
Package ‘vctrs’
July 15, 2020

Title Vector Helpers

Version 0.3.2

Description Defines new notions of prototype and size that are
used to provide tools for consistent and well-founded type-coercion
and size-recycling, and are in turn connected to ideas of type- and
size-stability useful for analysing function interfaces.

License GPL-3

URL https://vctrs.r-lib.org/

BugReports https://github.com/r-lib/vctrs/issues

Depends R (>= 3.2)

Imports ellipsis (>= 0.2.0),
digest,
glue,
rlang (>= 0.4.7)

Suggests bit64,
covr,
crayon,
dplyr (>= 0.8.5),
generics,
knitr,
pillar (>= 1.4.4),
pkgdown,
rmarkdown,
testthat (>= 2.3.0),
tibble,
withr,
xml2,
zeallot

VignetteBuilder knitr

Encoding UTF-8

Language en-GB

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

1

https://vctrs.r-lib.org/
https://github.com/r-lib/vctrs/issues

2 df_ptype2

R topics documented:

df_ptype2 . 2
faq-error-incompatible-attributes . 3
howto-faq-coercion . 4
howto-faq-coercion-data-frame . 8
internal-faq-ptype2-identity . 14
list_of . 16
name_spec . 17
reference-faq-compatibility . 18
theory-faq-coercion . 20
vec-rep . 24
vec_assert . 25
vec_as_names . 26
vec_bind . 28
vec_c . 32
vec_cast . 34
vec_chop . 36
vec_compare . 38
vec_count . 39
vec_duplicate . 40
vec_equal . 41
vec_init . 42
vec_is_list . 43
vec_match . 43
vec_names . 45
vec_order . 46
vec_ptype . 47
vec_ptype2.logical . 49
vec_recycle . 50
vec_seq_along . 52
vec_size . 53
vec_split . 54
vec_unique . 55
%0% . 56

Index 57

df_ptype2 Coercion between two data frames

Description

df_ptype2() and df_cast() are the two functions you need to call from vec_ptype2() and
vec_cast() methods for data frame subclasses. See ?howto-faq-coercion-data-frame. Their main
job is to determine the common type of two data frames, adding and coercing columns as needed,
or throwing an incompatible type error when the columns are not compatible.

faq-error-incompatible-attributes 3

Usage

df_ptype2(x, y, ..., x_arg = "", y_arg = "")

df_cast(x, to, ..., x_arg = "", to_arg = "")

tib_ptype2(x, y, ..., x_arg = "", y_arg = "")

tib_cast(x, to, ..., x_arg = "", to_arg = "")

Arguments

x, y, to Subclasses of data frame.

... If you call df_ptype2() or df_cast() from a vec_ptype2() or vec_cast()
method, you must forward the dots passed to your method on to df_ptype2()
or df_cast().

x_arg Argument names for x and y. These are used in error messages to inform the user
about the locations of incompatible types (see stop_incompatible_type()).

y_arg Argument names for x and y. These are used in error messages to inform the user
about the locations of incompatible types (see stop_incompatible_type()).

to_arg Argument names for x and to. These are used in error messages to inform the
user about the locations of incompatible types (see stop_incompatible_type()).

Value

• When x and y are not compatible, an error of class vctrs_error_incompatible_type is
thrown.

• When x and y are compatible, df_ptype2() returns the common type as a bare data frame.
tib_ptype2() returns the common type as a bare tibble.

faq-error-incompatible-attributes

FAQ - Error/Warning: Some attributes are incompatible

Description

This error occurs when vec_ptype2() or vec_cast() are supplied vectors of the same classes with
different attributes. In this case, vctrs doesn’t know how to combine the inputs.

To fix this error, the maintainer of the class should implement self-to-self coercion methods for
vec_ptype2() and vec_cast().

Implementing coercion methods

• For an overview of how these generics work and their roles in vctrs, see ?theory-faq-coercion.

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.

• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector").

4 howto-faq-coercion

howto-faq-coercion FAQ - How to implement ptype2 and cast methods?

Description

This guide illustrates how to implement vec_ptype2() and vec_cast() methods for existing
classes. Related topics:

• For an overview of how these generics work and their roles in vctrs, see ?theory-faq-coercion.

• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector")

The natural number class:
We’ll illustrate how to implement coercion methods with a simple class that represents natural
numbers. In this scenario we have an existing class that already features a constructor and methods
for print() and subset.

#' @export
new_natural <- function(x) {
if (is.numeric(x) || is.logical(x)) {
stopifnot(is_whole(x))
x <- as.integer(x)

} else {
stop("Can't construct natural from unknown type.")

}
structure(x, class = "my_natural")

}
is_whole <- function(x) {
all(x %% 1 == 0 | is.na(x))

}

#' @export
print.my_natural <- function(x, ...) {
cat("<natural>\n")
x <- unclass(x)
NextMethod()

}
#' @export
`[.my_natural` <- function(x, i, ...) {

new_natural(NextMethod())
}

new_natural(1:3)
#> <natural>
#> [1] 1 2 3
new_natural(c(1, NA))
#> <natural>
#> [1] 1 NA

Roxygen workflow:
To implement methods for generics, first import the generics in your namespace and redocument:

howto-faq-coercion 5

#' @importFrom vctrs vec_ptype2 vec_cast
NULL

Note that for each batches of methods that you add to your package, you need to export the
methods and redocument immediately, even during development. Otherwise they won’t be in
scope when you run unit tests e.g. with testthat.
Implementing double dispatch methods is very similar to implementing regular S3 methods. In
these examples we are using roxygen2 tags to register the methods, but you can also register the
methods manually in your NAMESPACE file or lazily with s3_register().

Implementing vec_ptype2():

The self-self method:
The first method to implement is the one that signals that your class is compatible with itself:
#' @export
vec_ptype2.my_natural.my_natural <- function(x, y, ...) {
x

}

vec_ptype2(new_natural(1), new_natural(2:3))
#> <natural>
#> integer(0)

vec_ptype2() implements a fallback to try and be compatible with simple classes, so it may
seem that you don’t need to implement the self-self coercion method. However, you must
implement it explicitly because this is how vctrs knows that a class that is implementing vctrs
methods (for instance this disable fallbacks to base::c()). Also, it makes your class a bit more
efficient.

The parent and children methods:
Our natural number class is conceptually a parent of <logical> and a child of <integer>, but the
class is not compatible with logical, integer, or double vectors yet:
vec_ptype2(TRUE, new_natural(2:3))
#> Error: Can't combine <logical> and <my_natural>.

vec_ptype2(new_natural(1), 2:3)
#> Error: Can't combine <my_natural> and <integer>.

