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dcca Detrended Cross-Correlation Analysis
Description

Fast function for computing detrended cross-correlation analysis (DCCA) on long time series,
which is a bivariate extension of detrended fluctuation analysis (DFA).

Usage

dcca(x, y, order, scales)

Arguments

X A real valued vector (i.e., time series data) to be analyzed.

y A real valued vector (i.e., time series data) to be analyzed.

order is an integer indicating the polynomial order used for detrending the local win-
dows (e.g, 1 = linear, 2 = quadratic, etc.). There is not a pre-determined limit on
the order of the polynomial order but the user should avoid using a large poly-
nomial on small windows. This can result in overfitting and non-meaningful
estimates.

scales An integer vector of scales over which to compute correlation. Unlike univari-

ate DFA, MRA does not require that scales be in log units. Scale intervals can
be sequential, for example, when the analysis is exploratory and no a priori
hypotheses have been made about the scale of correlation. A small subset of
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targeted scales may also be investigated where scale-specific research questions
exist. We have found that windows smaller than say 8 observations create sta-
bility problems due to overfitting. This is espcially when the order of the fitting
polynomial is large.

Details

Details of the algorithm are specified in Podobnik and Stanley (2008) and in Zebende (2011). In
general, the output of the algorithm are estimates of phDCCA, which range from -1 to 1 and can
generally be interpreted as follows:

* pDCCA = —1.0— > perfect anti-cross-correlation
* pDCCA = 0.0— > no cross-correlation
« pDCCA = 1.0— > perfect cross-correlation

Value
The object returned from the function is a list including the following:

* scales indicates the values of the scales used for estimates pPDCCA

* rho includes the scale-wise estimates of pDCCA

References

Podobnik, B., & Stanley, H. E. (2008). Detrended cross-correlation analysis: a new method for
analyzing two nonstationary time series. Physical review letters, 100(8), 084102.

Zebende, G. F. (2011). DCCA cross-correlation coefficient: Quantifying level of cross-correlation.
Physica A: Statistical Mechanics and its Applications, 390(4), 614-618.

nr

Examples

# Here is a simple example for running DCCA using a white noise and pink noise time series.
# For more detailed examples, see the vignette.

noise <- rnorm(5000)
pink.noise <- fgn_sim(n = 5000, H = 0.9)
scales <- logscale(scale_min = 10, scale_max = 1250, scale_ratio = 1.1)

dcca.out <- dcca(noise, pink.noise, order = 1, scales = scales)
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dcca.plot

Detrended Cross Correlation Plot

Description

A plotting method for constructing scalewise correlation plot

Usage

dcca.plot(
rhos,
order =

ci = FALSE,
iterations

NULL,

return.ci = FALSE,

loess.rho

FALSE,

loess.ci = FALSE

Arguments

rhos

order

ci

iterations

return.ci

loess.rho

loess.ci

an object containing results from detrended cross correlation analysis. The ob-
ject should be returned from the dcca function of this package.

integer representing the detrending order used in the dcca calculation. Default
is 1.

a logical indicating whether confidence intervals should be computed using the
iaafft function from this package. NOTE: with long time series (» than N =
1,000), this can greatly reduce processing speed. Confidence intervals can be
used for conventional significance testing of scale-wise correlation coefficients.

integer that specifies the the number of surrogate time series to be generated for
the purpose of confidence intervals. Default = 19. Larger number of surrogates
will slow computational speed but produce better confidence interval estimates.

logical indicating whether the confidence intervals should be returned

logical indicating whether a loess fit should be used for displaying multiscale
regression coefficient trajectories

logical indicating whether a loess fit should be used to smooth confidence inter-
vals
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detrend_cov Detrended Covariance Functional that returns the detrended covari-
ance between two vectors

Description

Detrended Covariance Functional that returns the detrended covariance between two vectors

Usage

detrend_cov(x, y, m)

Arguments
X a real valued column vector
y is a real valued column vector
m is the detrending order
dfa Detrended Fluctuation Analysis
Description

Fast function for computing detrended fluctuation analysis (DFA), a widely used method for esti-
mating long-range temporal correlations in time series data. DFA is also a form of mono-fractal
analysis that indicates the degree of self-similarity across temporal scales.

