vn = ncol(z),
nfolds = 10, seed = 123, wn = c(10,15,20),range.grid=NULL, criterion =
c("GCV", "BIC", "AIC","k-fold-CV"), penalty = c("grLasso", "grMCP",
"grSCAD", "gel", "cMCP", "gBridge", "gLasso", "gMCP"), max.iter = 1000)

Arguments

z Matrix containing the observations of the functional covariate that is discretised
collected by row.

y Vector containing the scalar response.

train.1 Indexes of the data used as the training sample in the 1st step. The default is
train.1<-1:ceiling(n/2).

train.2 Indexes of the data used as the training sample in the 2nd step. The default is
train.2<-(ceiling(n/2)+1):n.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values of the sequence in which lambda.opt
is selected. The default is 100.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

PVS.fit 67

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
Default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). Default is 123.

wn A vector of positive integers indicating the eligible number of covariates of the
reduced model. See the section Details. The default is c(10,15,20).

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). Default is 1000.

Details

The sparse linear model with covariates coming from the discretization of a curve is given by the
expression

Yi =

pn∑
j=1

β0jζi(tj) + εi, (i = 1, . . . , n)

where

• Yi is a real random response and ζi is supposed to be a random curve defined on some interval
[a, b] which is observed at the points a ≤ t1 < · · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn)> is a vector of unknown real coefficients.

• εi denotes the random error.

In this model, we assume that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} form part
of the model. Therefore, we must select the relevant variables (the impact points of the curve ζ on
the response) and estimate the model.

In this function, this model is fitted using the PVS. The PVS is an algorithm with two steps, so we
split the sample into two independent subsamples (asymptotically of the same size n1 ∼ n2 ∼ n/2),
one of them to be used in the first stage of the method and the other in the second stage.

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.

Note that these two subsamples are specified to the programme by means of the arguments train.1
and train.2. The superscript s with s = 1,2 indicates the stage of the method in which the sample,
function, variable or parameter is involved.

To explain the algorithm we assume, without lost of generality, that the number pn of linear covari-
ates can be expressed as follows: pn = qnwn with qn and wn integers.

68 PVS.fit

1. First step. A reduced model is consider, discarding many linear covariates. The penalised
least-squares procedure is applied to the reduced model using only the subsample E1. Specif-
ically:

• Consider a subset of the initial pn linear covariates, which contains only wn equally
spaced discretized observations of ζ covering the whole interval [a, b]. This subset is the
following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z.The size (cardinal) of this subset is provided to the program in the argument wn (which
contains a sequence of eligible sizes).

• Consider the following reduced model, which involves only the wn linear covariates be-
longing toR1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) + ε1i .

The penalised least-squares variable selection procedure is applied to the reduced model.
This is done by means of the function lm.pels.fit, which requires the remaining argu-
ments (for details, see the documentation of the function lm.pels.fit). The estimates
obtained after that are the outputs of the first step of the algorithm.

2. Second step. The variables selected in the first step and the variables in the neighbourhood of
the ones selected are included. Then the penalised least-squares procedure is performed again.
For that, we consider only the subsample E2. Specifically:

• Consider a new set of variables :

R2
n =

⋃
{k,β̂1

0k 6=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn =](R2
n), we can rename the variables inR2

n as follows:

R2
n =

{
ζ(t21), . . . , ζ(t2rn)

}
,

• Consider the following model, which involves only the linear covariates belonging toR2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) + ε2i .

The penalized least-squares variable selection procedure, with kernel estimation, is ap-
plied to this model by means of the function lm.pels.fit.

The outputs of the second step are the estimates of the model obtained with the PVS algorithm. For
further details on this algorithm, see Aneiros and Vieu (2014).

Remark: If the condition pn = wnqn fails, the function considers not fixed qn = qn,k values
k = 1, . . . , wn, when pn/wn is not an integer number. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

PVS.fit 69

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est β̂ (i. e. estimate of β0 when the optimal tuning parameters w.opt and lambda.opt
are used).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

w.opt Selected size forR1
n.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

IC Value of the criterion function considered to select w.opt and lambda.opt.

beta2 Estimate of β2
0 for each value of the sequence wn.

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the whole set of pn) used to buildR2
n for each value

of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

index01 Indexes of the covariates (in the whole set of pn) used to buildR1
n for each value

of the sequence wn.

index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each
value of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G. and Vieu, P. (2014) Variable selection in infinite-dimensional problems. Statistics &
Probability Letters, 94, 12–20, doi:10.1016/j.spl.2014.06.025.

https://doi.org/10.1016/j.spl.2014.06.025

70 PVS.kernel.fit

See Also

See also lm.pels.fit.

Examples

data(Sugar)

y<-Sugar$ash
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- PVS.fit(z=z.sug[train,], y=y.sug[train],train.1=1:108,train.2=109:216,

lambda.min.h=0.2,criterion="BIC", penalty="grSCAD", max.iter=5000)
proc.time()-ptm

fit
names(fit)

PVS.kernel.fit PVS with kernel estimation

Description

This function computes the partitioning variable selection algorithm (PVS) for sparse multi-functional
partial linear regression.

This algorithm involves the penalised least-squares regularization procedure combined with kernel
estimation with Nadaraya-Watson weights. The procedure requires an objective criterion (criterion)
to select the number of covariates in the reduced model (w.opt), the bandwidth (h.opt) and the pe-
nalisation parameter (lambda.opt).

Usage

PVS.kernel.fit(x, z, y, train.1=NULL, train.2=NULL, semimetric = "deriv", q = NULL,
min.q.h = 0.05, max.q.h = 0.5, h.seq = NULL, num.h = 10,
range.grid = NULL, kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL,

PVS.kernel.fit 71

lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1,
nlambda = 100, vn = ncol(z), nfolds = 10, seed = 123, wn = c(10, 15, 20),
criterion = c("GCV", "BIC", "AIC", "k-fold-CV"),
penalty = c("grLasso", "grMCP", "grSCAD", "gel", "cMCP", "gBridge",
"gLasso", "gMCP"), max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate collected by row
(functional nonparametric component).

z Matrix containing the observations of the functional covariate that is discretised
collected by row (linear component).

y Vector containing the scalar response.

train.1 Indexes of the data used as the training sample in the 1st step. The default is
train.1<-1:ceiling(n/2).

train.2 Indexes of the data used as the training sample in the 2nd step. The default is
train.2<-(ceiling(n/2)+1):n.

semimetric Semi-metric function. Only "deriv" and "pca" are implemented. By default
semimetric="deriv".

q Order of the derivative (if semimetric="deriv") or number of principal com-
ponents (if semimetric="pca"). The default values are 0 and 2, respectively.

min.q.h Order of the quantile of the set of distances between curves (computed with the
provided semimetric) which gives the lower end of the sequence in which the
bandwidth is selected. The default is 0.05.

max.q.h Order of the quantile of the set of distances between curves (computed with the
provided semimetric) which gives the upper end of the sequence in which the
bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwiths in the grid. The default is
10.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

72 PVS.kernel.fit

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.
nlambda Positive integer indicating the number of values of the sequence in which lambda.opt

is selected. The default is 100.
vn Positive integer or vector of positive integers indicating the number of groups of

consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
The default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). The default is 123.

wn A vector of positive integers indicating the eligible number of covariates of the
reduced model. See the section Details. The default is c(10,15,20).

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). Default is 1000.

Details

The multi-functional partial linear model (MFPLM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) +m (Xi) + εi, (i = 1, . . . , n)

where

• Yi is a real random response andXi denotes a random element belonging to some semi-metric
spaceH. The second functional predictor ζi is supposed to be a random curve defined on some
interval [a, b] which is observed at the points a ≤ t1 < · · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn)> is a vector of unknown real coefficients and m(·) denotes a smooth
unknown real-valued link function.

• εi denotes the random error.

In the MFPLM, we assume that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} form
part of the model. Therefore, we must select the relevant variables in the linear component (the
impact points of the curve ζ on the response) and estimate the model.

In this function, the MFPLM is fitted using the PVS. The PVS is an algorithm with two steps, so we
split the sample into two independent subsamples (asymptotically of the same size n1 ∼ n2 ∼ n/2),
one of them to be used in the first stage of the method and the other in the second stage.