We’ll specify the twin methods for each of these classes, returning the richer class in each case.
#' @export
vec_ptype2.my_natural.logical <- function(x, y, ...) {
The order of the classes in the method name follows the order of
the arguments in the function signature, so `x` is the natural
number and `y` is the logical
x

}
#' @export
vec_ptype2.logical.my_natural <- function(x, y, ...) {
In this case `y` is the richer natural number
y

}

Between a natural number and an integer, the latter is the richer class:
#' @export
vec_ptype2.my_natural.integer <- function(x, y, ...) {
y

6 howto-faq-coercion

}
#' @export
vec_ptype2.integer.my_natural <- function(x, y, ...) {
x

}

We no longer get common type errors for logical and integer:
vec_ptype2(TRUE, new_natural(2:3))
#> <natural>
#> integer(0)

vec_ptype2(new_natural(1), 2:3)
#> integer(0)

We are not done yet. Pairwise coercion methods must be implemented for all the connected
nodes in the coercion hierarchy, which include double vectors further up. The coercion methods
for grand-parent types must be implemented separately:
#' @export
vec_ptype2.my_natural.double <- function(x, y, ...) {
y

}
#' @export
vec_ptype2.double.my_natural <- function(x, y, ...) {
x

}

Incompatible attributes:
Most of the time, inputs are incompatible because they have different classes for which no
vec_ptype2() method is implemented. More rarely, inputs could be incompatible because of
their attributes. In that case incompatibility is signalled by calling stop_incompatible_type().
In the following example, we implement a self-self ptype2 method for a hypothetical subclass
of <factor> that has stricter combination semantics. The method throws when the levels of the
two factors are not compatible.
#' @export
vec_ptype2.my_strict_factor.my_strict_factor <- function(x, y, ..., x_arg = "", y_arg = "") {
if (!setequal(levels(x), levels(y))) {
stop_incompatible_type(x, y, x_arg = x_arg, y_arg = y_arg)

}

x
}

Note how the methods need to take x_arg and y_arg parameters and pass them on to stop_incompatible_type().
These argument tags help create more informative error messages when the common type deter-
mination is for a column of a data frame. They are part of the generic signature but can usually
be left out if not used.

Implementing vec_cast():
Corresponding vec_cast() methods must be implemented for all vec_ptype2() methods. The
general pattern is to convert the argument x to the type of to. The methods should validate the
values in x and make sure they conform to the values of to.
Please note that for historical reasons, the order of the classes in the method name is in reverse
order of the arguments in the function signature. The first class represents to, whereas the second
class represents x.
The self-self method is easy in this case, it just returns the target input:

howto-faq-coercion 7

#' @export
vec_cast.my_natural.my_natural <- function(x, to, ...) {
x

}

The other types need to be validated. We perform input validation in the new_natural() con-
structor, so that’s a good fit for our vec_cast() implementations.

#' @export
vec_cast.my_natural.logical <- function(x, to, ...) {
The order of the classes in the method name is in reverse order
of the arguments in the function signature, so `to` is the natural
number and `x` is the logical
new_natural(x)

}
vec_cast.my_natural.integer <- function(x, to, ...) {
new_natural(x)

}
vec_cast.my_natural.double <- function(x, to, ...) {
new_natural(x)

}

With these methods, vctrs is now able to combine logical and natural vectors. It properly returns
the richer type of the two, a natural vector:

vec_c(TRUE, new_natural(1), FALSE)
#> <natural>
#> [1] 1 1 0

Because we haven’t implemented conversions from natural, it still doesn’t know how to combine
natural with the richer integer and double types:

vec_c(new_natural(1), 10L)
#> Error: Can't convert <my_natural> to <integer>.
vec_c(1.5, new_natural(1))
#> Error: Can't convert <my_natural> to <double>.

This is quick work which completes the implementation of coercion methods for vctrs:

#' @export
vec_cast.logical.my_natural <- function(x, to, ...) {
In this case `to` is the logical and `x` is the natural number
attributes(x) <- NULL
as.logical(x)

}
#' @export
vec_cast.integer.my_natural <- function(x, to, ...) {
attributes(x) <- NULL
as.integer(x)

}
#' @export
vec_cast.double.my_natural <- function(x, to, ...) {
attributes(x) <- NULL
as.double(x)

}

And we now get the expected combinations.

8 howto-faq-coercion-data-frame

vec_c(new_natural(1), 10L)
#> [1] 1 10

vec_c(1.5, new_natural(1))
#> [1] 1.5 1.0

howto-faq-coercion-data-frame

FAQ - How to implement ptype2 and cast methods? (Data frames)

Description

This guide provides a practical recipe for implementing vec_ptype2() and vec_cast() methods
for coercions of data frame subclasses. Related topics:

• For an overview of the coercion mechanism in vctrs, see ?theory-faq-coercion.

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.

Coercion of data frames occurs when different data frame classes are combined in some way. The
two main methods of combination are currently row-binding with vec_rbind() and col-binding
with vec_cbind() (which are in turn used by a number of dplyr and tidyr functions). These func-
tions take multiple data frame inputs and automatically coerce them to their common type.

vctrs is generally strict about the kind of automatic coercions that are performed when combining
inputs. In the case of data frames we have decided to be a bit less strict for convenience. Instead of
throwing an incompatible type error, we fall back to a base data frame or a tibble if we don’t know
how to combine two data frame subclasses. It is still a good idea to specify the proper coercion
behaviour for your data frame subclasses as soon as possible.

We will see two examples in this guide. The first example is about a data frame subclass that has
no particular attributes to manage. In the second example, we implement coercion methods for a
tibble subclass that includes potentially incompatible attributes.

Roxygen workflow:
To implement methods for generics, first import the generics in your namespace and redocument:

#' @importFrom vctrs vec_ptype2 vec_cast
NULL

Note that for each batches of methods that you add to your package, you need to export the
methods and redocument immediately, even during development. Otherwise they won’t be in
scope when you run unit tests e.g. with testthat.
Implementing double dispatch methods is very similar to implementing regular S3 methods. In
these examples we are using roxygen2 tags to register the methods, but you can also register the
methods manually in your NAMESPACE file or lazily with s3_register().

Parent methods:
Most of the common type determination should be performed by the parent class. In vctrs, double
dispatch is implemented in such a way that you need to call the methods for the parent class man-
ually. For vec_ptype2() this means you need to call df_ptype2() (for data frame subclasses) or
tib_ptype2() (for tibble subclasses). Similarly, df_cast() and tib_cast() are the workhorses
for vec_cast() methods of subtypes of data.frame and tbl_df. These functions take the union
of the columns in x and y, and ensure shared columns have the same type.

howto-faq-coercion-data-frame 9

These functions are much less strict than vec_ptype2() and vec_cast() as they accept any
subclass of data frame as input. They always return a data.frame or a tbl_df. You will probably
want to write similar functions for your subclass to avoid repetition in your code. You may want
to export them as well if you are expecting other people to derive from your class.

