
Le but premier du package {JDCruncheR} est de
fournir un accès rapide et facile au cruncher
(JWSACruncher) depuis R. Le cruncher est un outil de mise à
jour des workspaces de JDemetra+ sans avoir à ouvrir la GUI (Graphical
User Interface). La dernière version peut être téléchargée ici : https://github.com/jdemetra/jwsacruncher/releases. Pour
plus d’information, vous pouvez visiter la page wiki.
Avec {JDCruncheR}, vous pouvez aussi générer des bilans qualité utilisant l’output du cruncher. Ce bilan est un résumé des diagnostiques de la désaisonnalisation. Il peut être utilisé pour repérer les séries les plus problématiques qui nécessitent une analyse plus fine. Cela est très utile lorsqu’on a beaucoup de séries à désaisonnaliser.
🎉 {JDCruncheR} est maintenant disponible sur le CRAN ! 🎉
Pour installer, il suffit de lancer la ligne de code suivante :
install.packages("JDCruncheR")Pour obtenir la version en cours de développement depuis GitHub :
# Si le package remotes n'est pas installé
# install.packages("remotes")
# Installer la version en cours de développement depuis GitHub
remotes::install_github("InseeFr/JDCruncheR")library("JDCruncheR")Les seuils des tests du bilan qualité sont personnalisables. Pour
cela, il faut modifier l’option "jdc_thresholds".
Pour récupérer les valeurs des tests par défault, il faut appeler la
fonction get_thresholds() :
get_thresholds("m7", default = TRUE)
#>   Good    Bad Severe 
#>      1      2    Inf
get_thresholds(default = TRUE)
#> $qs_residual_sa_on_sa
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $qs_residual_sa_on_i
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $f_residual_sa_on_sa
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $f_residual_sa_on_i
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $f_residual_td_on_sa
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $f_residual_td_on_i
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $residuals_independency
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $residuals_homoskedasticity
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $residuals_skewness
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $residuals_kurtosis
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $residuals_normality
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $oos_mean
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $oos_mse
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $m7
#>   Good    Bad Severe 
#>      1      2    Inf 
#> 
#> $q
#> Good  Bad 
#>    1  Inf 
#> 
#> $q_m2
#> Good  Bad 
#>    1  Inf 
#> 
#> $pct_outliers
#>      Good Uncertain       Bad 
#>         3         5       Inf 
#> 
#> $grade
#>      Good Uncertain       Bad    Severe 
#>         0         1         3         5Pour changer la valeur de l’option, on peut utiliser la fonction
set_thresholds() :
# Fixer les seuils à une certaine valeur
set_thresholds(test_name = "m7", thresholds = c(Good = 0.8, Bad = 1.4, Severe = Inf))
get_thresholds(test_name = "m7", default = FALSE)
#>   Good    Bad Severe 
#>    0.8    1.4    Inf
# Remettre tous les seuils à leur valeur par défaut
set_thresholds()
get_thresholds(test_name = "m7", default = FALSE)
#>   Good    Bad Severe 
#>      1      2    InfGood, Uncertain,
Bad et SevereLe mécanisme est le même que pour les seuils des tests statistiques
avec la valeur "grade" :
Pour récupérer la valeur par défault des notes, il faut appeler la
fonction get_thresholds() :
get_thresholds("grade", default = TRUE)
#>      Good Uncertain       Bad    Severe 
