## ----label = setup, include = FALSE------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "img/", fig.align = "center", fig.dim = c(8, 6), out.width = "75%" ) library("RprobitB") options("RprobitB_progress" = FALSE) ## ----overview-train-choice-data----------------------------------------------- str(train_choice) ## ----train-formula------------------------------------------------------------ form <- choice ~ price + time + comfort + change | 0 ## ----train-re----------------------------------------------------------------- re <- c("price", "time") ## ----eval = FALSE------------------------------------------------------------- # data <- prepare_data(form = form, choice_data = choice_data) ## ----prepare-train-choice-data------------------------------------------------ data <- prepare_data(form = form, choice_data = train_choice, re = re, id = "deciderID", idc = "occasionID") ## ----summary-train-choice-data------------------------------------------------ summary(data) plot(data) ## ----eval = FALSE------------------------------------------------------------- # data <- simulate_choices(form = form, N = N, T = T, J = J) ## ----data-sim-meta------------------------------------------------------------ N <- 100 T <- 10 alternatives <- c("A", "B") base <- "B" form <- choice ~ var1 | var2 | var3 re <- c("ASC", "var2") ## ----data-sim-overview-------------------------------------------------------- overview_effects(form = form, re = re, alternatives = alternatives, base = base) ## ----data-sim----------------------------------------------------------------- data <- simulate_choices( form = form, N = N, T = T, J = 2, re = re, alternatives = alternatives, seed = 1, true_parameter = list( alpha = c(-1, 0, 1), b = matrix(c(2, -0.5), ncol = 1) ) ) summary(data) ## ----data-plot-by-choice------------------------------------------------------ plot(data, by_choice = TRUE) ## ----data-split-deciders------------------------------------------------------ train_test(data, test_proportion = 0.3, by = "N") ## ----data-split-occasions----------------------------------------------------- train_test(data, test_number = 2, by = "T", random = TRUE, seed = 1)