A data.table example:
This example is the actual implementation of vctrs coercion methods for data.table. This is
a simple example because we don’t have to keep track of attributes for this class or manage
incompatibilities. See the tibble section for a more complicated example.
We first create the dt_ptype2() and dt_cast() helpers. They wrap around the parent methods
df_ptype2() and df_cast(), and transform the common type or converted input to a data table.
You may want to export these helpers if you expect other packages to derive from your data frame
class.
These helpers should always return data tables. To this end we use the conversion generic
as.data.table(). Depending on the tools available for the particular class at hand, a constructor
might be appropriate as well.

dt_ptype2 <- function(x, y, ...) {
as.data.table(df_ptype2(x, y, ...))

}
dt_cast <- function(x, to, ...) {
as.data.table(df_cast(x, to, ...))

}

We start with the self-self method:

#' @export
vec_ptype2.data.table.data.table <- function(x, y, ...) {
dt_ptype2(x, y, ...)

}

Between a data frame and a data table, we consider the richer type to be data table. This decision is
not based on the value coverage of each data structures, but on the idea that data tables have richer
behaviour. Since data tables are the richer type, we call dt_type2() from the vec_ptype2()
method. It always returns a data table, no matter the order of arguments:

#' @export
vec_ptype2.data.table.data.frame <- function(x, y, ...) {
dt_ptype2(x, y, ...)

}
#' @export
vec_ptype2.data.frame.data.table <- function(x, y, ...) {
dt_ptype2(x, y, ...)

}

The vec_cast() methods follow the same pattern, but note how the method for coercing to data
frame uses df_cast() rather than dt_cast().
Also, please note that for historical reasons, the order of the classes in the method name is in
reverse order of the arguments in the function signature. The first class represents to, whereas the
second class represents x.

#' @export
vec_cast.data.table.data.table <- function(x, to, ...) {
dt_cast(x, to, ...)

}
#' @export

10 howto-faq-coercion-data-frame

vec_cast.data.table.data.frame <- function(x, to, ...) {
`x` is a data.frame to be converted to a data.table
dt_cast(x, to, ...)

}
#' @export
vec_cast.data.frame.data.table <- function(x, to, ...) {
`x` is a data.table to be converted to a data.frame
df_cast(x, to, ...)

}

With these methods vctrs is now able to combine data tables with data frames:

vec_cbind(data.frame(x = 1:3), data.table(y = "foo"))
#> x y
#> 1: 1 foo
#> 2: 2 foo
#> 3: 3 foo

A tibble example:
In this example we implement coercion methods for a tibble subclass that carries a colour as a
scalar metadata:

User constructor
my_tibble <- function(colour = NULL, ...) {
new_my_tibble(tibble::tibble(...), colour = colour)

}
Developer constructor
new_my_tibble <- function(x, colour = NULL) {
stopifnot(is.data.frame(x))
tibble::new_tibble(
x,
colour = colour,
class = "my_tibble",
nrow = nrow(x)

)
}

df_colour <- function(x) {
if (inherits(x, "my_tibble")) {
attr(x, "colour")

} else {
NULL

}
}

#'@export
print.my_tibble <- function(x, ...) {
cat(sprintf("<%s: %s>\n", class(x)[[1]], df_colour(x)))
cli::cat_line(format(x)[-1])

}

This subclass is very simple. All it does is modify the header.

red <- my_tibble("red", x = 1, y = 1:2)
red

howto-faq-coercion-data-frame 11

#> <my_tibble: red>
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2

red[2]
#> <my_tibble: red>
#> y
#> <int>
#> 1 1
#> 2 2

green <- my_tibble("green", z = TRUE)
green
#> <my_tibble: green>
#> z
#> <lgl>
#> 1 TRUE

Combinations do not work properly out of the box, instead vctrs falls back to a bare tibble:

vec_rbind(red, tibble::tibble(x = 10:12))
#> # A tibble: 5 x 2
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 10 NA
#> 4 11 NA
#> 5 12 NA

Instead of falling back to a data frame, we would like to return a <my_tibble> when combined
with a data frame or a tibble. Because this subclass has more metadata than normal data frames
(it has a colour), it is a supertype of tibble and data frame, i.e. it is the richer type. This is similar
to how a grouped tibble is a more general type than a tibble or a data frame. Conceptually, the
latter are pinned to a single constant group.
The coercion methods for data frames operate in two steps:

• They check for compatible subclass attributes. In our case the tibble colour has to be the
same, or be undefined.

• They call their parent methods, in this case tib_ptype2() and tib_cast() because we
have a subclass of tibble. This eventually calls the data frame methods df_ptype2() and
tib_ptype2() which match the columns and their types.

This process should usually be wrapped in two functions to avoid repetition. Consider exporting
these if you expect your class to be derived by other subclasses.
We first implement a helper to determine if two data frames have compatible colours. We use the
df_colour() accessor which returns NULL when the data frame colour is undefined.

has_compatible_colours <- function(x, y) {
x_colour <- df_colour(x) %||% df_colour(y)
y_colour <- df_colour(y) %||% x_colour
identical(x_colour, y_colour)

}

12 howto-faq-coercion-data-frame

Next we implement the coercion helpers. If the colours are not compatible, we call stop_incompatible_cast()
or stop_incompatible_type(). These strict coercion semantics are justified because in this
class colour is a data attribute. If it were a non essential detail attribute, like the timezone in a
datetime, we would just standardise it to the value of the left-hand side.
In simpler cases (like the data.table example), these methods do not need to take the arguments
suffixed in _arg. Here we do need to take these arguments so we can pass them to the stop_
functions when we detect an incompatibility. They also should be passed to the parent methods.

#' @export
my_tib_cast <- function(x, to, ..., x_arg = "", to_arg = "") {
out <- tib_cast(x, to, ..., x_arg = x_arg, to_arg = to_arg)

if (!has_compatible_colours(x, to)) {
stop_incompatible_cast(
x,
to,
x_arg = x_arg,
to_arg = to_arg,
details = "Can't combine colours."

)
}

colour <- df_colour(x) %||% df_colour(to)
new_my_tibble(out, colour = colour)

}
#' @export
my_tib_ptype2 <- function(x, y, ..., x_arg = "", y_arg = "") {
out <- tib_ptype2(x, y, ..., x_arg = x_arg, y_arg = y_arg)

if (!has_compatible_colours(x, y)) {
stop_incompatible_type(
x,
y,
x_arg = x_arg,
y_arg = y_arg,
details = "Can't combine colours."

)
}

colour <- df_colour(x) %||% df_colour(y)
new_my_tibble(out, colour = colour)

}

Let’s now implement the coercion methods, starting with the self-self methods.