Usage

dfa(x, order, verbose, scales, scale_ratio = 2)

Arguments

X A real valued vector (i.e., time series data) to be analyzed.

order An integer indicating the polynomial order used for detrending the local win-
dows (e.g, 1 = linear, 2 = quadratic, etc.). There is not a pre-determined limit on
the order of the polynomial order but the user should avoid using a large poly-
nomial on small windows. This can result in overfitting and non-meaningful
estimates.

verbose If the value of verbose = 1, then a list object is returned that includes: log_scales

the log of all included scales, 1log_rms the log root mean square error (RMS) per
scale, and alpha the overall « estimate. If the value of verbose = 0, then a list
containing only ‘alpha‘ will be returned.
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scales An integer valued vector indicating the scales one wishes to resolve in the
analysis. Best practice is to use scales which are evenly spaced in the log-
arithmic domain e.g., scales =2%(4:(N/4)), where N is the length of the
time series. Other, logarithmic bases may also be used to give finer resolu-
tion of scales while maintaining ~= spacing in the log domain e.g, scales =
unique(floor(1.14(3@:(N/4)))). Note that fractional bases may produce
duplicate values after the necessary floor function.

scale_ratio A scaling factor by which successive window sizes were created. The default is
2 but should be addressed according to how scales were generated for example
using logscale(16, 100, 1.1), where 1.1 is the scale ratio.

Details

Details of the algorithm are specified in detail in Peng et al. (1994) and visualized nicely in Kelty-
Stephen et al. (2016). The output of the algorithm is an « (alpha) estimate which is a generalization
of the Hurst Exponent. Conventional interpretation of « is:

* o < 0.5 = anti-correlated

e o = 0.5 = uncorrelated, white noise

* o > 0.5 = temporally correlated

* a = 1 = l/f-noise, pink noise

* o > 1 = non-stationary and unbounded

* o = 1.5 = fractional brownian motion
We recommend a few points of consideration here in using this function. One is to be sure to verify
there are not cross-over points in the logScale- logFluctuation plots (Peng et al., 1995; Perakakis et
al ., 2009). Cross- over points (or a visible change in the slope as a function of of scale) indicate
that a mono-fractal characterization does not sufficiently characterize the data. If cross-over points

are evident, we recommend proceeding to using the mfdfa() to estimate the multi-fractal fluctuation
dynamics across scales.

While it is common to use only linear detrending with DFA, it is important to inspect the trends
in the data to determine if it would be more appropriate to use a higher order polynomial for de-
trending, and/or compare the DFA output for different polynomial orders (see Kantelhardt et al.,
2001).

General recommendations for choosing the min and max scale are an sc_min = 10 and sc_max =
(N/4), where N is the number of observations. See Eke et al. (2002) and Gulich and Zunino (2014)
for additional considerations.

Value
The object returned can take the following forms:

* If the value of verbose = 1, then a list object is returned that includes: log_scales the log of
all included scales, log_rms the log root mean square error (RMS) per scale, and alpha the
overall o estimate.

* If the value of verbose = 0, then a list containing only ‘alpha‘ the estimated scaling exponent
o will be returned.
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References

Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in
temporal physiological signals. Physiological measurement, 23(1), R1-R38.

Gulich, D., & Zunino, L. (2014). A criterion for the determination of optimal scaling ranges in DFA
and MF-DFA. Physica A: Statistical Mechanics and its Applications, 397, 17-30.

Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H., Havlin, S., & Bunde, A. (2001). Detecting
long-range correlations with detrended fluctuation analysis. Physica A: Statistical Mechanics and
its Applications, 295(3-4), 441-454.

Kelty-Stephen, D. G., Stirling, L. A., & Lipsitz, L. A. (2016). Multifractal temporal correlations
in circle-tracing behaviors are associated with the executive function of rule-switching assessed by
the Trail Making Test. Psychological assessment, 28(2), 171-180.

Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, and Goldberger AL (1994), Mosaic
organization of DNA nucleotides, Physical Review E, 49, 1685-1689.

Peng C-K, Havlin S, Stanley HE, and Goldberger AL (1995), Quantification of scaling exponents
and crossover phenomena in nonstationary heartbeat time series, Chaos, 5, 82-87.

Perakakis, P., Taylor, M., Martinez-Nieto, E., Revithi, 1., & Vila, J. (2009). Breathing frequency
bias in fractal analysis of heart rate variability. Biological psychology, 82(1), 82-88.

Examples

noise <- rnorm(5000)
scales <- ¢(16,32,64,128,256,512,1024)

dfa.noise.out <- dfa(
X = noise,
order = 1,
verbose = 1,
scales = scales,
scale_ratio = 2)

pink.noise <- fgn_sim(n = 5000, H = 0.9)

dfa.pink.out <- dfa(
X = pink.noise,
order = 1,
verbose = 1,
scales = scales,
scale_ratio = 2)

anticorr.noise <- fgn_sim(n = 5000, H = 0.25)

dfa.anticorr.out <- dfa(
X = anticorr.noise,
order = 1,
verbose = 1,
scales = scales,
scale_ratio = 2)
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dfa.plot Detrended Fluctuation Plot

Description

Plot method for monofractal detrended fluctuation analysis

Usage
dfa.plot(x)

Arguments
X is an object returned from the dfa function of this package. Plot parameters are
chosen automatically,
dlcca Multiscale Lagged Regression Anlaysis Fast function for computing
MLRA on long time series
Description

Multiscale Lagged Regression Anlaysis Fast function for computing MLRA on long time series

Usage

dlcca(x, y, order, scales, lags, direction)

Arguments
X is a real valued vector of time series data
y is a real valued vector of time series data
order is an integer indicating the polynomial order used for detrending the local win-
dows
scales integer vector of scales over which to compute correlation. Performance is best
when scales are evenly spaced in log units. Choosing a logarithm base between
1 and 2 may also improve performance of regression.
lags integer indicating the maximum number of lags to include
direction string indicating a positive (’p’) or negative ('n’) lag
Value

The object returned from the dlcca() function is a list containing rho coefficients for each lag at each
of the scales.



fgn_sim 9

fgn_sim Simulate fractional Gaussian Noise.

Description

Simulate fractional Gaussian Noise.

Usage
fgn_sim(n = 1000, H = 0.7)

Arguments
n integer indicating length of desired series
H Hurst exponent ranges between 0 and 1
Value

A numeric vector of length n.

fractaldata A whitenoise, monofractal, and multifractal timeseries

Description
These data include three simulated data to be used for understanding the differences between the
various univariate methods in the dataset to compare whitenoise, monofractal, and multifractal data.
Usage

data(fractaldata)

Format

An object of class data. frame with 8000 rows and 4 columns.

Source

https://www.ntnu.edu/inb/geri/software

References

Ihlen, E. A. F. (2012). Introduction to Multifractal Detrended Fluctuation Analysis in Matlab.
Frontiers in Physiology, 3. https://doi.org/10.3389/fphys.2012.00141
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iaafft Iterated Amplitude Adjusted Fourier Transform

Description

Iterated Amplitude Adjusted Fourier Transform

Usage

iaafft(signal, N = 1)

Arguments
signal is a real valued time serires
N is the number of desired surrogates. Default is 1
Im_c Simplef bivariate regression written in c++
Description

Simplef bivariate regression written in c++

Usage

Im_c(xs, yr)

Arguments

XS a real valued column vector

yr is a real valued column vector
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logscale logscale

Description

Create logarithmically spaced scales

Usage

logscale(scale_min, scale_max, scale_ratio)

Arguments
scale_min an integer indicating the minimum scale to be resovled
scale_max an integer indicating the maximum scale to be resolved

scale_ratio

scale_ratio = 2 would create a scales increasing by a power of 2.