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

PVS.kernel.fit 73

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.

Note that these two subsamples are specified to the programme by means of the arguments train.1
and train.2. The superscript s with s = 1,2 indicates the stage of the method in which the sample,
function, variable or parameter is involved.

To explain the algorithm we assume, without lost of generality, that the number pn of linear covari-
ates can be expressed as follows: pn = qnwn with qn and wn integers.

1. First step. A reduced model is consider, discarding many linear covariates. The penalised
least-squares procedure is applied to the reduced model using only the subsample E1. Specif-
ically:

• Consider a subset of the initial pn linear covariates, which contains only wn equally
spaced discretized observations of ζ covering the whole interval [a, b]. This subset is the
following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z.The size (cardinal) of this subset is provided to the program in the argument wn (which
contains a sequence of eligible sizes).

• Consider the following reduced model, which involves only the wn linear covariates be-
longing toR1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) +m1 (Xi) + ε1i .

The penalised least-squares variable selection procedure, with kernel estimation, is ap-
plied to the reduced model. This is done by means of the function sfpl.kernel.fit,
which requires the remaining arguments (for details, see the documentation of the func-
tion sfpl.kernel.fit). The estimates obtained after that are the outputs of the first step
of the algorithm.

2. Second step. The variables selected in the first step and the variables in the neighbourhood
of the ones selected are included. Then the penalised least-squares procedure, combined with
kernel estimation, is carried out again. For that, we consider only the subsample E2. Specifi-
cally:

• Consider a new set of variables :

R2
n =

⋃
{k,β̂1

0k 6=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn =](R2
n), we can rename the variables inR2

n as follows:

R2
n =

{
ζ(t21), . . . , ζ(t2rn)

}
,

• Consider the following model, which involves only the linear covariates belonging toR2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) +m2 (Xi) + ε2i .

The penalized least-squares variable selection procedure, with kernel estimation, is ap-
plied to this model by means of the function sfpl.kernel.fit.

74 PVS.kernel.fit

The outputs of the second step are the estimates of the MFPLM obtained with the PVS algorithm.
For further details on this algorithm, see Aneiros and Vieu (2015).

Remark: If the condition pn = wnqn fails, the function considers not fixed qn = qn,k values
k = 1, . . . , wn, when pn/wn is not an integer number. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est β̂ (i. e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
vn.opt and h.opt are used).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth (when w.opt is considered).

w.opt Selected size forR1
n.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, vn.opt
and h.opt.

vn.opt Selected value of vn in the second step (when w.opt is considered).

beta2 Estimate of β2
0 for each value of the sequence wn.

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

h2 Selected bandwidth in the second step of the algorithm for each value of the
sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the whole set of pn) used to buildR2
n for each value

of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

h1 Selected bandwidth in the first step of the algorithm for each value of the se-
quence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

PVS.kernel.fit 75

index01 Indexes of the covariates (in the whole set of pn) used to buildR1
n for each value

of the sequence wn.

index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each
value of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G., and Vieu, P. (2015) Partial linear modelling with multi-functional covariates. Compu-
tational Statistics, 30, 647–671, doi:10.1007/s0018001505688.

See Also

See also sfpl.kernel.fit, predict.PVS.kernel and plot.PVS.kernel.

Alternative method PVS.kNN.fit.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- PVS.kernel.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,lambda.min.h=0.03,
lambda.min.l=0.03, max.q.h=0.35, num.h = 10, nknot=20,
criterion="BIC", penalty="grSCAD", max.iter=5000)

proc.time()-ptm

https://doi.org/10.1007/s00180-015-0568-8

76 PVS.kNN.fit

fit
names(fit)

PVS.kNN.fit PVS with kNN estimation

Description

This function computes the partitioning variable selection algorithm (PVS) for sparse multi-functional
partial linear regression.

This algorithm involves the penalised least-squares regularization procedure combined with k-
nearest neighbours (kNN) estimation with Nadaraya-Watson weights. The procedure requires an
objective criterion (criterion) to select the number of covariates in the reduced model (w.opt),
the bandwidth (k.opt) and the penalisation parameter (lambda.opt).

Usage

PVS.kNN.fit(x, z, y, train.1=NULL, train.2=NULL, semimetric = "deriv", q = NULL,
knearest = NULL, min.knn = 2, max.knn = NULL, step = NULL,
range.grid = NULL, kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL,
lambda.min.h = NULL,lambda.min.l = NULL, factor.pn = 1,
nlambda = 100, vn = ncol(z), nfolds = 10, seed = 123, wn = c(10, 15, 20),
criterion = c("GCV", "BIC", "AIC", "k-fold-CV"),
penalty = c("grLasso", "grMCP", "grSCAD", "gel", "cMCP", "gBridge",
"gLasso", "gMCP"), max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate collected by row
(functional nonparametric component).

z Matrix containing the observations of the functional covariate that is discretised
collected by row (linear component).

y Vector containing the scalar response.

train.1 Indexes of the data used as the training sample in the 1st step. The default is
train.1<-1:ceiling(n/2).

train.2 Indexes of the data used as the training sample in the 2nd step. The default is
train.2<-(ceiling(n/2)+1):n.

semimetric Semi-metric function. Only "deriv" and "pca" are implemented. By default
semimetric="deriv".

q Order of the derivative (if semimetric="deriv") or number of principal com-
ponents (if semimetric="pca"). The default values are 0 and 2, respectively.

knearest Sequence of eligible values for k considered to seek for k.opt. If knearest=NULL,
then knearest <- seq(from =min.knn, to = max.knn, by = step).

PVS.kNN.fit 77

min.knn Positive integer indicating the minumum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
smaller than the sample size). The default is 2.

max.knn Positive integer indicating the maximum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
larger than min.kNN and smaller than the sample size). The default is max.knn
<- n%/%2, being n = n1 in the first step and n = n2 in the second step of the
method (see section Details).

step Positive integer used to build the sequence of k-nearest neighbours in the follow-
ing way: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,...
The default is step<-ceiling(n/100), being n = n1 in the 1st step and n = n2
in the 2nd step of the method.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values of the sequence in which lambda.opt
is selected. The default is 100.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
The default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). Default is 123.

wn A vector of positive integers indicating the eligible number of covariates of the
reduced model. See the section Details. The default is c(10,15,20).

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

78 PVS.kNN.fit

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). The default is 1000.

Details

The multi-functional partial linear model (MFPLM) is given by the expression

Yi =

pn∑
j=1

β0jζi(tj) +m (Xi) + εi, (i = 1, . . . , n)

where

• Yi is a real random response andXi denotes a random element belonging to some semi-metric
spaceH. The second functional predictor ζi is supposed to be a random curve defined on some
interval [a, b] which is observed at the points a ≤ t1 < · · · < tpn ≤ b.

• β0 = (β01, . . . , β0pn)> is a vector of unknown real coefficients and m(·) denotes a smooth
unknown real-valued link function.

• εi denotes the random error.

In the MFPLM, we assume that only a few scalar variables from the set {ζ(t1), . . . , ζ(tpn)} form
part of the model. Therefore, we must select the relevant variables in the linear component (the
impact points of the curve ζ on the response) and estimate the model.

In this function, the MFPLM is fitted using the PVS. The PVS is an algorithm with two steps, so we
split the sample into two independent subsamples (asymptotically of the same size n1 ∼ n2 ∼ n/2),
one of them to be used in the first stage of the method and the other in the second stage.

E1 = {(ζi,Xi, Yi), i = 1, . . . , n1},

E2 = {(ζi,Xi, Yi), i = n1 + 1, . . . , n1 + n2 = n}.

Note that these two subsamples are specified to the programme by means of the arguments train.1
and train.2. The superscript s with s = 1,2 indicates the stage of the method in which the sample,
function, variable or parameter is involved.

To explain the algorithm we assume, without lost of generality, that the number pn of linear covari-
ates can be expressed as follows: pn = qnwn with qn and wn integers.

1. First step. A reduced model is consider, discarding many linear covariates. The penalised
least-squares procedure is applied to the reduced model using only the subsample E1. Specif-
ically:

• Consider a subset of the initial pn linear covariates, which contains only wn equally
spaced discretized observations of ζ covering the whole interval [a, b]. This subset is the
following:

R1
n =

{
ζ
(
t1k
)
, k = 1, . . . , wn

}
,

where t1k = t[(2k−1)qn/2] and [z] denotes the smallest integer not less than the real number
z.The size (cardinal) of this subset is provided to the program in the argument wn (which
contains a sequence of eligible sizes).