#' @export
vec_ptype2.my_tibble.my_tibble <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}
#' @export
vec_cast.my_tibble.my_tibble <- function(x, to, ...) {
my_tib_cast(x, to, ...)

}

We can now combine compatible instances of our class!

howto-faq-coercion-data-frame 13

vec_rbind(red, red)
#> <my_tibble: red>
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 1 1
#> 4 1 2

vec_rbind(green, green)
#> <my_tibble: green>
#> z
#> <lgl>
#> 1 TRUE
#> 2 TRUE

vec_rbind(green, red)
#> Error: Can't combine `..1` <my_tibble> and `..2` <my_tibble>.
#> Can't combine colours.

The methods for combining our class with tibbles follow the same pattern. For ptype2 we return
our class in both cases because it is the richer type:

#' @export
vec_ptype2.my_tibble.tbl_df <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}
#' @export
vec_ptype2.tbl_df.my_tibble <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}

For cast are careful about returning a tibble when casting to a tibble. Note the call to vctrs::tib_cast():

#' @export
vec_cast.my_tibble.tbl_df <- function(x, to, ...) {
my_tib_cast(x, to, ...)

}
#' @export
vec_cast.tbl_df.my_tibble <- function(x, to, ...) {
tib_cast(x, to, ...)

}

From this point, we get correct combinations with tibbles:

vec_rbind(red, tibble::tibble(x = 10:12))
#> <my_tibble: red>
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 10 NA
#> 4 11 NA
#> 5 12 NA

14 internal-faq-ptype2-identity

However we are not done yet. Because the coercion hierarchy is different from the class hierarchy,
there is no inheritance of coercion methods. We’re not getting correct behaviour for data frames
yet because we haven’t explicitly specified the methods for this class:

vec_rbind(red, data.frame(x = 10:12))
#> # A tibble: 5 x 2
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 10 NA
#> 4 11 NA
#> 5 12 NA

Let’s finish up the boiler plate:

#' @export
vec_ptype2.my_tibble.data.frame <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}
#' @export
vec_ptype2.data.frame.my_tibble <- function(x, y, ...) {
my_tib_ptype2(x, y, ...)

}

#' @export
vec_cast.my_tibble.data.frame <- function(x, to, ...) {
my_tib_cast(x, to, ...)

}
#' @export
vec_cast.data.frame.my_tibble <- function(x, to, ...) {
df_cast(x, to, ...)

}

This completes the implementation:

vec_rbind(red, data.frame(x = 10:12))
#> <my_tibble: red>
#> x y
#> <dbl> <int>
#> 1 1 1
#> 2 1 2
#> 3 10 NA
#> 4 11 NA
#> 5 12 NA

internal-faq-ptype2-identity

Internal FAQ - vec_ptype2(), NULL, and unspecified vectors

internal-faq-ptype2-identity 15

Description

Promotion monoid:
Promotions (i.e. automatic coercions) should always transform inputs to their richer type to avoid
losing values of precision. vec_ptype2() returns the richer type of two vectors, or throws an
incompatible type error if none of the two vector types include the other. For example, the richer
type of integer and double is the latter because double covers a larger range of values than integer.
vec_ptype2() is a monoid over vectors, which in practical terms means that it is a well behaved
operation for reduction. Reduction is an important operation for promotions because that is how
the richer type of multiple elements is computed. As a monoid, vec_ptype2() needs an identity
element, i.e. a value that doesn’t change the result of the reduction. vctrs has two identity values,
NULL and unspecified vectors.

The NULL identity:
As an identity element that shouldn’t influence the determination of the common type of a set of
vectors, NULL is promoted to any type:

vec_ptype2(NULL, "")
#> character(0)
vec_ptype2(1L, NULL)
#> integer(0)

The common type of NULL and NULL is the identity NULL:

vec_ptype2(NULL, NULL)
#> NULL

This way the result of vec_ptype2(NULL,NULL) does not influence subsequent promotions:

vec_ptype2(
vec_ptype2(NULL, NULL),
""

)
#> character(0)

Unspecified vectors:
In the vctrs coercion system, logical vectors of missing values are also automatically promoted to
the type of any other vector, just like NULL. We call these vectors unspecified. The special coercion
semantics of unspecified vectors serve two purposes:

1. It makes it possible to assign vectors of NA inside any type of vectors, even when they are not
coercible with logical:
x <- letters[1:5]
vec_assign(x, 1:2, c(NA, NA))
#> [1] NA NA "c" "d" "e"

2. We can’t put NULL in a data frame, so we need an identity element that behaves more like a
vector. Logical vectors of NA seem a natural fit for this.

Unspecified vectors are thus promoted to any other type, just like NULL:

vec_ptype2(NA, "")
#> character(0)
vec_ptype2(1L, c(NA, NA))
#> integer(0)

Finalising common types:
vctrs has an internal vector type of class vctrs_unspecified. Users normally don’t see such
vectors in the wild, but they do come up when taking the common type of an unspecified vector
with another identity value:

https://en.wikipedia.org/wiki/Monoid
https://purrr.tidyverse.org/reference/reduce.html

16 list_of

vec_ptype2(NA, NA)
#> <unspecified> [0]
vec_ptype2(NA, NULL)
#> <unspecified> [0]
vec_ptype2(NULL, NA)
#> <unspecified> [0]

We can’t return NA here because vec_ptype2() normally returns empty vectors. We also can’t
return NULL because unspecified vectors need to be recognised as logical vectors if they haven’t
been promoted at the end of the reduction.

vec_ptype_finalise(vec_ptype2(NULL, NA))
#> logical(0)

See the output of vec_ptype_common() which performs the reduction and finalises the type, ready
to be used by the caller:

vec_ptype_common(NULL, NULL)
#> NULL
vec_ptype_common(NA, NULL)
#> logical(0)

Note that partial types in vctrs make use of the same mechanism. They are finalised with
vec_ptype_finalise().

list_of list_of S3 class for homogenous lists

Description

A list_of object is a list where each element has the same type. Modifying the list with $, [, and
[[preserves the constraint by coercing all input items.

Usage

list_of(..., .ptype = NULL)

as_list_of(x, ...)

validate_list_of(x)

is_list_of(x)

S3 method for class 'vctrs_list_of'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'vctrs_list_of'
vec_cast(x, to, ...)

name_spec 17

Arguments

... Vectors to coerce.

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of
Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guessing")
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

x For as_list_of(), a vector to be coerced to list_of.

y, to Arguments to vec_ptype2() and vec_cast().

x_arg Argument names for x and y. These are used in error messages to inform the user
about the locations of incompatible types (see stop_incompatible_type()).

y_arg Argument names for x and y. These are used in error messages to inform the user
about the locations of incompatible types (see stop_incompatible_type()).