#>         0         1         3         5Pour changer la valeur de la note, on peut utiliser la fonction
set_thresholds() :
# Fixer les notes à une certaine valeur
set_thresholds(test_name = "grade", thresholds = c(Good = 0, Uncertain = 0.1, Bad = 1, Severe = 10))
get_thresholds(test_name = "grade", default = FALSE)
#>      Good Uncertain       Bad    Severe 
#>       0.0       0.1       1.0      10.0Par exemple, en partant d’une matrice demetra_m.csv
:
| n | start | end | mean | skewness | kurtosis | lb2 | p | d | q | bp | bd | bq | m7 | q | q.m2 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| France | 88 | 2012-10-01 | 2020-01-01 | 0.6 | 0.0 | 0.9 | 2.9 | 0.8 | 36.1 | 0.0 | 0 | 1 | 1 | 0 | 1 | 1 | 0.2 | 0.5 | 2.0 | 
| Spain | 78 | 2015-10-01 | 2022-03-01 | 0.4 | -0.4 | 0.0 | 4.6 | 0.0 | 17.3 | 0.7 | 0 | 0 | 1 | 0 | 1 | 1 | 0.8 | 1.5 | 1.3 | 
| Greece | 112 | 2010-10-01 | 2020-01-01 | 0.5 | -0.3 | 0.0 | 3.7 | 0.0 | 46.9 | 0.0 | 3 | 1 | 1 | 0 | 1 | 1 | 0.3 | 0.4 | 0.8 | 
On peut générer un bilan qualité :
BQ <- extract_QR(x = demetra_m)
print(BQ$modalities)
#>   series residuals_homoskedasticity residuals_skewness residuals_kurtosis
#> 1 France                       Good               Good               Good
#> 2  Spain                        Bad                Bad                Bad
#> 3 Greece                        Bad                Bad                Bad
#>   oos_mean oos_mse   m7    q q_m2 pct_outliers
#> 1     Good    <NA> Good Good  Bad         <NA>
#> 2     Good    <NA> Good  Bad  Bad         <NA>
#> 3     Good    <NA> Good  Bad Good         <NA>Il est possible maintenant de calculer un score à partir du bilan qualité
BQ_score <- compute_score(
    x = BQ,
    score_pond = c(
        oos_mean = 15L, 
        residuals_kurtosis = 15L, 
        residuals_homoskedasticity = 5L, 
        residuals_skewness = 5L, 
        m7 = 5L, 
        q_m2 = 5L
    )
)
extract_score(x = BQ_score)
#>   series score
#> 1 France    60
#> 2  Spain   110
#> 3 Greece   100Enfin il est possible d’exporter un bilan qualité via la fonction
export_xlsx.
Pour plus d’informations sur l’installation et la configuration du package {JDCruncheR}, vous pouvez visiter la page wiki
Pour une description plus complète des packages R pour JDemetra+ voir le document de travail Insee Les packages R pour JDemetra+ : une aide à la désaisonnalisation
The primary objective of the {JDCruncheR} package is
to provide a quick and easy access to the JDemetra+ cruncher
(JWSACruncher) from R. The cruncher is a tool for updating
JDemetra+ workspaces, without having to open the graphical user
interface. The latest version can be downloaded here: https://github.com/jdemetra/jwsacruncher/releases. For
more information, please refer to the wiki page.
With {JDCruncheR}, you can also generate a quality report based on the cruncher’s output. This report is a formatted summary of the seasonal adjustment process master diagnostics and parameters. It can be used to spot the most problematic series which will require a finer analysis. This is most useful when dealing with a large number of series.
🎉 {JDCruncheR} is now available on CRAN! 🎉
To install it, you have to launch the following command line:
install.packages("JDCruncheR")To get the current development version from GitHub:
# If remotes packages is not installed
# install.packages("remotes")
# Install development version from GitHub
remotes::install_github("InseeFr/JDCruncheR")library("JDCruncheR")The thresholds of the QR tests can be customised You have to modify
the option "jdc_thresholds".