Value

A vector of of logarithmically spaced scales.

Examples

scales <- logscale(scale_min = 16, scale_max = 1024, scale_ratio = 2)

a double indicating the ratio by which scale successive scales. For example,

mBm_mGn Multifractional Brownian motion and multifractional Gaussian noise

Description
Simulate multifractional Brownian motion and multifractional Gaussian noise.

Usage

mBm_mGn(N, Ht)

Arguments

N The length of sample time series to simulate.

Ht The N by 1 vector of the time evolving H(t).
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Details

This is an algorithm that simulates discrete time multifractional Brownian motion and multifrac-
tional Gaussian noise, which can useful for testing various functions within the ‘fractalRegression’
package. H(t) should take on any values between 0 and 1. It is meant to capture time varying frac-
tal properties. The example code given below shows a slow evolving Hurst exponent involving a
sinusoidal change.

Value

The object returned from the function includes:

e mBm: multifractional Brownian motion

* mGn: multifractional Gaussian noise

Examples

t <- 1:1024
Ht <- 0.5+0.5%(sin(0.0025*xpi*t))
sim <- mBm_mGn(1024,Ht)

mc_ARFIMA Mixed-correlated ARFIMA processes

Description

Simulate various types of correlated noise processes.

Usage

mc_ARFIMA(
process,
n,
rho,
d1l = NULL,
d2 = NULL,
d3 = NULL,
d4 = NULL,
alpha = NULL,
beta = NULL,
delta = NULL,
gamma NULL,
theta = NULL,
thetal = NULL,
theta2 = NULL
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Arguments
process specifies the type of correlated noise process to simulate and includes *Noise_rho’,
’ARFIMA _rho’, ARFIMA_AR’,;AR_rho’, "Mixed_ARFIMA_ARFIMA’,Mixed_ARFIMA_AR’,and
’Mixed_ ARFIMA _noise’.
n is a numeric value specifying the length of the time-series.
rho specifies the strength of the correlation with values -1 - 1.
di is a numeric fractional difference parameter for x specifying long term memory.
d2 is a numeric fractional difference parameter for x specifying long term memory.
d3 is a numeric fractional difference parameter for y specifying long term memory.
d4 is a numeric fractional difference parameter for y specifying long term memory.
alpha see Kristoufek (2013) for details.
beta see Kristoufek (2013) for details.
delta see Kristoufek (2013) for details.
gamma see Kristoufek (2013) for details.
theta see Kristoufek (2013) for details.
thetal see Kristoufek (2013) for details.
theta?2 see Kristoufek (2013) for details.
Details

This function includes multiple options simulating various types of correlated noise processes in-
cluding mixed-correlated ARFIMA processes with power-law cross-correlations, These functions
were originally written by Ladislav Kristoufek and posted on his website. They go with the paper
presented in Kristoufek (2013). The ’process’ argument specifies the type of noise to be generated.

* ’Noise_rho’ - Generates two correlated noise series and requires arguments: n, rho.

* "ARFIMA_rho’ - Generates two ARFIMA processes with correlated innovations and requires
arguments: n, d1, d2, rho.

* "ARFIMA_AR’ - Generates ARFIMA and AR(1) processes with correlated innovations and
requires arguments: n, d1, theta, rho.

* AR _rho’ - Generates two AR(1) processes with correlated innovations and requires argu-
ments: n, thetal, theta2, rho.

* "Mixed_ARFIMA_ARFIMA’ - Generates MC-ARFIMA process with long-range correlation
and long-range cross-correlation (Kristoufec, 2013 Model 1) and requires arguments: alpha,
beta, gamma, delta, n, d1, d2, d3, d4, rho.

* "Mixed_ARFIMA_AR’ - Generates MC-ARFIMA process with long-range correlation and
short-range cross-correlation (Kristoufec, 2013 Model 2) and requires arguments: alpha, beta,
gamma, delta, n, d1, d2, theta, rho.

