## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, warning=FALSE, fig.align=TRUE) ## ----init-object0, echo=TRUE, include=TRUE------------------------------------ library(Rnmr1D) data_dir <- system.file("extra", package = "Rnmr1D") RAWDIR <- file.path(data_dir, "CD_BBI_16P02") CMDFILE <- file.path(data_dir, "NP_macro_cmd.txt") SAMPLEFILE <- file.path(data_dir, "Samples.txt") ## ----init-object1, echo=TRUE, include=TRUE------------------------------------ samples <- read.table(SAMPLEFILE, sep="\t", header=T,stringsAsFactors=FALSE) samples ## ----init-object2, echo=TRUE, include=TRUE------------------------------------ CMDTEXT <- readLines(CMDFILE) CMDTEXT[grep("^#$", CMDTEXT, invert=TRUE)] ## ----eval0, echo=TRUE, eval=TRUE---------------------------------------------- out <- Rnmr1D::doProcessing(RAWDIR, cmdfile=CMDFILE, samplefile=SAMPLEFILE, ncpu=2) ## ----proc2, echo=TRUE, eval=TRUE---------------------------------------------- ls(out) out$infos ## ----plot1, echo=TRUE, fig.align='center', fig.width=12, fig.height=6--------- plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0.33) ## ----plot2, echo=TRUE, fig.align='center', fig.width=12, fig.height=6--------- plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0, pY=0.1) ## ----plot3, echo=TRUE, fig.align='center', fig.width=12, fig.height=6--------- plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0.33, asym=0) cols<- c( rep("blue",length(out$samples$Treatment))); cols[out$samples$Treatment=="stress"] <- "red" plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0.67, dppm_max=0, cols=cols) ## ----proc3, echo=TRUE, eval=TRUE---------------------------------------------- specMat.new <- Rnmr1D::doProcCmd(out, c( "bucket aibin 10.2 10.5 0.2 3 0", "9.5 4.9", "4.8 0.5", "EOL" ), ncpu=2, debug=TRUE) out$specMat <- specMat.new ## ----proc4, echo=TRUE, eval=TRUE---------------------------------------------- outMat <- Rnmr1D::getBucketsDataset(out, norm_meth='CSN') outMat[, 1:10] ## ----proc5a, echo=TRUE, eval=TRUE--------------------------------------------- options(warn=-1) clustcor <- Rnmr1D::getClusters(outMat, method='corr', cval=0, dC=0.003, ncpu=2) ## ----proc5b, echo=TRUE, eval=TRUE--------------------------------------------- options(warn=-1) clusthca <- Rnmr1D::getClusters(outMat, method='hca', vcutusr=0.12) ## ----proc5c, echo=TRUE, eval=TRUE--------------------------------------------- clustcor$clustertab[1:20, ] clustcor$clusters$C7 # same as clustcor$clusters[['C7']] ## ----plot5a, echo=TRUE, fig.align='center', fig.width=12, fig.height=6-------- g1 <- ggplotCriterion(clustcor) #ggplotPlotly(g1, width=820, height=400) g1 g2 <- ggplotCriterion(clusthca) #ggplotPlotly(g2, width=820, height=400) g2 ## ----plot5b, echo=TRUE, fig.align='center', fig.width=12, fig.height=6-------- layout(matrix(1:2, 1, 2,byrow = TRUE)) hist(simplify2array(lapply(clustcor$clusters, length)), breaks=20, main="CORR", xlab="size", col="darkcyan") mtext("clusters size distribution", side = 3) hist(simplify2array(lapply(clusthca$clusters, length)), breaks=20, main="HCA", xlab="size", col="darkcyan") mtext("clusters