## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set(message = FALSE, warning = FALSE) library(Romeb) ## ----example-complete, eval = TRUE-------------------------------------------- set.seed(123) Y <- matrix(rnorm(300*5), nrow = 300, ncol = 5) # tiny complete data set result_full <- Romeb("no missing", data = Y, time = c(0, 1, 2, 3, 4), seed = 123) print(result_full) ## ----example-mcar, eval = FALSE----------------------------------------------- # set.seed(456) # Y <- matrix(rnorm(300 * 5), nrow = 300) # miss <- runif(length(Y)) < 0.1 # 10% missing completely at random # Y[miss] <- NA # result_mcar <- Romeb("MCAR", data = Y, time = c(0, 1, 2, 3, 4), seed = 456) ## ----example-mnar-aux, eval = FALSE------------------------------------------- # set.seed(789) # X <- matrix(rnorm(300 * 2), 300, 2) # two auxiliaries # Y <- matrix(rnorm(300 * 5), 300, 5) # Data <- cbind(X, Y) # result_mnar <- Romeb("MNAR", data = Data, time = c(0, 1, 2, 3, 4), K = 2, seed = 789) ## ----traceplot, fig.cap = "Trace plot for the first chain (par[1])", eval = TRUE---- # Uses the tiny example result_full from above coda::traceplot(result_full$samps_full[,'par[1]'])