PVS.kNN.fit 79

• Consider the following reduced model, which involves only the wn linear covariates be-
longing toR1

n:

Yi =

wn∑
k=1

β1
0kζi(t

1
k) +m1 (Xi) + ε1i .

The penalised least-squares variable selection procedure, with kNN estimation, is ap-
plied to the reduced model. This is done by means of the function sfpl.kNN.fit, which
requires the remaining arguments (for details, see the documentation of the function
sfpl.kNN.fit). The estimates obtained after that are the outputs of the first step of
the algorithm.

2. Second step. The variables selected in the first step and the variables in the neighbourhood
of the ones selected are included. Then the penalised least-squares procedure, combined with
kernel estimation, is carried out again. For that, we consider only the subsample E2. Specifi-
cally:

• Consider a new set of variables :

R2
n =

⋃
{k,β̂1

0k 6=0}

{
ζ(t(k−1)qn+1), . . . , ζ(tkqn)

}
.

Denoting by rn =](R2
n), we can rename the variables inR2

n as follows:

R2
n =

{
ζ(t21), . . . , ζ(t2rn)

}
,

• Consider the following model, which involves only the linear covariates belonging toR2
n

Yi =

rn∑
k=1

β2
0kζi(t

2
k) +m2 (Xi) + ε2i .

The penalized least-squares variable selection procedure, with kNN estimation, is applied
to this model by means of the function sfpl.kNN.fit.

The outputs of the second step are the estimates of the MFPLM obtained with the PVS algorithm.
For further details on this algorithm, see Aneiros and Vieu (2015).

Remark: If the condition pn = wnqn fails, the function considers not fixed qn = qn,k values
k = 1, . . . , wn, when pn/wn is not an integer number. Specifically:

qn,k =

{
[pn/wn] + 1 k ∈ {1, . . . , pn − wn[pn/wn]},
[pn/wn] k ∈ {pn − wn[pn/wn] + 1, . . . , wn},

where [z] denotes the integer part of the real number z.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est β̂ (i.e. estimate of β0 when the optimal tuning parameters w.opt, lambda.opt,
vn.opt and k.opt are used).

80 PVS.kNN.fit

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours (when w.opt is considered).

w.opt Selected initial number of covariates in the reduced model.

lambda.opt Selected value of the penalisation parameter λ (when w.opt is considered).

IC Value of the criterion function considered to select w.opt, lambda.opt, vn.opt
and k.opt.

vn.opt Selected value of vn in the second step (when w.opt is considered).

beta2 Estimate of β2
0 for each value of the sequence wn.

indexes.beta.nonnull2

Indexes of the non-zero linear coefficients after the step 2 of the method for each
value of the sequence wn.

knn2 Selected number of neighbours in the second step of the algorithm for each value
of the sequence wn.

IC2 Optimal value of the criterion function in the second step for each value of the
sequence wn.

lambda2 Selected value of penalisation parameter in the second step for each value of the
sequence wn.

index02 Indexes of the covariates (in the whole set of pn) used to buildR2
n for each value

of the sequence wn.

beta1 Estimate of β1
0 for each value of the sequence wn.

knn1 Selected number of neighbours in the first step of the algorithm for each value
of the sequence wn.

IC1 Optimal value of the criterion function in the first step for each value of the
sequence wn.

lambda1 Selected value of penalisation parameter in the first step for each value of the
sequence wn.

index01 Indexes of the covariates (in the whole set of pn) used to buildR1
n for each value

of the sequence wn.

index1 Indexes of the non-zero linear coefficients after the step 1 of the method for each
value of the sequence wn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G., and Vieu, P. (2015) Partial linear modelling with multi-functional covariates. Compu-
tational Statistics, 30, 647–671, doi:10.1007/s0018001505688.

https://doi.org/10.1007/s00180-015-0568-8

semimetric.projec 81

See Also

See also sfpl.kNN.fit, predict.PVS.kNN and plot.PVS.kNN.

Alternative method PVS.kernel.fit.

Examples

data(Sugar)

y<-Sugar$ash
x<-Sugar$wave.290
z<-Sugar$wave.240

#Outliers
index.y.25 <- y > 25
index.atip <- index.y.25
(1:268)[index.atip]

#Dataset to model
x.sug <- x[!index.atip,]
z.sug<- z[!index.atip,]
y.sug <- y[!index.atip]

train<-1:216

ptm=proc.time()
fit<- PVS.kNN.fit(x=x.sug[train,],z=z.sug[train,], y=y.sug[train],

train.1=1:108,train.2=109:216,lambda.min.h=0.07,
lambda.min.l=0.07, nknot=20,criterion="BIC", penalty="grSCAD",
max.iter=5000)

proc.time()-ptm

fit
names(fit)

semimetric.projec Projection semi-metric computation

Description

Computes the projection semi-metric in a direction θ between each curve in data1 and each curve
in data2.

82 semimetric.projec

Usage

semimetric.projec(data1, data2, theta, order.Bspline = 3, nknot.theta = 3,
range.grid = NULL, nknot = NULL)

Arguments

data1 Matrix containing functional data collected by row.

data2 Matrix containing functional data collected by row.

theta Vector containing the coefficients of θ in a B-spline basis, so that length(theta)=order.Bspline+nknot.theta.

order.Bspline Positive integer giving the order of the B-spline basis functions for the B-spline
representation of θ. This is the number of coefficients in each piecewise poly-
nomial segment. The default is 3.

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis. The default is 3.

range.grid Vector of length 2 containing the range of the discretization of the functional
data. If range.grid=NULL, then range.grid=c(1,p) is considered, where p is
the size of the discretization size of data (i.e. ncol(data)).

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional data. The default value is (p - order.Bspline -
1)%/%2.

Details

For x1, x2 ∈ H, being H a separable Hilbert space, the projection semi-metric in the direction
θ ∈ H is defined as

dθ(x1, x2) = |〈θ, x1 − x2〉|.

The function semimetric.projec computes the projection semi-metric using the B-spline repre-
sentation of the curves and θ. The dimension of the B-spline basis for θ is order.Bspline+nknot.theta.

Value

A matrix with the projection semi-semimetrics of each pair of curves.

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single–index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

See Also

See also projec.

https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726

sfpl.kernel.fit 83

Examples

data("Tecator")
names(Tecator)
y<-Tecator$fat
X<-Tecator$absor.spectra

#length(theta)=6=order.Bspline+nknot.theta
semimetric.projec(data1=X[1:5,], data2=X[5:10,],theta=c(1,0,0,1,1,-1),

nknot.theta=3,nknot=20,range.grid=c(850,1050))

sfpl.kernel.fit Sparse semi-functional partial linear model fit using kernel estimation

Description

This function fits a sparse semi-functional partial linear model between a scalar response, a func-
tional explanatory variable and a vector of scalar covariates. The function uses the penalised least-
squares regularization procedure combined with nonparametric kernel estimation with Nadaraya-
Watson weights.

The procedure requires an objective criterion (criterion) to select the bandwidth (h.opt) and the
regularization parameter (lambda.opt).

Usage

sfpl.kernel.fit(x, z, y, semimetric = "deriv", q = NULL, min.q.h = 0.05,
max.q.h = 0.5, h.seq = NULL,num.h = 10,range.grid = NULL,
kind.of.kernel = "quad", nknot = NULL, lambda.min = NULL,
lambda.min.h = NULL, lambda.min.l = NULL, factor.pn = 1,
nlambda = 100, lambda.seq = NULL, vn = ncol(z), nfolds = 10, seed = 123,
criterion = c("GCV", "BIC", "AIC", "k-fold-CV"),
penalty = c("grLasso", "grMCP", "grSCAD", "gel", "cMCP", "gBridge", "gLasso",
"gMCP"),max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate collected by row.

z Matrix containing the observations of the scalar covariates collected by row.

y Vector containing the scalar response.

semimetric Semi-metric function. Only "deriv" and "pca" are implemented. By default
semimetric="deriv".

q Order of the derivative (if semimetric="deriv") or number of principal com-
ponents (if semimetric="pca"). The default values are 0 and 2, respectively.