To get the (default or not) values of the thresholds of the tests,
you can call the fonction get_thresholds() :
get_thresholds("m7")
#>   Good    Bad Severe 
#>      1      2    Inf
get_thresholds(default = TRUE)
#> $qs_residual_sa_on_sa
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $qs_residual_sa_on_i
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $f_residual_sa_on_sa
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $f_residual_sa_on_i
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $f_residual_td_on_sa
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $f_residual_td_on_i
#>    Severe       Bad Uncertain      Good 
#>     0.001     0.010     0.050       Inf 
#> 
#> $residuals_independency
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $residuals_homoskedasticity
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $residuals_skewness
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $residuals_kurtosis
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $residuals_normality
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $oos_mean
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $oos_mse
#>       Bad Uncertain      Good 
#>      0.01      0.10       Inf 
#> 
#> $m7
#>   Good    Bad Severe 
#>      1      2    Inf 
#> 
#> $q
#> Good  Bad 
#>    1  Inf 
#> 
#> $q_m2
#> Good  Bad 
#>    1  Inf 
#> 
#> $pct_outliers
#>      Good Uncertain       Bad 
#>         3         5       Inf 
#> 
#> $grade
#>      Good Uncertain       Bad    Severe 
#>         0         1         3         5To change the value of the option, you can use the fonction
set_thresholds():
# Set threshold to imposed value
set_thresholds(test_name = "m7", thresholds = c(Good = 0.8, Bad = 1.4, Severe = Inf))
get_thresholds(test_name = "m7", default = FALSE)
#>   Good    Bad Severe 
#>    0.8    1.4    Inf
# Reset all thresholds to default
set_thresholds()
get_thresholds(test_name = "m7", default = FALSE)
#>   Good    Bad Severe 
#>      1      2    InfGood, Uncertain,
Bad and Severe modalitiesThe mechanism is the same as for the statistical test thresholds with
the "grade" value:
To retrieve the default grade value, call the
get_thresholds() function:
get_thresholds("grade", default = TRUE)
#>      Good Uncertain       Bad    Severe 
#>         0         1         3         5To change the value of the grade, you can use the
set_thresholds() function:
# Set grades to a certain value
set_thresholds(test_name = "grade", thresholds = c(Good = 0, Uncertain = 0.1, Bad = 1, Severe = 10))
get_thresholds(test_name = "grade", default = FALSE)
#>      Good Uncertain       Bad    Severe 
#>       0.0       0.1       1.0      10.0For example, starting from a matrix demetra_m.csv :
| n | start | end | mean | skewness | kurtosis | lb2 | p | d | q | bp | bd | bq | m7 | q | q.m2 | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| France | 88 | 2012-10-01 | 2020-01-01 | 0.6 | 0.0 | 0.9 | 2.9 | 0.8 | 36.1 | 0.0 | 0 | 1 | 1 | 0 | 1 | 1 | 0.2 | 0.5 | 2.0 | 
| Spain | 78 | 2015-10-01 | 2022-03-01 | 0.4 | -0.4 | 0.0 | 4.6 | 0.0 | 17.3 | 0.7 | 0 | 0 | 1 | 0 | 1 | 1 | 0.8 | 1.5 | 1.3 | 
| Greece | 112 | 2010-10-01 | 2020-01-01 | 0.5 | -0.3 | 0.0 | 3.7 | 0.0 | 46.9 | 0.0 | 3 | 1 | 1 | 0 | 1 | 1 | 0.3 | 0.4 | 0.8 | 
A quality report can be generated:
BQ <- extract_QR(x = demetra_m)
print(BQ$modalities)
#>   series residuals_homoskedasticity residuals_skewness residuals_kurtosis
#> 1 France                       Good               Good               Good
#> 2  Spain                        Bad                Bad                Bad
#> 3 Greece                        Bad                Bad                Bad
#>   oos_mean oos_mse   m7    q q_m2 pct_outliers
#> 1     Good    <NA> Good Good  Bad         <NA>
#> 2     Good    <NA> Good  Bad  Bad         <NA>
#> 3     Good    <NA> Good  Bad Good         <NA>It is now possible to calculate a score from the quality report:
BQ_score <- compute_score(
    x = BQ,
    score_pond = c(
        oos_mean = 15L, 
        residuals_kurtosis = 15L, 
        residuals_homoskedasticity = 5L, 
        residuals_skewness = 5L, 
        m7 = 5L, 
        q_m2 = 5L
    )
)
extract_score(x = BQ_score)
#>   series score
#> 1 France    60
#> 2  Spain   110
#> 3 Greece   100Finally, you can export a quality report using the
export_xlsx function.
For more informations on installing and configuring the {JDCruncheR} package, you can visit the wiki page.
For a more comprehensive description of the R packages for JDemetra+ check the Insee working paper R Tools for JDemetra+: Seasonal adjustment made easier