## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # # library(SSLR) # library(tidymodels) # library(caret) ## ----include=FALSE------------------------------------------------------------ knitr::opts_chunk$set( digits = 3, collapse = TRUE, comment = "#>" ) options(digits = 3) library(SSLR) library(tidymodels) library(caret) ## ----wine, results="hide"----------------------------------------------------- data(wine) set.seed(1) #Train and test data train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE) train <- wine[ train.index,] test <- wine[-train.index,] cls <- which(colnames(wine) == "Wine") # 20 % LABELED labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE) train[-labeled.index,cls] <- NA ## ----fitformula, results="hide", eval=FALSE----------------------------------- # m <- SSLRDecisionTree() %>% fit(Wine ~ ., data = train) # ## ----fitxy, results="hide", eval=FALSE---------------------------------------- # m <- SSLRDecisionTree() %>% fit_xy(x = train[,-cls], y = train$Wine) # ## ----fitxyu, results="hide", eval=FALSE--------------------------------------- # m <- SSLRDecisionTree() %>% fit_x_u(x = train[labeled.index,-cls], y = train[labeled.index,cls], # x_U = train[-labeled.index,-cls]) #