84 sfpl.kernel.fit

min.q.h Order of the quantile of the set of distances between curves (computed with the
provided semimetric) which gives the lower end of the sequence in which the
bandwidth is selected. The default is 0.05.

max.q.h Order of the quantile of the set of distances between curves (computed with the
provided semimetric) which gives the upper end of the sequence in which the
bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwiths in the grid. The default is
10.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default is 1.
nlambda Positive integer indicating the number of values of the sequence in which lambda.opt

is selected. The default is 100.
lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,

then the programme builds the sequence automatically using lambda.min and
nlambda.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
The default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). The default is 123.

criterion The criterion by which to select the regularization parameter lambda.opt and
the bandwidth h.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The de-
fault is "GCV".

sfpl.kernel.fit 85

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). The default is 1000.

Details

The sparse semi-functional partial linear model (SSFPLM) is given by the expression:

Yi = Zi1β01 + · · ·+ Zipnβ0pn +m(Xi) + εi i = 1, . . . , n,

where Yi denotes a scalar response, Zi1, . . . , Zipn are real random covariates and Xi is a functional
random covariate valued in some semi-metric space H. In this equation, β0 = (β01, . . . , β0pn)>

and m(·) are a vector of unknown real parameters and an unknown smooth real-valued function,
respectively. In addition, εi is the random error.

In this function the SSFPLM is fitted using the penalised least-squares approach. The first idea is to
transform the SSFPLM into a linear model by extracting from Yi and Zij (j = 1, . . . , pn) the effect
of the functional covariate Xi using functional nonparametric regression (see, for details, Ferraty
and Vieu, 2006). This is made using kernel estimation with Nadaraya-Watson weights.

Then, an approximate linear model is obtained:

Ỹ ≈ Z̃β0 + ε,

and the penalised least-squares procedure is applied to this model by minimising

Q (β) =
1

2

(
Ỹ − Z̃β

)> (
Ỹ − Z̃β

)
+ n

pn∑
j=1

Pλjn (|βj |) , (1)

where β = (β1, . . . , βpn)>, Pλjn (·) is a penalty function (specified in the argument penalty) and
λjn > 0 is a tuning parameter. To reduce the quantity of tuning parameters, λj , to be selected for
each sample, we consider λj = λσ̂β0,j,OLS

, where β0,j,OLS denotes the OLS estimate of β0,j and
σ̂β0,j,OLS

is the estimated standard deviation. Both λ and h (in the kernel estimation) are selected
using the objetive criterion specified in the argument criterion.

Finally, after estimating β0 by minimising (1), we deal with the estimation of the nonlinear function
m(·). For that, we employ again the kernel procedure with Nadaraya-Watson weights to smooth the
partial residuals Yi − Z>i β̂.

For further details on the estimation procedure of the SSFPLM, see Aneiros et al. (2015).

Remark: We should note that if we set lambda.seq= 0, we can obtain the non-penalised estimation
of the model, i.e. the OLS estimation. It is convenient to use lambda.seq 6= 0 when one suspects
there are irrelevant variables.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est Estimate of β0 when the optimal tuning parameters lambda.opt, h.opt and
vn.opt are used.

86 sfpl.kernel.fit

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth.

lambda.opt Selected value of lambda.

IC Value of the criterion function considered to select lambda.opt, h.opt and
vn.opt.

h.min.opt.max.mopt

h.opt=h.min.opt.max.mopt[2] (used by beta.est) was seeked between h.min.opt.max.mopt[1]
and h.min.opt.max.mopt[3].

vn.opt Selected value of vn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G., Ferraty, F., Vieu, P. (2015) Variable selection in partial linear regression with functional
covariate. Statistics, 49, 1322–1347, doi:10.1080/02331888.2014.998675.

Ferraty, F. and Vieu, P. (2006) Nonparametric Functional Data Analysis. Springer Series in Statis-
tics, New York.

See Also

See also predict.sfpl.kernel and plot.sfpl.kernel.

Alternative method sfpl.kNN.fit.

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#SFPLM fit.
ptm=proc.time()
fit<-sfpl.kernel.fit(x=X[train,], z=z.com[train,], y=y[train],q=2,

max.q.h=0.35,lambda.min.h=0.02,lambda.min.l=0.01,
factor.pn=2, max.iter=5000, criterion="BIC", penalty="grSCAD",nknot=20)

proc.time()-ptm

https://doi.org/10.1080/02331888.2014.998675

sfpl.kNN.fit 87

#Results
fit
names(fit)

sfpl.kNN.fit Sparse semi-functional partial linear model fit using kNN estimation

Description

This function fits a sparse semi-functional partial linear model between a scalar response, a func-
tional explanatory variable and a vector of scalar covariates. The function uses the penalised
least-squares regularization procedure combined with k-nearest neighbours (kNN) estimation with
Nadaraya-Watson weights.

The procedure requires an objective criterion (criterion) to select the number of nearest neigh-
bours (k.opt) and the regularization parameter (lambda.opt).

Usage

sfpl.kNN.fit(x, z, y, semimetric = "deriv", q = NULL, knearest = NULL, min.knn = 2,
max.knn = NULL, step = NULL,range.grid = NULL, kind.of.kernel = "quad",
nknot = NULL, lambda.min = NULL, lambda.min.h = NULL,
lambda.min.l = NULL, factor.pn = 1, nlambda = 100, lambda.seq = NULL,
vn = ncol(z), nfolds = 10, seed = 123,criterion = c("GCV", "BIC",
"AIC", "k-fold-CV"),penalty = c("grLasso", "grMCP",
"grSCAD", "gel", "cMCP", "gBridge", "gLasso", "gMCP"),
max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate collected by row.

z Matrix containing the observations of the scalar covariates collected by row.

y Vector containing the scalar response.

semimetric Semi-metric function. Only "deriv" and "pca" are implemented. By default
semimetric="deriv".

q Order of the derivative (if semimetric="deriv") or number of principal com-
ponents (if semimetric="pca"). The default values are 0 and 2, respectively.

knearest Sequence of eligible values for k considered to seek for k.opt. If knearest=NULL,
then knearest <- seq(from = min.knn, to = max.knn, by = step).

min.knn Positive integer indicating the minumum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
smaller than the sample size). The default is 2.

max.knn Positive integer indicating the maximum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
larger than min.kNN and smaller than the sample size, n). The default is max.knn
<- n%/%2.

88 sfpl.kNN.fit

step Positive integer used to build the sequence of k-nearest neighbours in the follow-
ing way: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,...
The default is step<-ceiling(n/100).

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.
nlambda Positive integer indicating the number of values of the sequence in which lambda.opt

is selected. The default is 100.
lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,

then the programme builds the sequence automatically using lambda.min and
nlambda.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
The default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). The default is 123.

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). The default is 1000.

Details

The sparse semi-functional partial linear model (SSFPLM) is given by the expression:

Yi = Zi1β01 + · · ·+ Zipnβ0pn +m(Xi) + εi i = 1, . . . , n,

sfpl.kNN.fit 89

where Yi denotes a scalar response, Zi1, . . . , Zipn are real random covariates and Xi is a functional
random covariate valued in some semi-metric space H. In this equation, β0 = (β01, . . . , β0pn)>

and m(·) are a vector of unknown real parameters and an unknown smooth real-valued function,
respectively. In addition, εi is the random error.

In this function the SSFPLM is fitted using the penalised least-squares approach. The first idea is to
transform the SSFPLM into a linear model by extracting from Yi and Zij (j = 1, . . . , pn) the effect
of the functional covariate Xi using functional nonparametric regression (see, for details, Ferraty
and Vieu, 2006). This is made using kNN estimation with Nadaraya-Watson weights.

Then, an approximate linear model is obtained:

Ỹ ≈ Z̃β0 + ε,

and the penalised least-squares procedure is applied to this model by minimising

Q (β) =
1

2

(
Ỹ − Z̃β

)> (
Ỹ − Z̃β

)
+ n

pn∑
j=1

Pλjn (|βj |) , (1)

where β = (β1, . . . , βpn)>, Pλjn (·) is a penalty function (specified in the argument penalty) and
λjn > 0 is a tuning parameter. To reduce the quantity of tuning parameters, λj , to be selected for
each sample, we consider λj = λσ̂β0,j,OLS

, where β0,j,OLS denotes the OLS estimate of β0,j and
σ̂β0,j,OLS

is the estimated standard deviation. Both λ and k (in the kNN estimation) are selected
using the objetive criterion specified in the argument criterion.