Details

Unlike regular lists, setting a list element to NULL using [[does not remove it.

Examples

x <- list_of(1:3, 5:6, 10:15)
if (requireNamespace("tibble", quietly = TRUE)) {

tibble::tibble(x = x)
}

vec_c(list_of(1, 2), list_of(FALSE, TRUE))

name_spec Name specifications

Description

A name specification describes how to combine an inner and outer names. This sort of name
combination arises when concatenating vectors or flattening lists. There are two possible cases:

• Named vector:

vec_c(outer = c(inner1 = 1, inner2 = 2))

• Unnamed vector:

vec_c(outer = 1:2)

In r-lib and tidyverse packages, these cases are errors by default, because there’s no behaviour that
works well for every case. Instead, you can provide a name specification that describes how to
combine the inner and outer names of inputs. Name specifications can refer to:

• outer: The external name recycled to the size of the input vector.

• inner: Either the names of the input vector, or a sequence of integer from 1 to the size of the
vector if it is unnamed.

18 reference-faq-compatibility

Arguments
name_spec, .name_spec

A name specification for combining inner and outer names. This is relevant
for inputs passed with a name, when these inputs are themselves named, like
outer = c(inner = 1), or when they have length greater than 1: outer = 1:2.
By default, these cases trigger an error. You can resolve the error by providing a
specification that describes how to combine the names or the indices of the inner
vector with the name of the input. This specification can be:

• A function of two arguments. The outer name is passed as a string to the
first argument, and the inner names or positions are passed as second argu-
ment.

• An anonymous function as a purrr-style formula.
• A glue specification of the form "{outer}_{inner}".
• An rlang::zap() object, in which case both outer and inner names are

ignored and the result is unnamed.

See the name specification topic.

Examples

By default, named inputs must be length 1:
vec_c(name = 1) # ok
try(vec_c(name = 1:3)) # bad

They also can't have internal names, even if scalar:
try(vec_c(name = c(internal = 1))) # bad

Pass a name specification to work around this. A specification
can be a glue string referring to `outer` and `inner`:
vec_c(name = 1:3, other = 4:5, .name_spec = "{outer}")
vec_c(name = 1:3, other = 4:5, .name_spec = "{outer}_{inner}")

They can also be functions:
my_spec <- function(outer, inner) paste(outer, inner, sep = "_")
vec_c(name = 1:3, other = 4:5, .name_spec = my_spec)

Or purrr-style formulas for anonymous functions:
vec_c(name = 1:3, other = 4:5, .name_spec = ~ paste0(.x, .y))

reference-faq-compatibility

FAQ - Is my class compatible with vctrs?

Description

vctrs provides a framework for working with vector classes in a generic way. However, it imple-
ments several compatibility fallbacks to base R methods. In this reference you will find how vctrs
tries to be compatible with your vector class, and what base methods you need to implement for
compatibility.

If you’re starting from scratch, we think you’ll find it easier to start using new_vctr() as doc-
umented in vignette("s3-vector"). This guide is aimed for developers with existing vector
classes.

reference-faq-compatibility 19

Aggregate operations with fallbacks:
All vctrs operations are based on four primitive generics described in the next section. However
there are many higher level operations. The most important ones implement fallbacks to base
generics for maximum compatibility with existing classes.

• vec_slice() falls back to the base [generic if no vec_proxy() method is implemented.
This way foreign classes that do not implement vec_restore() can restore attributes based
on the new subsetted contents.

• vec_c() and vec_rbind() now fall back to base::c() if the inputs have a common parent
class with a c() method (only if they have no self-to-self vec_ptype2() method).
vctrs works hard to make your c() method success in various situations (with NULL and NA
inputs, even as first input which would normally prevent dispatch to your method). The main
downside compared to using vctrs primitives is that you can’t combine vectors of different
classes since there is no extensible mechanism of coercion in c(), and it is less efficient in
some cases.

The vctrs primitives:
Most functions in vctrs are aggregate operations: they call other vctrs functions which themselves
call other vctrs functions. The dependencies of a vctrs functions are listed in the Dependencies
section of its documentation page. Take a look at vec_count() for an example.
These dependencies form a tree whose leaves are the four vctrs primitives. Here is the diagram
for vec_count():

The coercion generics:
The coercion mechanism in vctrs is based on two generics:

• vec_ptype2()

• vec_cast()

See the theory overview.
Two objects with the same class and the same attributes are always considered compatible by
ptype2 and cast. If the attributes or classes differ, they throw an incompatible type error.
Coercion errors are the main source of incompatibility with vctrs. See the howto guide if you
need to implement methods for these generics.

The proxy and restoration generics:
• vec_proxy()

• vec_restore()

These generics are essential for vctrs but mostly optional. vec_proxy() defaults to an identity
function and you normally don’t need to implement it. The proxy a vector must be one of the
atomic vector types, a list, or a data frame. By default, S3 lists that do not inherit from "list"
do not have an identity proxy. In that case, you need to explicitly implement vec_proxy() or
make your class inherit from list.

20 theory-faq-coercion

theory-faq-coercion FAQ - How does coercion work in vctrs?

Description

This is an overview of the usage of vec_ptype2() and vec_cast() and their role in the vctrs
coercion mechanism. Related topics:

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.

• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector").

Combination mechanism in vctrs:
The coercion system in vctrs is designed to make combination of multiple inputs consistent and
extensible. Combinations occur in many places, such as row-binding, joins, subset-assignment,
or grouped summary functions that use the split-apply-combine strategy. For example:

vec_c(TRUE, 1)
#> [1] 1 1

vec_c("a", 1)
#> Error: Can't combine `..1` <character> and `..2` <double>.

vec_rbind(
data.frame(x = TRUE),
data.frame(x = 1, y = 2)

)
#> x y
#> 1 1 NA
#> 2 1 2

vec_rbind(
data.frame(x = "a"),
data.frame(x = 1, y = 2)

)
#> Error: Can't combine `..1$x` <character> and `..2$x` <double>.

One major goal of vctrs is to provide a central place for implementing the coercion methods
that make generic combinations possible. The two relevant generics are vec_ptype2() and
vec_cast(). They both take two arguments and perform double dispatch, meaning that a method
is selected based on the classes of both inputs.
The general mechanism for combining multiple inputs is:

1. Find the common type of a set of inputs by reducing (as in base::Reduce() or purrr::reduce())
the vec_ptype2() binary function over the set.

2. Convert all inputs to the common type with vec_cast().
3. Initialise the output vector as an instance of this common type with vec_init().
4. Fill the output vector with the elements of the inputs using vec_assign().

