## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----warning=FALSE, message=FALSE--------------------------------------------- library(TOSTER) # Get Data data("InsectSprays") # Look at the data structure head(InsectSprays) ## ----warning=FALSE, message=FALSE--------------------------------------------- # Build ANOVA aovtest = aov(count ~ spray, data = InsectSprays) # Display overall results knitr::kable(broom::tidy(aovtest), caption = "Traditional ANOVA Test") ## ----------------------------------------------------------------------------- equ_ftest(Fstat = 34.70228, df1 = 5, df2 = 66, eqbound = 0.35) ## ----------------------------------------------------------------------------- equ_anova(aovtest, eqbound = 0.35) ## ----------------------------------------------------------------------------- equ_anova(aovtest, eqbound = 0.35, MET = TRUE) ## ----fig.width=7, fig.height=6------------------------------------------------ plot_pes(Fstat = 34.70228, df1 = 5, df2 = 66) ## ----------------------------------------------------------------------------- # Simulate data with a small effect set.seed(123) groups <- factor(rep(1:3, each = 30)) y <- rnorm(90) + rep(c(0, 0.3, 0.3), each = 30) small_aov <- aov(y ~ groups) # Traditional ANOVA knitr::kable(broom::tidy(small_aov), caption = "Traditional ANOVA Test (Small Effect)") # Equivalence test equ_anova(small_aov, eqbound = 0.15) # Visualize plot_pes(Fstat = 2.36, df1 = 2, df2 = 87) ## ----------------------------------------------------------------------------- power_eq_f(df1 = 2, # Numerator df (groups - 1) df2 = NULL, # Set to NULL to solve for sample size eqbound = 0.15, # Equivalence bound power = 0.8) # Desired power ## ----------------------------------------------------------------------------- power_eq_f(df1 = 2, # Numerator df (groups - 1) df2 = 60, # Error df (N - groups) eqbound = 0.15) # Equivalence bound ## ----------------------------------------------------------------------------- power_eq_f(df1 = 2, # Numerator df (groups - 1) df2 = 60, # Error df (N - groups) power = 0.8) # Desired power