Finally, after estimating β0 by minimising (1), we deal with the estimation of the nonlinear function
m(·). For that, we employ again the kNN procedure with Nadaraya-Watson weights to smooth the
partial residuals Yi − Z>i β̂.

For further details on the estimation procedure of the SSFPLM, see Aneiros et al. (2015).

Remark: We should note that if we set lambda.seq= 0, we can obtain the non-penalised estimation
of the model, i.e. the OLS estimation. It is convenient to use lambda.seq 6= 0 when one suspects
there are irrelevant variables.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est Estimate of β0 when the optimal tuning parameters lambda.opt, k.opt and
vn.opt are used.

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours.

lambda.opt Selected value of lambda.

IC Value of the criterion function considered to select both lambda.opt, h.opt and
vn.opt.

vn.opt Selected value of vn.

...

90 sfplsim.kernel.fit

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Aneiros, G., Ferraty, F., Vieu, P. (2015) Variable selection in partial linear regression with functional
covariate. Statistics, 49, 1322–1347, doi:10.1080/02331888.2014.998675.

See Also

See also predict.sfpl.kNN and plot.sfpl.kNN.

Alternative method sfpl.kernel.fit.

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#SFPLM fit.
ptm=proc.time()
fit<-sfpl.kNN.fit(y=y[train],x=X[train,], z=z.com[train,],q=2, max.knn=20,

lambda.min.h=0.02,lambda.min.l=0.01, factor.pn=2, criterion="BIC",
range.grid=c(850,1050), penalty="grSCAD",nknot=20, max.iter=5000)

proc.time()-ptm

#Results
fit
names(fit)

sfplsim.kernel.fit Sparse semi-functional partial linear single-index model fit using ker-
nel estimation

Description

This function fits a sparse semi-functional partial linear single-index model between a scalar re-
sponse, a functional explanatory variable and a vector of scalar covariates. The function uses the
penalised least-squares regularization procedure combined with nonparametric kernel estimation
with Nadaraya-Watson weights.

https://doi.org/10.1080/02331888.2014.998675

sfplsim.kernel.fit 91

The procedure requires the B-spline representation to estimate the functional index θ0 and an ob-
jective criterion (criterion) to select the bandwidth (h.opt) and the regularization parameter
(lambda.opt).

Usage

sfplsim.kernel.fit(x, z, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3,t0 = NULL, min.q.h = 0.05, max.q.h = 0.5,
h.seq = NULL, num.h = 10, range.grid = NULL, kind.of.kernel = "quad",
nknot = NULL, lambda.min = NULL, lambda.min.h = NULL,
lambda.min.l = NULL, factor.pn = 1, nlambda = 100, lambda.seq = NULL,
vn = ncol(z), nfolds = 10, seed = 123, criterion = c("GCV", "BIC", "AIC",
"k-fold-CV"), penalty = c("grLasso", "grMCP",
"grSCAD", "gel", "cMCP", "gBridge", "gLasso", "gMCP"),
max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate collected by row.

z Matrix containing the observations of the scalar covariates collected by row.

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for the B-spline representation of θ0. The default is 3.

t0 Value in the domain of the functional indexes at which we evaluate them to build
the set Θn. We assume θ0(t0) > 0 for some arbitrary t0 in the domain to ensure
model identifiability. If t0=NULL, then mean(range.grid) is considered.

min.q.h Order of the quantile of the set of distances between curves (computed with the
projection semi-metric) which gives the lower end of the sequence in which the
bandwidth is selected. The default is 0.05.

max.q.h Order of the quantile of the set of distances between curves (computed with the
projection semi-metric) which gives the upper end of the sequence in which the
bandwidth is selected. The default is 0.5.

h.seq Vector containing the sequence of bandwidths. The default is a sequence of
num.h equispaced bandwidths in the range constructed using min.q.h and max.q.h.

num.h Positive integer indicating the number of bandwiths in the grid. The default is
10.

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

92 sfplsim.kernel.fit

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The default is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values of the sequence in which lambda.opt
is selected. The default is 100.

lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,
then the programme builds the sequence automatically using lambda.min and
nlambda. For non-penalized estimation, i. e. ordinary least squares estimation
(OLS), set lambda.seq=0.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
The default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). The default is 123.

criterion The criterion by which to select the regularization parameter lambda.opt and
h.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). The default is 1000.

Details

The sparse semi-functional partial linear single-index model (SSFPLSIM) is given by the expres-
sion:

Yi = Zi1β01 + · · ·+ Zipnβ0pn + r(〈θ0, Xi〉) + εi i = 1, . . . , n,

where Yi denotes a scalar response, Zi1, . . . , Zipn are real random covariates and Xi is a functional
random covariate valued in a separable Hilbert space H with inner product 〈·, ·〉. In this equation,
β0 = (β01, . . . , β0pn)>, θ0 ∈ H and r(·) are a vector of unknown real parameters, an unknown
functional direction and an unknown smooth real-valued function, respectively. In addition, εi is
the random error.

sfplsim.kernel.fit 93

The SSFPLSIM is fitted using the penalised least-squares approach. The first idea is to transform
the SSFPLSIM into a linear model by extracting from Yi and Zij (j = 1, . . . , pn) the effect of the
functional covariate Xi using functional single-index regression. This is made using nonparametric
kernel estimation (see, for details, the documentation of the function fsim.kernel.fit).

Then, an approximate linear model is obtained:

Ỹθ0 ≈ Z̃θ0β0 + ε,

and the penalised least-squares procedure is applied to this model by minimising over the pair (β, θ)

Q (β, θ) =
1

2

(
Ỹθ − Z̃θβ

)> (
Ỹθ − Z̃θβ

)
+ n

pn∑
j=1

Pλjn (|βj |) , (1)

where β = (β1, . . . , βpn)>, Pλjn (·) is a penalty function (specified in the argument penalty) and
λjn > 0 is a tuning parameter. To reduce the quantity of tuning parameters, λj , to be selected for
each sample, we consider λj = λσ̂β0,j,OLS

, where β0,j,OLS denotes the OLS estimate of β0,j and
σ̂β0,j,OLS

is the estimated standard deviation. Both λ and h (in the kernel estimation) are selected
using the objetive criterion specified in the argument criterion.

In addition, the function uses B-spline representation to build a set Θn of eligible functional indexes
θ. The dimension of the B-spline basis is order.Bspline+nknot.theta and the set of eligible
coefficients is obtained by calibrating (to ensure the identifiability of the model) the set of initial
coefficients given in seed.coeff. The larger this set, the higher the size of Θn. Since our approach
requires intensive computation, we need a trade-off between the size of Θn and the performance
of the estimator. For that, Ait-Saidi et al. (2008) suggested considering order.Bspline=3 and
seed.coeff=c(-1,0,1). For details on the construction of Θn see Novo et al. (2019).

Finally, after estimating β0 and θ0 by minimising (1), we deal with the estimation of the nonlinear
function rθ0(·) ≡ r (〈θ0, ·〉). For that, we employ again the kernel procedure with Nadaraya-Watson
weights to smooth the partial residuals Yi − Z>i β̂.

For further details on the estimation procedure of the SSFPLSIM, see Novo et al. (2021).

Remark: We should note that if we set lambda.seq= 0, we can obtain the non-penalised estimation
of the model, i.e. the OLS estimation. It is convenient to use lambda.seq 6= 0 when one suspects
there are irrelevant variables.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est Estimate of β0 when the optimal tuning parameters lambda.opt, h.opt and
vn.opt are used.

theta.est Coefficients of θ̂ in the B-spline basis (when the optimal tuning parameters
lambda.opt, h.opt and vn.opt are used): a vector of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

h.opt Selected bandwidth.

94 sfplsim.kernel.fit

lambda.opt Selected value of the penalisation parameter λ.

IC Value of the criterion function considered to select lambda.opt, h.opt and
vn.opt.

Q.opt Minimum value of the penalized criterion used to estimate β0 and θ0. That is,
the value obtained using theta.est and beta.est.