The last two steps may require vec_proxy() and vec_restore() implementations, unless the
attributes of your class are constant and do not depend on the contents of the vector. We focus
here on the first two steps, which require vec_ptype2() and vec_cast() implementations.

theory-faq-coercion 21

vec_ptype2():
Methods for vec_ptype2() are passed two prototypes, i.e. two inputs emptied of their elements.
They implement two behaviours:

• If the types of their inputs are compatible, indicate which of them is the richer type by return-
ing it. If the types are of equal resolution, return any of the two.

• Throw an error with stop_incompatible_type() when it can be determined from the at-
tributes that the types of the inputs are not compatible.

Type compatibility:
A type is compatible with another type if the values it represents are a subset or a superset of the
values of the other type. The notion of “value” is to be interpreted at a high level, in particular it
is not the same as the memory representation. For example, factors are represented in memory
with integers but their values are more related to character vectors than to round numbers:
Two factors are compatible
vec_ptype2(factor("a"), factor("b"))
#> factor(0)
#> Levels: a b

Factors are compatible with a character
vec_ptype2(factor("a"), "b")
#> character(0)

But they are incompatible with integers
vec_ptype2(factor("a"), 1L)
#> Error: Can't combine <factor<127a2>> and <integer>.

Richness of type:
Richness of type is not a very precise notion. It can be about richer data (for instance a double
vector covers more values than an integer vector), richer behaviour (a data.table has richer
behaviour than a data.frame), or both. If you have trouble determining which one of the two
types is richer, it probably means they shouldn’t be automatically coercible.
Let’s look again at what happens when we combine a factor and a character:
vec_ptype2(factor("a"), "b")
#> character(0)

The ptype2 method for <character> and <factor<"a">> returns <character> because the former
is a richer type. The factor can only contain "a" strings, whereas the character can contain any
strings. In this sense, factors are a subset of character.
Note that another valid behaviour would be to throw an incompatible type error. This is what a
strict factor implementation would do. We have decided to be laxer in vctrs because it is easy
to inadvertently create factors instead of character vectors, especially with older versions of R
where stringsAsFactors is still true by default.

Consistency and symmetry on permutation:
Each ptype2 method should strive to have exactly the same behaviour when the inputs are per-
muted. This is not always possible, for example factor levels are aggregated in order:
vec_ptype2(factor(c("a", "c")), factor("b"))
#> factor(0)
#> Levels: a c b

vec_ptype2(factor("b"), factor(c("a", "c")))
#> factor(0)
#> Levels: b a c

In any case, permuting the input should not return a fundamentally different type or introduce
an incompatible type error.

22 theory-faq-coercion

Coercion hierarchy:
Coercible classes form a coercion (or subtyping) hierarchy. Here is a simplified diagram of the
hierarchy for base types. In this diagram the directions of the arrows express which type is
richer. They flow from the bottom (more constrained types) to the top (richer types).

As a class implementor, you have two options. The simplest is to create an entirely separate
hierarchy. The date and date-time classes are an example of an S3-based hierarchy that is com-
pletely separate. Alternatively, you can integrate your class in an existing hierarchy, typically
by adding parent nodes on top of the hierarchy (your class is richer), by adding children node at
the root of the hierarchy (your class is more constrained), or by inserting a node in the tree.
These coercion hierarchies are implicit, in the sense that they are implied by the vec_ptype2()
implementations. There is no structured way to create or modify a hierarchy, instead you need
to implement the appropriate coercion methods for all the types in your hierarchy, and diligently
return the richer type in each case. The vec_ptype2() implementations are not transitive nor
inherited, so all pairwise methods between classes lying on a given path must be implemented
manually. This is something we might make easier in the future.

vec_cast():
The second generic, vec_cast(), is the one that looks at the data and actually performs the
conversion. Because it has access to more information than vec_ptype2(), it may be stricter and
cause an error in more cases. vec_cast() has three possible behaviours:

• Determine that the prototypes of the two inputs are not compatible. This must be decided in
exactly the same way as for vec_ptype2(). Call stop_incompatible_cast() if you can
determine from the attributes that the types are not compatible.

• Detect incompatible values. Usually this is because the target type is too restricted for the
values supported by the input type. For example, a fractional number can’t be converted to
an integer. The method should throw an error in that case.

• Return the input vector converted to the target type if all values are compatible. Whereas
vec_ptype2() must return the same type when the inputs are permuted, vec_cast() is di-
rectional. It always returns the type of the right-hand side, or dies trying.

Double dispatch:
The dispatch mechanism for vec_ptype2() and vec_cast() looks like S3 but is actually a cus-
tom mechanism. Compared to S3, it has the following differences:

• It dispatches on the classes of the first two inputs.

theory-faq-coercion 23

• There is no inheritance of ptype2 and cast methods. This is because the S3 class hierarchy is
not necessarily the same as the coercion hierarchy.

• NextMethod() does not work. Parent methods must be called explicitly if necessary.
• The default method is hard-coded.

Data frames:
The determination of the common type of data frames with vec_ptype2() happens in three steps:

1. Match the columns of the two input data frames. If some columns don’t exist, they are created
and filled with adequately typed NA values.

2. Find the common type for each column by calling vec_ptype2() on each pair of matched
columns.

3. Find the common data frame type. For example the common type of a grouped tibble and
a tibble is a grouped tibble because the latter is the richer type. The common type of a data
table and a data frame is a data table.

vec_cast() operates similarly. If a data frame is cast to a target type that has fewer columns, this
is an error.
If you are implementing coercion methods for data frames, you will need to explicitly call the
parent methods that perform the common type determination or the type conversion described
above. These are exported as df_ptype2() and df_cast().

Data frame fallbacks:
Being too strict with data frame combinations would cause too much pain because there are
many data frame subclasses in the wild that don’t implement vctrs methods. We have decided to
implement a special fallback behaviour for foreign data frames. Incompatible data frames fall
back to a base data frame:
df1 <- data.frame(x = 1)
df2 <- structure(df1, class = c("foreign_df", "data.frame"))

vec_rbind(df1, df2)
#> x
#> 1 1
#> 2 1

When a tibble is involved, we fall back to tibble:
df3 <- tibble::as_tibble(df1)

vec_rbind(df1, df3)
#> # A tibble: 2 x 1
#> x
#> <dbl>
#> 1 1
#> 2 1

These fallbacks are not ideal but they make sense because all data frames share a common data
structure. This is not generally the case for vectors. For example factors and characters have
different representations, and it is not possible to find a fallback time mechanically.
However this fallback has a big downside: implementing vctrs methods for your data frame
subclass is a breaking behaviour change. The proper coercion behaviour for your data frame
class should be specified as soon as possible to limit the consequences of changing the behaviour
of your class in R scripts.

24 vec-rep

vec-rep Repeat a vector

Description

• vec_rep() repeats an entire vector a set number of times.
• vec_rep_each() repeats each element of a vector a set number of times.

