--- title: "Regression modeling " output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{regression} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- For showing regression `SSLR` models, we will use *Airquality* dataset with 10% labeled data: ```{r eval=FALSE, warning=FALSE,message=FALSE} library(SSLR) library(tidymodels) ``` ```{r libraries, results="hide", warning=FALSE,message=FALSE} knitr::opts_chunk$set( digits = 3, collapse = TRUE, comment = "#>" ) options(digits = 3) library(SSLR) library(tidymodels) ``` ```{r airquality, results="hide"} set.seed(1) data <- airquality #Delete column Solar.R (NAs values) data$Solar.R <- NULL #Train and test data train.index <- sample(nrow(data), round(0.7 * nrow(data))) train <- data[ train.index,] test <- data[-train.index,] cls <- which(colnames(airquality) == "Ozone") #% LABELED labeled.index <- sample(nrow(train), round(0.1 * nrow(train))) train[-labeled.index,cls] <- NA ``` For example, we can train with Decision Tree: ```{r fit, results="hide"} m <- SSLRDecisionTree(min_samples_split = round(length(labeled.index) * 0.25), w = 0.3) %>% fit(Ozone ~ ., data = train) ``` Now we can use metrics from `yardstick` package: ```{r metrics} predict(m,test)%>% bind_cols(test) %>% metrics(truth = "Ozone", estimate = .pred) ``` We can train with Random Forest: ```{r fitrf, results="hide"} m <- SSLRRandomForest(trees = 5, w = 0.3) %>% fit(Ozone ~ ., data = train) ``` For example, we can train with coBC: ```{r fitcobc, results="hide", eval = FALSE} m_r <- rand_forest( mode = "regression") %>% set_engine("ranger") m <- coBC(learner = m_r, max.iter = 1) %>% fit(Ozone ~ ., data = train) ``` We can train with COREG: ```{r fitcoreg, results="hide", eval = FALSE} #Load kknn library(kknn) m_coreg <- COREG(max.iter = 1) %>% fit(Ozone ~ ., data = train) ```