Q Vector of dimension equal to the cardinal of Θn, containing the values of the
penalized criterion for each functional index in Θn.

m.opt Index of θ̂ in the set Θn.
lambda.min.opt.max.mopt

A grid of values in [lambda.min.opt.max.mopt[1], lambda.min.opt.max.mopt[3]]
is considered to seek for the lambda.opt (lambda.opt=lambda.min.opt.max.mopt[2]).

lambda.min.opt.max.m

A grid of values in [lambda.min.opt.max.m[m,1], lambda.min.opt.max.m[m,3]]
is considered to seek for the optimal λ (lambda.min.opt.max.m[m,2]) used by
the optimal β for each θ in Θn.

h.min.opt.max.mopt

h.opt=h.min.opt.max.mopt[2] (used by theta.est and beta.est) was seeked
between h.min.opt.max.mopt[1] and h.min.opt.max.mopt[3].

h.min.opt.max.m

For each θ in Θn, the optimal h (h.min.opt.max.m[m,2]) used by the optimal β
for this θ was seeked between h.min.opt.max.m[m,1] and h.min.opt.max.m[m,3].

h.seq.opt Sequence of eligible values for h considered to seek for h.opt.

theta.seq.norm The vector theta.seq.norm[j,] contains the coefficientes in the B-spline basis
of the jth functional index in Θn.

vn.opt Selected value of vn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Ait-Saidi, A., Ferraty, F., Kassa, R., and Vieu, P. (2008) Cross-validated estimations in the single-
functional index model. Statistics, 42(6), 475–494, doi:10.1080/02331880801980377.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single-index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

Novo, S., Aneiros, G., and Vieu, P., (2021) Sparse semiparametric regression when predictors are
mixture of functional and high-dimensional variables. TEST, 30, 481–504, doi:10.1007/s11749-
02000728w.

Novo, S., Aneiros, G., and Vieu, P., (2021) A kNN procedure in semiparametric functional data
analysis. Statistics and Probability Letters, 171, 109028, doi:10.1016/j.spl.2020.109028.

https://doi.org/10.1080/02331880801980377
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1016/j.spl.2020.109028

sfplsim.kNN.fit 95

See Also

See also fsim.kernel.fit, predict.sfplsim.kernel and plot.sfplsim.kernel

Alternative procedure sfplsim.kNN.fit.

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra2
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#SSFPLSIM fit. Convergence errors for some theta are obtained.
ptm=proc.time()
fit<-sfplsim.kernel.fit(x=X[train,], z=z.com[train,], y=y[train],

max.q.h=0.35,lambda.min.h=0.02,lambda.min.l=0.01,
factor.pn=2, max.iter=5000, nknot.theta=4,criterion="BIC",
penalty="grSCAD",nknot=20)

proc.time()-ptm

#Results
fit
names(fit)

sfplsim.kNN.fit Sparse semi-functional partial linear single-index model fit using kNN
estimation

Description

This function fits a sparse semi-functional partial linear single-index model between a scalar re-
sponse, a functional explanatory variable and a vector of scalar covariates. The function uses the
penalised least-squares regularization procedure combined with k-nearest neighbours (kNN) esti-
mation with Nadaraya-Watson weights.

The procedure requires the B-spline representation to estimate the functional index θ0 and an ob-
jective criterion (criterion) to select the number of neighbours (k.opt) and the regularization
parameter (lambda.opt).

96 sfplsim.kNN.fit

Usage

sfplsim.kNN.fit(x, z, y, seed.coeff = c(-1, 0, 1), order.Bspline = 3,
nknot.theta = 3,t0 = NULL,knearest = NULL, min.knn = 2, max.knn = NULL,
step = NULL,range.grid = NULL, kind.of.kernel = "quad", nknot = NULL,
lambda.min = NULL, lambda.min.h = NULL, lambda.min.l = NULL,
factor.pn = 1, nlambda = 100, lambda.seq = NULL,vn = ncol(z),
nfolds = 10, seed = 123, criterion = c("GCV", "BIC", "AIC", "k-fold-CV"),
penalty = c("grLasso", "grMCP", "grSCAD", "gel", "cMCP",
"gBridge", "gLasso", "gMCP"), max.iter = 1000)

Arguments

x Matrix containing the observations of the functional covariate collected by row.

z Matrix containing the observations of the scalar covariates collected by row.

y Vector containing the scalar response.

seed.coeff Vector of initial values used to build the set Θn (see section Details). The
coefficients for the B-spline representation of each eligible functional index θ ∈
Θn are obtained from seed.coeff. The default is c(-1,0,1).

order.Bspline Positive integer giving the order of the B-spline basis functions. This is the
number of coefficients in each piecewise polynomial segment. The default is 3.

nknot.theta Positive integer indicating the number of uniform interior knots of the B-spline
basis for the B-spline representation of θ0. The default is 3.

t0 Value in the domain of the functional indexes at which we evaluate them to build
the set Θn. We assume θ0(t0) > 0 for some arbitrary t0 in the domain to ensure
model identifiability. If t0=NULL, then mean(range.grid) is considered.

knearest Vector of positive integers containing the sequence in which the number of
nearest neighbours k.opt is selected. If knearest=NULL, then knearest <-
seq(from=min.knn, to=max.knn, by=step).

min.knn Positive integer indicating the minumum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
smaller than the sample size). The default is 2.

max.knn Positive integer indicating the maximum value of the sequence in which the
number of nearest neighbours k.opt is selected (thus, this number must be
larger than min.kNN and smaller than the sample size, n). The default is max.knn
<- n%/%2.

step Positive integer used to build the sequence of k-nearest neighbours in the follow-
ing way: min.knn, min.knn + step, min.knn + 2*step, min.knn + 3*step,...
The default is step<-ceiling(n/100).

range.grid Vector of length 2 containing the endpoints of the grid at which the observations
of the functional covariate x are evaluated (i.e. the range of the discretization).
If range.grid=NULL, then range.grid=c(1,p) is considered, where p is the
size of the discretization size of x (i.e. ncol(x)).

kind.of.kernel The type of kernel function used. Only Epanechnikov kernel ("quad") is avail-
able.

sfplsim.kNN.fit 97

nknot Positive integer indicating the number of interior knots for the B-spline repre-
sentation of the functional covariate. The default value is (p - order.Bspline
- 1)%/%2.

lambda.min The smallest value for lambda (i. e., the smallest value of the sequence in
which lambda.opt is selected), as fraction of lambda.max. The defaults is
lambda.min.l if the number of observations is larger than factor.pn times
the number of covariates and lambda.min.h otherwise.

lambda.min.h The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is smaller than factor.pn times the number of scalar co-
variates. The default is 0.05.

lambda.min.l The smallest value of the sequence in which lambda.opt is selected if the num-
ber of observations is larger than factor.pn times the number of scalar covari-
ates. The default is 0.0001.

factor.pn Positive integer used to set lambda.min. The default value is 1.

nlambda Positive integer indicating the number of values of the sequence in which lambda.opt
is selected. The default is 100.

lambda.seq Sequence of values in which lambda.opt is selected. If lambda.seq=NULL,
then the programme builds the sequence automatically using lambda.min and
nlambda. For non-penalized estimation, i. e. ordinary least squares estimation,
set lambda.seq=0.

vn Positive integer or vector of positive integers indicating the number of groups of
consecutive variables to be penalised together. The default value is vn=ncol(z),
which leads to the individual penalisation of each scalar covariate.

nfolds Positive integer indicating the number of cross-validation folds (used if criterion="k-fold-CV").
The default is 10.

seed You may set the seed of the random number generator to obtain reproducible
results (used if criterion="k-fold-CV"). The default is 123.

criterion The criterion by which to select the regularization parameter lambda.opt and
k.opt. One of "GCV", "BIC", "AIC" or "k-fold-CV". The default is "GCV".

penalty The penalty function to be applied in the penalized least squares procedure. Only
"grLasso" and "grSCAD" are implemented.

max.iter Maximum number of iterations (total across entire path). Default is 1000.