Usage

vec_rep(x, times)

vec_rep_each(x, times)

Arguments

x A vector.
times For vec_rep(), a single integer for the number of times to repeat the entire

vector.
For vec_rep_each(), an integer vector of the number of times to repeat each
element of x. times will be recycled to the size of x.

Details

vec_rep() and vec_rep_each() work along the size of x, rather than its length. For data frames,
this means that rows are repeated rather than columns.

Value

For vec_rep(), a vector the same type as x with size vec_size(x) * times.

For vec_rep_each(), a vector the same type as x with size sum(vec_recycle(times,vec_size(x))).

Dependencies

• vec_slice()

Examples

Repeat the entire vector
vec_rep(1:2, 3)

Repeat within each vector
vec_rep_each(1:2, 3)
vec_rep_each(1:2, c(3, 4))

df <- data.frame(x = 1:2, y = 3:4)

`rep()` repeats columns of data frames, and returns lists
rep(df, each = 2)

`vec_rep()` and `vec_rep_each()` repeat rows, and return data frames
vec_rep(df, 2)
vec_rep_each(df, 2)

vec_assert 25

vec_assert Assert an argument has known prototype and/or size

Description

• vec_is() is a predicate that checks if its input is a vector that conforms to a prototype and/or
a size.

• vec_assert() throws an error when the input is not a vector or doesn’t conform.

Usage

vec_assert(x, ptype = NULL, size = NULL, arg = as_label(substitute(x)))

vec_is(x, ptype = NULL, size = NULL)

Arguments

x A vector argument to check.

ptype Prototype to compare against. If the prototype has a class, its vec_ptype() is
compared to that of x with identical(). Otherwise, its typeof() is compared
to that of x with ==.

size Size to compare against

arg Name of argument being checked. This is used in error messages. The label of
the expression passed as x is taken as default.

Value

vec_is() returns TRUE or FALSE. vec_assert() either throws a typed error (see section on error
types) or returns x, invisibly.

Scalars and vectors

Informally, a vector is a collection that makes sense to use as column in a data frame. An object is
a vector if one of the following conditions hold:

• A vec_proxy() method is implemented for the class of the object.

• The base type of the object is atomic: "logical", "integer", "double", "complex", "character",
"raw"

• The object is a data.frame.

• The base type is "list", and one of:

– The object is a bare "list" without a "class" attribute.
– The object explicitly inherits from "list". That is, the "class" attribute contains "list"

and inherits(x,"list") is TRUE.

Otherwise an object is treated as scalar and cannot be used as a vector. In particular:

• NULL is not a vector.

• S3 lists like lm objects are treated as scalars by default.

• Objects of type expression are not treated as vectors.

26 vec_as_names

• Support for S4 vectors is currently limited to objects that inherit from an atomic type.

• Subclasses of data.frame that append their class to the "class" attribute are not treated as
vectors. If you inherit from an S3 class, always prepend your class to the "class" attribute
for correct dispatch.

Error types

vec_is() never throws. vec_assert() throws the following errors:

• If the input is not a vector, an error of class "vctrs_error_scalar_type" is raised.

• If the prototype doesn’t match, an error of class "vctrs_error_assert_ptype" is raised.

• If the size doesn’t match, an error of class "vctrs_error_assert_size" is raised.

Both errors inherit from "vctrs_error_assert".

vec_as_names Retrieve and repair names

Description

vec_as_names() takes a character vector of names and repairs it according to the repair argument.
It is the r-lib and tidyverse equivalent of base::make.names().

vctrs deals with a few levels of name repair:

• minimal names exist. The names attribute is not NULL. The name of an unnamed element is ""
and never NA. For instance, vec_as_names() always returns minimal names and data frames
created by the tibble package have names that are, at least, minimal.

• unique names are minimal, have no duplicates, and can be used where a variable name is
expected. Empty names, ..., and .. followed by a sequence of digits are banned.

– All columns can be accessed by name via df[["name"]] and df$`name` and with(df,`name`).

• universal names are unique and syntactic (see Details for more).

– Names work everywhere, without quoting: df$name and with(df,name) and lm(name1
~ name2,data = df) and dplyr::select(df,name) all work.

universal implies unique, unique implies minimal. These levels are nested.

Usage

vec_as_names(
names,
...,
repair = c("minimal", "unique", "universal", "check_unique"),
repair_arg = "",
quiet = FALSE

)

vec_as_names 27

Arguments

names A character vector.

... These dots are for future extensions and must be empty.

repair Either a string or a function. If a string, it must be one of "check_unique",
"minimal", "unique", or "universal". If a function, it is invoked with a vector
of minimal names and must return minimal names, otherwise an error is thrown.

• Minimal names are never NULL or NA. When an element doesn’t have a
name, its minimal name is an empty string.

• Unique names are unique. A suffix is appended to duplicate names to make
them unique.

• Universal names are unique and syntactic, meaning that you can safely use
the names as variables without causing a syntax error.

The "check_unique" option doesn’t perform any name repair. Instead, an error
is raised if the names don’t suit the "unique" criteria.

repair_arg If specified and repair = "check_unique", any errors will include a hint to set
the repair_arg.

quiet By default, the user is informed of any renaming caused by repairing the names.
This only concerns unique and universal repairing. Set quiet to TRUE to silence
the messages.

minimal names

minimal names exist. The names attribute is not NULL. The name of an unnamed element is "" and
never NA.

Examples:

Original names of a vector with length 3: NULL
minimal names: "" "" ""

Original names: "x" NA
minimal names: "x" ""

unique names

unique names are minimal, have no duplicates, and can be used (possibly with backticks) in con-
texts where a variable is expected. Empty names, ..., and .. followed by a sequence of digits are
banned. If a data frame has unique names, you can index it by name, and also access the columns
by name. In particular, df[["name"]] and df$`name` and also with(df,`name`) always work.

There are many ways to make names unique. We append a suffix of the form ...j to any name
that is "" or a duplicate, where j is the position. We also change ..# and ... to ...#.

Example:

Original names: "" "x" "" "y" "x" "..2" "..."
unique names: "...1" "x...2" "...3" "y" "x...5" "...6" "...7"

Pre-existing suffixes of the form ...j are always stripped, prior to making names unique, i.e.
reconstructing the suffixes. If this interacts poorly with your names, you should take control of
name repair.

28 vec_bind

universal names

universal names are unique and syntactic, meaning they:

• Are never empty (inherited from unique).

• Have no duplicates (inherited from unique).

• Are not Do not have the form ..i, where i is a number (inherited from unique).

• Consist of letters, numbers, and the dot . or underscore _ characters.

• Start with a letter or start with the dot . not followed by a number.

• Are not a reserved word, e.g., if or function or TRUE.