* 'Mixed_ARFIMA _noise’ - Generates MC-ARFIMA process with long-range correlation and
simple correlation (Kristoufec, 2013 Model 3) and requires arguments: alpha, beta, gamma,
delta, n, d1, d2, rho.
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Value

The object returned is a matrix of length n with a time series (x,y) in column 1 and 2.

References
Kristoufek, L. (2013). Mixed-correlated ARFIMA processes for power-law cross-correlations.
Physica A: Statistical Mechanics and its Applications, 392(24), 6484-6493.

Examples

set.seed(987345757)

siml <- mc_ARFIMA(process='Mixed_ARFIMA_ARFIMA', alpha = 0.2,
beta = 1, gamma = 1, delta = 0.2, n = 10000, d1 = 0.4, d2 = 0.3,
d3 = 0.3, d4=0.4, rho=0.9)

plot(simi[,1],type="1"', ylab= "Signal Amplitude”, xlab='Time',
main = "MC-ARFIMA with LRC and LRCC")

lines(sim1[,2], col='blue')

mfdfa Multifractal Detrended Fluctuation Analysis

Description

Fast function for computing multifractal detrended fluctuation analysis (MF-DFA), a widely used
method for estimating the family of long-range temporal correlations or scaling exponents in time
series data. MF-DFA is also a form of multifractal analysis that indicates the degree of interaction
across temporal scales.

Usage

mfdfa(x, g, order, scales, scale_ratio)

Arguments
X A real valued vector (i.e., time series data) to be analyzed.
q A real valued vector indicating the statistical moments (q) to use in the analysis.
q must span negative and positive values e.g., -3:3, otherwise and error may be
produced.
order is an integer indicating the polynomial order used for detrending the local win-

dows (e.g, 1 = linear, 2 = quadratic, etc.). There is not pre-determined limit on
the order of the polynomial order but the user should avoid using a large poly-
nomial on small windows. This can result in overfitting and non-meaningful
estimates.
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scales An integer valued vector indicating the scales one wishes to resolve in the
analysis. Best practice is to use scales which are evenly spaced in the log-
arithmic domain e.g., scales =2%(4:(N/4)), where N is the length of the
time series. Other, logarithmic bases may also be used to give finer resolu-
tion of scales while maintaining ~= spacing in the log domain e.g, scales =
unique(floor(1.14(3@:(N/4)))). Note that fractional bases may produce
duplicate values after the necessary floor function.

scale_ratio A scaling factor by which successive window sizes were created. The default is
2 but should be addressed according to how scales were generated for example
using logscale(16, 100, 1.1), where 1.1 is the scale ratio.

Details
Details of the algorithm are specified in detail in Kantelhardt et al. (2001; 2002) and visualized
nicely in Kelty-Stephen et al. (2016).

Selecting the range of values for q is important. Note that MF-DFA estimates for q = 2 are equiv-
alent to DFA. Larger values of q (q > 2) emphasize larger residuals and smaller values of q (q <
2) emphasis smaller residuals (Kelty-Stephen et al., 2016). For most biomedical signals such as
physiological and kinematic, a q range of -5 to 5 is common (Ihlen, 2010). However, in some cases,
such as when time series are short (< 3000), it can be appropriate to limit the range of q to positive
only. Kelty-Stephen et al. (2016) recommend a positive q range of 0.5 to 10 with an increment of
0.5.

While it is common to use only linear detrending with DFA and MF-DFA, it is important to inspect
the trends in the data to determine if it would be more appropriate to use a higher order polynomial
for detrending, and/or compare the DFA and MF-DFA output for different polynomial orders (see
Ihlen, 2012; Kantelhardt et al., 2001).

General recommendations for choosing the min and max scale are a scale_min = 10 and scale_max
= (N/4), where N is the number of observations. See Eke et al. (2002), Gulich and Zunino (2014),
Ihlen (2012), and for additional considerations and information on choosing the correct parameters.