Details

The sparse semi-functional partial linear single-index model (SSFPLSIM) is given by the expres-
sion:

Yi = Zi1β01 + · · ·+ Zipnβ0pn + r(〈θ0, Xi〉) + εi i = 1, . . . , n,

where Yi denotes a scalar response, Zi1, . . . , Zipn are real random covariates and Xi is a functional
random covariate valued in a separable Hilbert space H with inner product 〈·, ·〉. In this equation,
β0 = (β01, . . . , β0pn)>, θ0 ∈ H and r(·) are a vector of unknown real parameters, an unknown
functional direction and an unknown smooth real-valued function, respectively. In addition, εi is
the random error.

The SSFPLSIM is fitted using the penalised least-squares approach. The first idea is to transform
the SSFPLSIM into a linear model by extracting from Yi and Zij (j = 1, . . . , pn) the effect of the

98 sfplsim.kNN.fit

functional covariate Xi using functional single-index regression. This is made using nonparametric
kNN estimation (see, for details, the documentation of the function fsim.kNN.fit).

Then, an approximate linear model is obtained:

Ỹθ0 ≈ Z̃θ0β0 + ε,

and the penalised least-squares procedure is applied to this model by minimising over the pair (β, θ)

Q (β, θ) =
1

2

(
Ỹθ − Z̃θβ

)> (
Ỹθ − Z̃θβ

)
+ n

pn∑
j=1

Pλjn (|βj |) , (1)

where β = (β1, . . . , βpn)>, Pλjn (·) is a penalty function (specified in the argument penalty) and
λjn > 0 is a tuning parameter. To reduce the quantity of tuning parameters, λj , to be selected for
each sample, we consider λj = λσ̂β0,j,OLS

, where β0,j,OLS denotes the OLS estimate of β0,j and
σ̂β0,j,OLS

is the estimated standard deviation. Both λ and k (in the kNN estimation) are selected
using the objetive criterion specified in the argument criterion.

In addition, the function uses B-spline representation to build a set Θn of eligible functional indexes
θ. The dimension of the B-spline basis is order.Bspline+nknot.theta and the set of eligible
coefficients is obtained by calibrating (to ensure the identifiability of the model) the set of initial
coefficients given in seed.coeff. The larger this set, the higher the size of Θn. Since our approach
requires intensive computation, we need a trade-off between the size of Θn and the performance
of the estimator. For that, Ait-Saidi et al. (2008) suggested considering order.Bspline=3 and
seed.coeff=c(-1,0,1). For details on the construction of Θn see Novo et al. (2019).

Finally, after estimating β0 and θ0 by minimising (1), we deal with the estimation of the nonlinear
function rθ0(·) ≡ r (〈θ0, ·〉). For that we employ again the kNN procedure with Nadaraya-Watson
weights to smooth the partial residuals Yi − Z>i β̂.

For further details on the estimation procedure of the SSFPLSIM, see Novo et al. (2021).

Remark: We should note that if we set lambda.seq= 0, we can obtain the non-penalised estimation
of the model, i.e. the OLS estimation. It is convenient to use lambda.seq 6= 0 when one suspects
there are irrelevant variables.

Value

call The matched call.

fitted.values Estimated scalar response.

residuals Differences between y and the fitted.values

beta.est β̂ (i. e. the estimate of β0 when the optimal tuning parameters lambda.opt,
k.opt and vn.opt are used).

theta.est Coefficients of θ̂ in the B-spline basis (when the optimal tuning parameters
lambda.opt, k.opt and vn.opt) are used): a vector of length(order.Bspline+nknot.theta).

indexes.beta.nonnull

Indexes of the non-zero β̂j .

k.opt Selected number of nearest neighbours.

lambda.opt Selected value of the penalisation parameter λ.

sfplsim.kNN.fit 99

IC Value of the criterion function considered to select lambda.opt, k.opt and
vn.opt.

Q.opt Minimum value of the penalized criterion used to estimate β0 and θ0. That is,
the value obtained using theta.est and beta.est.

Q Vector of dimension equal to the cardinal of Θn, containing the values of the
penalized criterion for each functional index in Θn.

m.opt Index of θ̂ in the set Θn.
lambda.min.opt.max.mopt

A grid of values in [lambda.min.opt.max.mopt[1], lambda.min.opt.max.mopt[3]]
is considered to seek for the lambda.opt (lambda.opt=lambda.min.opt.max.mopt[2]).

lambda.min.opt.max.m

A grid of values in [lambda.min.opt.max.m[m,1], lambda.min.opt.max.m[m,3]]
is considered to seek for the optimal λ (lambda.min.opt.max.m[m,2]) used by
the optimal β for each θ in Θn.

knn.min.opt.max.mopt

k.opt=knn.min.opt.max.mopt[2] (used by theta.est and beta.est) was
seeked between knn.min.opt.max.mopt[1] and knn.min.opt.max.mopt[3]
(no necessarly the step was 1).

knn.min.opt.max.m

For each θ in Θn, the optimal k (knn.min.opt.max.m[m,2]) used by the opti-
mal β for this θ was seeked between knn.min.opt.max.m[m,1] and knn.min.opt.max.m[m,3]
(no necessarly the step was 1).

knearest Sequence of eligible values for k considered to seek for k.opt.

theta.seq.norm The vector theta.seq.norm[j,] contains the coefficientes in the B-spline basis
of the jth functional index in Θn.

vn.opt Selected value of vn.

...

Author(s)

German Aneiros Perez <german.aneiros@udc.es>

Silvia Novo Diaz <snovo@est-econ.uc3m.es>

References

Ait-Saidi, A., Ferraty, F., Kassa, R., and Vieu, P., (2008) Cross-validated estimations in the single-
functional index model. Statistics, 42(6), 475–494, doi:10.1080/02331880801980377.

Novo S., Aneiros, G., and Vieu, P., (2019) Automatic and location-adaptive estimation in func-
tional single-index regression. Journal of Nonparametric Statistics, 31(2), 364–392, doi:10.1080/
10485252.2019.1567726.

Novo, S., Aneiros, G., and Vieu, P., (2021) Sparse semiparametric regression when predictors are
mixture of functional and high-dimensional variables. TEST, 30, 481–504, doi:10.1007/s11749-
02000728w.

Novo, S., Aneiros, G., and Vieu, P., (2021) A kNN procedure in semiparametric functional data
analysis. Statistics and Probability Letters, 171, 109028, doi:10.1016/j.spl.2020.109028

https://doi.org/10.1080/02331880801980377
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1080/10485252.2019.1567726
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1007/s11749-020-00728-w
https://doi.org/10.1016/j.spl.2020.109028

100 Sugar

See Also

See also fsim.kNN.fit, predict.sfplsim.kNN and plot.sfplsim.kNN

Alternative procedure sfplsim.kernel.fit.

Examples

data("Tecator")
y<-Tecator$fat
X<-Tecator$absor.spectra2
z1<-Tecator$protein
z2<-Tecator$moisture

#Quadratic, cubic and interaction effects of the scalar covariates.
z.com<-cbind(z1,z2,z1^2,z2^2,z1^3,z2^3,z1*z2)
train<-1:160

#SSFPLSIM fit. Convergence errors for some theta are obtained.
ptm=proc.time()
fit<-sfplsim.kNN.fit(y=y[train],x=X[train,], z=z.com[train,], max.knn=20,

lambda.min.h=0.02,lambda.min.l=0.01, factor.pn=2, nknot.theta=4,
criterion="BIC",range.grid=c(850,1050), penalty="grSCAD",
nknot=20, max.iter=5000)

proc.time()-ptm

#Results
fit
names(fit)

Sugar Sugar data

Description

Ash content and absorbance spectra at two different excitation wavelengths of 268 samples of
sugar. Detailed information about this dataset can be found in https://ucphchemometrics.com/
datasets/.

Usage

data(Sugar)

https://ucphchemometrics.com/datasets/
https://ucphchemometrics.com/datasets/

Tecator 101

Format

A list containing:

• ash: A vector with the ash contents.

• wave.290: A matrix containing the absorbance spectra observed on 571 equally spaced wave-
lengths in the range 275-560 nm at excitation wavelengths 290 nm.

• wave.240: A matrix containing the absorbance spectra observed on 571 equally spaced wave-
lengths in the range 275-560 nm at excitation wavelengths 240 nm.

References

Aneiros, G., and Vieu, P. (2015) Partial linear modelling with multi-functional covariates. Compu-
tational Statistics, 30, 647–671, doi:10.1007/s0018001505688.