size distribution", side = 3) ## ----plot5c, echo=TRUE, fig.align='center', fig.width=12, fig.height=6-------- g3 <- ggplotClusters(outMat,clustcor) #ggplotPlotly(g3, width=820, height=400) g3 g4 <- ggplotClusters(outMat,clusthca) #ggplotPlotly(g4, width=820, height=400) g4 ## ----proc6, echo=TRUE, eval=TRUE---------------------------------------------- pca <- prcomp(outMat,retx=TRUE,scale=T, rank=2) sd <- pca$sdev eigenvalues <- sd^2 evnorm <- (100*eigenvalues/sum(eigenvalues))[1:10] ## ----plot6a, echo=TRUE, fig.align='center', fig.width=12, fig.height=6-------- g5 <- ggplotScores(pca$x, 1, 2, groups=out$samples$Treatment, EV=evnorm , gcontour="polygon") #ggplotPlotly(g5, width=820, height=450) g5 ## ----plot6b, echo=TRUE, fig.align='center', fig.width=12, fig.height=10------- g6 <- ggplotLoadings(pca$rotation, 1, 2, associations=clusthca$clustertab, EV=evnorm, main=sprintf("Loadings - Crit=%s",clusthca$vcrit), gcontour="ellipse" ) #ggplotPlotly(g6, width=820, height=650) g6 ## ----plot6c, echo=TRUE, fig.align='center', fig.width=12, fig.height=10------- outMat.merged <- Rnmr1D::getMergedDataset(outMat, clusthca, onlycluster=TRUE) pca.merged <- prcomp(outMat.merged,retx=TRUE,scale=T, rank=2) g7 <- ggplotLoadings(pca.merged$rotation, 1, 2, associations=NULL, EV=evnorm) #ggplotPlotly(g7, width=820, height=650) g7 ## ----proc101, echo=TRUE, eval=TRUE-------------------------------------------- data_dir <- system.file("extra", package = "Rnmr1D") RAWDIR <- file.path(data_dir, "CD_BBI_16P02") ## ----proc102, echo=TRUE, eval=TRUE-------------------------------------------- procParams <- Spec1rProcpar procParams$LOGFILE <- "" procParams$VENDOR <- 'bruker' procParams$INPUT_SIGNAL <- 'fid' procParams$LB <- 0.3 procParams$ZEROFILLING <- TRUE procParams$ZFFAC <- 4 procParams$BLPHC <- TRUE procParams$OPTPHC1 <- FALSE procParams$TSP <- TRUE ## ----proc103, echo=TRUE, eval=TRUE-------------------------------------------- metadata <- generateMetadata(RAWDIR, procParams) metadata ## ----proc104, echo=TRUE, eval=TRUE-------------------------------------------- ID <- 1 ACQDIR <- metadata$rawids[ID,1] spec <- Spec1rDoProc(Input=ACQDIR,param=procParams) ## ----proc105, echo=TRUE, eval=TRUE-------------------------------------------- ls(spec) ## ----plot100, echo=TRUE, fig.align='center', fig.width=9, fig.height=6-------- plot( spec$ppm, spec$int, type="l", col="blue", xlab="ppm", ylab="Intensities", xlim=c( spec$pmax, spec$pmin ), ylim=c(0, max(spec$int/100)) ) legend("topleft", legend=metadata$samples[ID,1]) ## ----plot10, echo=TRUE, fig.align='center', fig.width=9, fig.height=6--------- layout(matrix(c(1,1,2,3), 1, 4, byrow = TRUE)) plot( spec$ppm, spec$int, type="l", col="blue", xlab="ppm", xlim=c( 8, 6 ), ylim=c(0, max(spec$int/1500)), ylab="Intensities" ) legend("topleft", legend=metadata$samples[ID,1]) plot( spec$ppm, spec$int, type="l", col="blue", xlab="ppm", xlim=c( 4.9, 4.7 ), ylim=c(0, max(spec$int/10)), ylab="" ) plot( spec$ppm, spec$int, type="l", col="blue", xlab="ppm", xlim=c( 0.1, -0.1 ), ylim=c(0, max(spec$int/150)), ylab="" )