Value

The output of the algorithm is a list that includes:

* log_scale The log scales used for the analysis

* log_fq The log of the fluctuation functions for each scale and q
* Hq The g-order Hurst exponent (generalized Hurst exponent)

* Tau The g-order mass exponent

* g The g-order statistical moments

* h The g-order singularity exponent

* Dh The dimension of the q-order singularity exponent

References

Ihlen, E. A. F. (2012). Introduction to Multifractal Detrended Fluctuation Analysis in Matlab.
Frontiers in Physiology, 3. https://doi.org/10.3389/fphys.2012.00141
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Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H., Havlin, S., & Bunde, A. (2001). Detecting
long-range correlations with detrended fluctuation analysis. Physica A: Statistical Mechanics and
its Applications, 295(3-4), 441-454.

Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H.
E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A:
Statistical Mechanics and its Applications, 316(1-4), 87-114.

Kelty-Stephen, D. G., Palatinus, K., Saltzman, E., & Dixon, J. A. (2013). A Tutorial on Multi-
fractality, Cascades, and Interactivity for Empirical Time Series in Ecological Science. Ecological
Psychology, 25(1), 1-62. https://doi.org/10.1080/10407413.2013.753804

Kelty-Stephen, D. G., Stirling, L. A., & Lipsitz, L. A. (2016). Multifractal temporal correlations in
circle-tracing behaviors are associated with the executive function of rule-switching assessed by the
Trail Making Test. Psychological Assessment, 28(2), 171-180. https://doi.org/10.1037/pas0000177

Examples
noise <- rnorm(5000)
scales <- c(16,32,64,128,256,512,1024)
mf.dfa.white.out <- mfdfa(

X = noise, q = c(-5:5),
order = 1,
scales = scales,
scale_ratio = 2)
pink.noise <- fgn_sim(n = 5000, H = 0.9)
mf.dfa.pink.out <- mfdfa(
X = pink.noise,
q = c(-5:5),
order = 1,
scales = scales,
scale_ratio = 2)
mfdfa.plot Multifractal Spectrum Plot
Description

Method for plotting various forms of the multifractal spectrum
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Usage

mfdfa.plot(mf, do.surrogate, nsurrogates = 19, return.ci = FALSE)

Arguments

mf an object containing elements related to the mutlifractal spectrum derived from
Multifractal Detrended Fluctuation Analysis

do.surrogate logical indicating whether surrogation should be performed on the time series

nsurrogates integer indicating the number of surrogates to be constructed. Default is 19 for
95 surrogates ore more precise but increase computational time.

return.ci logical indicating if confidence intervals derived from surrogate analysis should
be returned.

Author(s)
Aaron D. Likens (2022)

References

Kantelhardt et al. (2002). Multifractal detrended fluctuation analys of nonstationary time series.
Physica A: Statistical Mechanics and its Applications, 87

mfdfa_cj Multifractal Analysis Chhabra-Jensen Method

Description

Fast function for computing multifractal analysis using a lesser-known method for estimating the
family of long-range temporal correlations or scaling exponents in time series data. This is also a
form of multifractal analysis that indicates the degree of interaction across temporal scales.

Usage

mfdfa_cj(Timeseries, qValues, scales)

Arguments
Timeseries is a real valued time series
gValues real valued vector of g-orders

scales unsigned integer vector of scales to be resolved
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mlira

mlra

Multiscale Lagged Regression Analysis

Description

Fast function for computing multiscale lagged regression analysis (MLRA) on long time series.
Combining DFA with ordinary least square regression, MLRA is a form of fractal regression that
can be used to estimate asymmetric and multiscale regression coefficients between two variables at
different time-scales and temporal lags.

Usage

mlra(x, y, order, scales, lags, direction)

Arguments

X

y

order

scales

lags

direction

Details

A real valued vector (i.e., time series data) to be analyzed.
A real valued vector (i.e., time series data) to be analyzed.

is an integer indicating the polynomial order used for detrending the local win-
dows (e.g, 1 = linear, 2 = quadratic, etc.). There is a not pre-determined limit on
the order of the polynomial order but the user should avoid using a large poly-
nomial on small windows. This can result in overfitting and non-meaningful
estimates.