Novo, S., Vieu, P., and Aneiros, G., (2021) Fast and efficient algorithms for sparse semipara-
metric bi-functional regression. Australian and New Zealand Journal of Statistics, 63, 606–638,
doi:10.1111/anzs.12355.

Examples

data(Sugar)
names(Sugar)
Sugar$ash
dim(Sugar$wave.290)
dim(Sugar$wave.240)

Tecator Tecator data

Description

Fat, protein, moisture content and absorbance spectra (with the first and the second derivative) of
215 samples of meat. A detailed description of the data can be seen in http://lib.stat.cmu.
edu/datasets/tecator.

Usage

data(Tecator)

Format

A list containing:

• fat: A vector with the fat contents.

• protein: A vector with the protein contents.

• moisture: A vector with the moisture contents.

• absor.spectra: A matrix containing the near-infrared absorbance spectra observed on 100
equally spaced wavelengths in the range 850-1050 nm.

https://doi.org/10.1007/s00180-015-0568-8
https://doi.org/10.1111/anzs.12355
http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator

102 Tecator

• absor.spectra1: Fist derivative of the absorbance spectra (computed using B-spline repre-
sentation of the curves).

• absor.spectra2: Second derivative of the absorbance spectra (computed using B-spline rep-
resentation of the curves).

References

Ferraty, F. and Vieu, P. (2006) Nonparametric functional data analysis, Springer Series in Statistics,
New York.

Examples

data(Tecator)
names(Tecator)
Tecator$fat
Tecator$protein
Tecator$moisture
dim(Tecator$absor.spectra)

Index

∗ datasets
Sugar, 100
Tecator, 101

FASSMR.kernel.fit, 3, 4, 13, 30, 32, 43, 56
FASSMR.kNN.fit, 3, 8, 9, 32, 36, 38, 43, 56
fsemipar (fsemipar-package), 2
fsemipar-package, 2
fsemipar.internal, 14
fsim.kernel.fit, 3, 15, 20, 24, 43, 95
fsim.kernel.test, 3, 18, 18, 26
fsim.kNN.fit, 3, 18, 21, 26, 43, 100
fsim.kNN.test, 3, 20, 24, 24

IASSMR.kernel.fit, 3, 8, 27, 38, 43, 47
IASSMR.kNN.fit, 3, 13, 32, 33, 43, 47

lm.pels.fit, 3, 39, 43, 49, 59, 68, 70

plot.classes, 41
plot.FASSMR.kernel, 8
plot.FASSMR.kernel (plot.classes), 41
plot.FASSMR.kNN, 13
plot.FASSMR.kNN (plot.classes), 41
plot.fsim.kernel, 18
plot.fsim.kernel (plot.classes), 41
plot.fsim.kNN, 24
plot.fsim.kNN (plot.classes), 41
plot.IASSMR.kernel, 32
plot.IASSMR.kernel (plot.classes), 41
plot.IASSMR.kNN, 38
plot.IASSMR.kNN (plot.classes), 41
plot.lm.pels (plot.classes), 41
plot.PVS (plot.classes), 41
plot.PVS.kernel, 75
plot.PVS.kNN, 81
plot.sfpl.kernel, 86
plot.sfpl.kernel (plot.classes), 41
plot.sfpl.kNN, 90
plot.sfpl.kNN (plot.classes), 41

plot.sfplsim.kernel, 95
plot.sfplsim.kernel (plot.classes), 41
plot.sfplsim.kNN, 100
plot.sfplsim.kNN (plot.classes), 41
predict.FASSMR.kernel, 8
predict.FASSMR.kernel

(predict.sfplsim.FASSMR), 54
predict.FASSMR.kNN, 13
predict.FASSMR.kNN

(predict.sfplsim.FASSMR), 54
predict.fsim, 44
predict.fsim.kernel, 18, 20
predict.fsim.kNN, 24, 26
predict.IASSMR, 45
predict.IASSMR.kernel, 32
predict.IASSMR.kNN, 38
predict.lm, 48
predict.mfplm, 50
predict.PVS (predict.lm), 48
predict.PVS.kernel, 75
predict.PVS.kernel (predict.mfplm), 50
predict.PVS.kNN, 81
predict.PVS.kNN (predict.mfplm), 50
predict.sfpl, 52
predict.sfpl.kernel, 52, 86
predict.sfpl.kNN, 52, 90
predict.sfplsim.FASSMR, 54
predict.sfplsim.kernel, 95
predict.sfplsim.kernel

(predict.sfplsim.FASSMR), 54
predict.sfplsim.kNN, 100
predict.sfplsim.kNN

(predict.sfplsim.FASSMR), 54
print.FASSMR.kernel

(print.summary.mfplsim), 60
print.FASSMR.kNN

(print.summary.mfplsim), 60
print.fsim.kernel (print.summary.fsim),

57

103

104 INDEX

print.fsim.kNN (print.summary.fsim), 57
print.IASSMR.kernel

(print.summary.mfplsim), 60
print.IASSMR.kNN

(print.summary.mfplsim), 60
print.lm.pels (print.summary.lm), 58
print.PVS (print.summary.lm), 58
print.PVS.kernel (print.summary.mfpl),

59
print.PVS.kNN (print.summary.mfpl), 59
print.sfpl.kernel (print.summary.sfpl),

62
print.sfpl.kNN (print.summary.sfpl), 62
print.sfplsim.kernel

(print.summary.sfplsim), 63
print.sfplsim.kNN

(print.summary.sfplsim), 63
print.summary.fsim, 57
print.summary.lm, 58
print.summary.mfpl, 59
print.summary.mfplsim, 60
print.summary.sfpl, 62
print.summary.sfplsim, 63
projec, 3, 64, 82
PVS.fit, 3, 41, 43, 49, 59, 66
PVS.kernel.fit, 3, 43, 52, 70, 81
PVS.kNN.fit, 3, 43, 52, 75, 76

semimetric.projec, 3, 16, 20, 22, 26, 65, 81
sfpl.kernel.fit, 3, 43, 52, 54, 73, 75, 83, 90
sfpl.kNN.fit, 3, 43, 52, 54, 79, 81, 86, 87
sfplsim.kernel.fit, 3, 7, 8, 30, 32, 43, 47,

56, 90, 100
sfplsim.kNN.fit, 3, 12, 13, 36, 38, 43, 47,

56, 95, 95
Sugar, 3, 100
summary.FASSMR.kernel

(print.summary.mfplsim), 60
summary.FASSMR.kNN

(print.summary.mfplsim), 60
summary.fsim.kernel

(print.summary.fsim), 57
summary.fsim.kNN (print.summary.fsim),

57
summary.IASSMR.kernel

(print.summary.mfplsim), 60
summary.IASSMR.kNN

(print.summary.mfplsim), 60
summary.lm.pels (print.summary.lm), 58

summary.PVS (print.summary.lm), 58
summary.PVS.kernel

(print.summary.mfpl), 59
summary.PVS.kNN (print.summary.mfpl), 59
summary.sfpl.kernel

(print.summary.sfpl), 62
summary.sfpl.kNN (print.summary.sfpl),

62
summary.sfplsim.kernel

(print.summary.sfplsim), 63
summary.sfplsim.kNN

(print.summary.sfplsim), 63

Tecator, 3, 101

	fsemipar-package
	FASSMR.kernel.fit
	FASSMR.kNN.fit
	fsemipar.internal
	fsim.kernel.fit
	fsim.kernel.test
	fsim.kNN.fit
	fsim.kNN.test
	IASSMR.kernel.fit
	IASSMR.kNN.fit
	lm.pels.fit
	plot.classes
	predict.fsim
	predict.IASSMR
	predict.lm
	predict.mfplm
	predict.sfpl
	predict.sfplsim.FASSMR
	print.summary.fsim
	print.summary.lm
	print.summary.mfpl
	print.summary.mfplsim
	print.summary.sfpl
	print.summary.sfplsim
	projec
	PVS.fit
	PVS.kernel.fit
	PVS.kNN.fit
	semimetric.projec
	sfpl.kernel.fit
	sfpl.kNN.fit
	sfplsim.kernel.fit
	sfplsim.kNN.fit
	Sugar
	Tecator
	Index

