Package 'freebird'

October 13, 2022
Title Estimation and Inference for High Dimensional Mediation and Surrogate Analysis
Version 1.0
Description Estimates and provides inference for quantities that assess high dimensional mediation and potential surrogate markers including the direct effect of treatment, indirect effect of treatment, and the proportion of treatment effect explained by a surrogate/mediator; details are described in Zhou et al (2022) doi:10.1002/sim.9352 and Zhou et al (2020) doi:10.1093/biomet/asaa016. This package relies on the optimization software 'MOSEK', https://www.mosek.com.
Depends R (>= 3.5.0), scalreg, Rmosek, Matrix
Imports stats, MASS
License GPL (>=2)
RoxygenNote 7.1.1
Encoding UTF-8
NeedsCompilation yes
Author Ruixuan Zhou [aut, cph], Dave Zhao [aut, cph], Layla Parast [cre]

Maintainer Layla Parast parast@austin.utexas.edu
Repository CRAN
Date/Publication 2022-09-27 10:20:05 UTC

R topics documented:

hilma 2
ptehd 3
Index 5

Description

This function implements the estimation and inference for the indirect effect in high dimensional linear mediation analysis models. It provides estimates and p-values under both incomplete mediation, where a direct effect may exist, as well as complete mediation, where the direct effect is known to be absent.

Usage

hilma(
Y,
G,
S,
mediation_setting = "incomplete", tuning_method = "uniform",
lam_list = NA, min. ratio $=0.1$, n. lambda $=5$, center = TRUE
)

Arguments

Y	The n-dimensional outcome vector.
G	The n by p mediator matrix. p can be larger than n.
S	The n by q exposure matrix. q can be 1, and $\mathrm{q}<\mathrm{n}$ is required.
mediation_setting	Either 'incomplete' or 'complete'
	tuning_method 'uniform' or 'aic', the default is 'uniform' lam_list tuning parameter for uniform tuning or list of tuning parameter for aic tuning min.ratio the ratio of the minimum lambda to the maximum $\mathrm{n} . l$ lambda number of tuning parameters to choose from center center the data or not, the default is TRUE

Value

A list with components:

beta_hat alpha1_hat pvalue_beta_hat	estimated indirect effect estimated direct effect
lambda_used	the value for testing the significance of the indirect effect lambda used during optimization

ptehd

Author(s)

Ruixuan Zhou

Examples

$\mathrm{n}=30$
$\mathrm{p}=50$
$q=2$
G = MASS: :mvrnorm(n, rep(0,p), $\operatorname{diag}(p))$
S = as.matrix(MASS::mvrnorm(n, rep(0,q), diag(q)))
$\mathrm{Y}=\operatorname{as} . \operatorname{matrix}(\mathrm{rnorm}(\mathrm{n}))$
out = hilma(Y,G,S, mediation_setting = 'complete', tuning_method = 'uniform', lam_list = 0.2)
out
ptehd
Proportion of treatment effect explained by high-dimensional surrogates

Description

Estimates the proportion of the treatment effect explained by the indirect effect via high-dimensional surrogates.

Usage

ptehd(Yt, Yc, St, Sc, lambda_range $=c(0,1))$

Arguments

Yt The n-dmensional outcome vector in the treatment group.
Yc The n-dmensional outcome vector in the control group.
St The $\mathrm{n} x \mathrm{p}$ matrix of surrogates in the treatment group.
Sc The $\mathrm{n} x \mathrm{p}$ matrix of surrogates in the treatment group.
lambda_range Min and max of range of range of tuning parameter to use during the constrained 11 optimization step.

Value

A list with components:
est_id Estimate of indirect effect, defined as $\int E(Y \mid S=s, Z=1) d F(s \mid Z=1)-$ $\int E(Y \mid S=s, Z=0) d F(s \mid Z=0)$
sd_id Standard deviation of indirect effect estimate
est_total Estimate of total effect
sd_total Standard deviation of total effect estimate
V Covariance matrix of (est_id, est_total)

est_R	Estimate of proportion of treatment effect explained by surrogates
sd_R	Standard deviation of proportion estimate
lambda_used	lambda used during optimization

Author(s)

Ruixuan Zhou

Examples

```
n = 10
St = replicate(n, rnorm(20, mean = 1))
Sc = replicate(n, rnorm(20))
Yt = 1 + rowSums(St) / 2 + rnorm(n)
Yc = rowSums(Sc) / 3 + rnorm(n)
# Requires installation of mosek to run
## Not run:
out = ptehd(Yt, Yc, St, Sc)
## End(Not run)
```


Index

hilma, 2
ptehd, 3