An integer vector of scales over which to compute correlation. Unlike univari-
ate DFA, MRA does not require that scales be in log units. Scale intervals can
be sequential, for example, when the analysis is exploratory and no a priori
hypotheses have been made about the scale of correlation. A small subset of
targeted scales may also be investigated where scale-specific research questions
exist. We have found that windows smaller than say 8 observations create sta-
bility problems due to overfitting. This is espcially when the order of the fitting
polynomial is large.

An integer indicating the maximum number of lags to include in the analysis.

A character string indicating a positive (’p’) or negative ('n’) lag.

Mathematical treatment of the MLRA algorithm and its performance can be found in Kristoufek
(2015) and Likens et al. (2019).

Use of the direction parameter specifies whether the scale-wise 3 coefficients for positive or nega-
tive lags will be estimated.

Note that under conditions with linear and quadratic trends, Likens et al. (2019) found that there
was a systematic positive bias in the 3 estimates for larger scales. Using a polynomial detrending
order of 2 or greater was shown to attenuate this bias.
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Value
The object returned from the mlra() function is a list containing betas the g coefficients for each
lag at each of the scales.

References

Kristoufek, L. (2015). Detrended fluctuation analysis as a regression framework: Estimating de-
pendence at different scales. Physical Review E, 91(2), 022802.

Likens, A. D., Amazeen, P. G., West, S. G., & Gibbons, C. T. (2019). Statistical properties of
Multiscale Regression Analysis: Simulation and application to human postural control. Physica A:
Statistical Mechanics and its Applications, 532, 121580.

Examples

# Here is a simple example for running MLRA using a white noise and pink noise time series.
# For more detailed examples, see the vignette.

noise <- rnorm(5000)
pink.noise <- fgn_sim(n = 5000, H = 0.9)
scales <- logscale(scale_min = 10, scale_max = 1250, scale_ratio = 1.1)

mlra.out <- mlra(

X = noise,
y = pink.noise,
order = 1,

scales = scales,
lags = 100, direction = 'p')

mra Multiscale Regression Analysis (MRA)

Description

Fast function for computing multiscale regression analysis (MRA) on long time series. Combining
DFA with ordinary least square regression, MRA is a form of fractal regression that can be used to
estimate asymmetric and multiscale regression coefficients between two variables.

Usage

mra(x, y, order, scales)
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Arguments

X

order

scales

Details

mra

A real valued vector (i.e., time series data) to be analyzed. A key difference
between DCCA and MRA is that MRA produces asymmetric estiamtes. That is,
x is assumed to be an independent variable and y is assumed to be a dependent
variable. MRA should be used when one of the time series in question is usefully
cast as the independent variable. That is, x is assumed to effect change in y. If
no such causal relationship is anticipated, use DCCA instead.

A real valued vector (i.e., time series data) to be analyzed.

is an integer indicating the polynomial order used for detrending the local win-
dows (e.g, 1 = linear, 2 = quadratic, etc.). There is not a pre-determined limit on
the order of the polynomial order but the user should avoid using a large poly-
nomial on small windows. This can result in overfitting and non-meaningful
estimates.

An integer vector of scales over which to compute correlation. Unlike univari-
ate DFA, MRA does not require that scales be in log units. Scale intervals can
be sequential, for example, when the analysis is exploratory and no a priori
hypotheses have been made about the scale of correlation. A small subset of
targeted scales may also be investigated where scale-specific research questions
exist. We have found that windows smaller than say 8 observations create sta-
bility problems due to overfitting. This is espcially when the order of the fitting
polynomial is large.

Mathematical treatment of the MRA algorithm and its performance can be found in Kristoufek
(2015) and Likens et al. (2019).

Note that under conditions with linear and quadratic trends, Likens et al. (2019) found that there
was a systematic positive bias in the § estimates for larger scales. Using a polynomial detrending
order of 2 or greater was shown to attenuate this bias.

