## plot_marginal_effects <- function(covs, preds) {
## cbind(covs, preds) %>%
## tidyr::gather(alpha, prediction, -seq_len(NCOL(covs))) %>%
## dplyr::mutate(prediction = as.numeric(prediction)) %>%
## tidyr::gather(variable, value, -(alpha:prediction)) %>%
## dplyr::mutate(value = as.numeric(value)) %>%
## ggplot(aes(value, prediction, color = alpha)) +
## geom_point(alpha = 0.15) +
## geom_smooth(span = 0.5, se = FALSE) +
## facet_wrap(~ variable, scale = "free_x") +
## theme(legend.position = "none") +
## theme(plot.margin = unit(c(0, 0, 0, 0), "mm")) +
## xlab("")
## }
See variable description on UCI web page.
## ggplot(bikedata, aes(dteday, count)) +
## geom_line() +
## scale_x_date(labels = scales::date_format("%b %y")) +
## xlab("date") +
## ylab("rental count") +
## stat_smooth(method = "lm", se = FALSE, linetype = "dashed") +
## theme(plot.title = element_text(lineheight = 0.8, face = "bold", size = 20)) +
## theme(text = element_text(size = 18))
## lm_trend <- lm(count ~ instant, data = bikedata)
## trend <- predict(lm_trend)
## bikedata <- mutate(bikedata, count = count / trend)
## ggplot(bikedata, aes(dteday, count)) +
## geom_line() +
## scale_x_date(labels = scales::date_format("%b %y")) +
## xlab("date") +
## ylab("detrended rental count") +
## theme(plot.title = element_text(lineheight = 0.8, face = "bold", size = 20)) +
## theme(text = element_text(size = 18))
## month_labs <- c("Jan","", "Mar", "", "May", "", "Jul", "", "Sep", "", "Nov", "")
## plot_marginal_effects(covs = select(bikedata, month), preds = pred) +
## scale_x_discrete(limits = 1:12, labels = month_labs)
##
## plot_marginal_effects(covs = select(bikedata, weathersituation),
## preds = pred) +
## scale_x_discrete(limits = 1:3,labels = c("good", "medium", "bad"))
## weekday_labs <- c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
## plot_marginal_effects(covs = select(bikedata, weekday), preds = pred) +
## scale_x_discrete(limits = 1:7, labels = weekday_labs)