Value

The object returned from the mra() function is a list including the following:

* scales indicates the values of the scales used for estimates

* betas are the scale specific £ estimates of the influence of x on y

* r2 is the scale specific r-squared value of the model fit (i.e., variance in y accounted for by x

at that scale)

* t_observed is the estimated t-statistic for a given J at a given scale.

References

Kristoufek, L. (2015). Detrended fluctuation analysis as a regression framework: Estimating de-
pendence at different scales. Physical Review E, 91(2), 022802.

Likens, A. D., Amazeen, P. G., West, S. G., & Gibbons, C. T. (2019). Statistical properties of
Multiscale Regression Analysis: Simulation and application to human postural control. Physica A:
Statistical Mechanics and its Applications, 532, 121580.
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# Here is a simple example for running MRA using a white noise and pink noise time series.
# For more detailed examples, see the vignette.

noise <- rnorm(5000)

pink.noise <- fgn_sim(n = 5000, H = 0.9)

scales <- logscale(scale_min = 10, scale_max = 1250, scale_ratio = 1.1)

mra.out <- mra(x

= noise, y = pink.noise, order = 1, scales = scales)

mra.plot

Multiscale Regression Plot

Description

A plotting method for constructing scalewise regression plot

Usage

mra.plot(
betas,
order = 1,
ci = FALSE,

iterations = NULL,
return.ci = FALSE,

loess.beta

FALSE,

loess.ci = FALSE

Arguments

betas

order

ci

an object containing modeling results from multiscale regression analysis. The
object should be returned from the mra function of this package.

integer representing the detrending order used in the mra calculation. Default is
1.

a logical indicating whether confidence intervals should be computed using the
iaafft function from this package. NOTE: with long time series (» than N =
1,000), this can greatly reduce processing speed. Confidence intervals can be
used for conventional significance testing of scale-wise correlation coefficients.
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iterations

return.ci

loess.beta

loess.ci

seq_int

integer that specifies the the number of surrogate time series to be generated for
the purpose of confidence intervals. Default = 19. Larger number of surrogates
will slow computational speed but produce better confidence interval estimates.

logical indicating whether the confidence intervals should be returned

logical indicating whether a loess fit should be used for displaying multiscale
regression coefficient trajectories

logical indicating whether a loess fit should be used to smooth confidence inter-
vals

poly_residuals

Polynomial Residuals Function that fits a polynomial and returns the
residuals

Description

Polynomial Residuals Function that fits a polynomial and returns the residuals

Usage

poly_residuals(yr, m)

Arguments
yr is a real valued vector
m is the detrending order
seg_int Integer Sequence Function that produces a sequence of integers from
ltoN
Description

Integer Sequence Function that produces a sequence of integers from 1 to N

Usage

seq_int(length)

Arguments

length

is a positive integer that will produce a sequence from 1:length
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seg_int_range Sequence of Integer ranges Function that produces a sequece of inte-
gers that span a specific range

Description

Sequence of Integer ranges Function that produces a sequece of integers that span a specific range

Usage

seq_int_range(start, stop)

Arguments

start is a positive integer and gives the smallest value in the sequence

stop is a positive integer and gives the largest value in a sequence



Index

x datasets
fractaldata, 9

dcca, 2
dcca.plot, 4
detrend_cov, 5
dfa, 5
dfa.plot, 8
dlcca, 8

fgn_sim, 9
fractaldata, 9

iaafft, 10

Im_c, 10
logscale, 11

mBm_mGn, 11
mc_ARFIMA, 12
mfdfa, 14
mfdfa.plot, 16
mfdfa_cj, 17
mlra, 18

mra, 19
mra.plot, 21

poly_residuals, 22

seq_int, 22
seq_int_range, 23

24



	dcca
	dcca.plot
	detrend_cov
	dfa
	dfa.plot
	dlcca
	fgn_sim
	fractaldata
	iaafft
	lm_c
	logscale
	mBm_mGn
	mc_ARFIMA
	mfdfa
	mfdfa.plot
	mfdfa_cj
	mlra
	mra
	mra.plot
	poly_residuals
	seq_int
	seq_int_range
	Index