If a vector has universal names, variable names can be used "as is" in code. They work well with
nonstandard evaluation, e.g., df$name works.

vctrs has a different method of making names syntactic than base::make.names(). In general,
vctrs prepends one or more dots . until the name is syntactic.

Examples:

Original names: "" "x" NA "x"
universal names: "...1" "x...2" "...3" "x...4"

Original names: "(y)" "_z" ".2fa" "FALSE"
universal names: ".y." "._z" "..2fa" ".FALSE"

See Also

rlang::names2() returns the names of an object, after making them minimal.

The Names attribute section in the "tidyverse package development principles".

Examples

By default, `vec_as_names()` returns minimal names:
vec_as_names(c(NA, NA, "foo"))

You can make them unique:
vec_as_names(c(NA, NA, "foo"), repair = "unique")

Universal repairing fixes any non-syntactic name:
vec_as_names(c("_foo", "+"), repair = "universal")

vec_bind Combine many data frames into one data frame

Description

This pair of functions binds together data frames (and vectors), either row-wise or column-wise.
Row-binding creates a data frame with common type across all arguments. Column-binding creates
a data frame with common length across all arguments.

https://principles.tidyverse.org/names-attribute.html

vec_bind 29

Usage

vec_rbind(
...,
.ptype = NULL,
.names_to = rlang::zap(),
.name_repair = c("unique", "universal", "check_unique"),
.name_spec = NULL

)

vec_cbind(
...,
.ptype = NULL,
.size = NULL,
.name_repair = c("unique", "universal", "check_unique", "minimal")

)

Arguments

... Data frames or vectors.
When the inputs are named:

• vec_rbind() assigns names to row names unless .names_to is supplied.
In that case the names are assigned in the column defined by .names_to.

• vec_cbind() creates packed data frame columns with named inputs.

NULL inputs are silently ignored. Empty (e.g. zero row) inputs will not appear
in the output, but will affect the derived .ptype.

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of
Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guessing")
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

.names_to This controls what to do with input names supplied in

• By default, input names are zapped.
• If a string, specifies a column where the input names will be copied. These

names are often useful to identify rows with their original input. If a column
name is supplied and ... is not named, an integer column is used instead.

• If NULL, the input names are used as row names.

.name_repair One of "unique", "universal", or "check_unique". See vec_as_names()
for the meaning of these options.
With vec_rbind(), the repair function is applied to all inputs separately. This is
because vec_rbind() needs to align their columns before binding the rows, and
thus needs all inputs to have unique names. On the other hand, vec_cbind()
applies the repair function after all inputs have been concatenated together in
a final data frame. Hence vec_cbind() allows the more permissive minimal
names repair.

.name_spec A name specification (as documented in vec_c()) for combining the outer in-
puts names in ... and the inner row names of the inputs. This only has an effect
when .names_to is set to NULL, which causes the input names to be assigned as
row names.

30 vec_bind

.size If, NULL, the default, will determine the number of rows in vec_cbind() output
by using the standard recycling rules.
Alternatively, specify the desired number of rows, and any inputs of length 1
will be recycled appropriately.

Value

A data frame, or subclass of data frame.

If ... is a mix of different data frame subclasses, vec_ptype2() will be used to determine the
output type. For vec_rbind(), this will determine the type of the container and the type of each
column; for vec_cbind() it only determines the type of the output container. If there are no non-
NULL inputs, the result will be data.frame().

Invariants

All inputs are first converted to a data frame. The conversion for 1d vectors depends on the direction
of binding:

• For vec_rbind(), each element of the vector becomes a column in a single row.

• For vec_cbind(), each element of the vector becomes a row in a single column.

Once the inputs have all become data frames, the following invariants are observed for row-binding:

• vec_size(vec_rbind(x,y)) == vec_size(x) + vec_size(y)

• vec_ptype(vec_rbind(x,y)) = vec_ptype_common(x,y)

Note that if an input is an empty vector, it is first converted to a 1-row data frame with 0 columns.
Despite being empty, its effective size for the total number of rows is 1.

For column-binding, the following invariants apply:

• vec_size(vec_cbind(x,y)) == vec_size_common(x,y)

• vec_ptype(vec_cbind(x,y)) == vec_cbind(vec_ptype(x),vec_ptype(x))

Dependencies

vctrs dependencies:

• vec_cast_common()

• vec_proxy()

• vec_init()

• vec_assign()

• vec_restore()

base dependencies of vec_rbind():

• base::c()

If columns to combine inherit from a common class, vec_rbind() falls back to base::c() if
there exists a c() method implemented for this class hierarchy.

See Also

vec_c() for combining 1d vectors.

vec_bind 31

Examples

row binding ---

common columns are coerced to common class
vec_rbind(

data.frame(x = 1),
data.frame(x = FALSE)

)

unique columns are filled with NAs
vec_rbind(

data.frame(x = 1),
data.frame(y = "x")

)

null inputs are ignored
vec_rbind(

data.frame(x = 1),
NULL,
data.frame(x = 2)

)

bare vectors are treated as rows
vec_rbind(

c(x = 1, y = 2),
c(x = 3)

)

default names will be supplied if arguments are not named
vec_rbind(

1:2,
1:3,
1:4

)

column binding --------------------------------------

each input is recycled to have common length
vec_cbind(

data.frame(x = 1),
data.frame(y = 1:3)

)

bare vectors are treated as columns
vec_cbind(

data.frame(x = 1),
y = letters[1:3]

)

if you supply a named data frame, it is packed in a single column
data <- vec_cbind(

x = data.frame(a = 1, b = 2),
y = 1

)
data

32 vec_c

Packed data frames are nested in a single column. This makes it
possible to access it through a single name:
data$x

since the base print method is suboptimal with packed data
frames, it is recommended to use tibble to work with these:
if (rlang::is_installed("tibble")) {

vec_cbind(x = tibble::tibble(a = 1, b = 2), y = 1)
}

duplicate names are flagged
vec_cbind(x = 1, x = 2)

vec_c Combine many vectors into one vector

Description

Combine all arguments into a new vector of common type.

Usage

vec_c(
...,
.ptype = NULL,
.name_spec = NULL,
.name_repair = c("minimal", "unique", "check_unique", "universal")

)

Arguments

... Vectors to coerce.

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of
Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guessing")
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

.name_spec A name specification for combining inner and outer names. This is relevant
for inputs passed with a name, when these inputs are themselves named, like
outer = c(inner = 1), or when they have length greater than 1: outer = 1:2.
By default, these cases trigger an error. You can resolve the error by providing a
specification that describes how to combine the names or the indices of the inner
vector with the name of the input. This specification can be:

• A function of two arguments. The outer name is passed as a string to the
first argument, and the inner names or positions are passed as second argu-
ment.

• An anonymous function as a purrr-style formula.
• A glue specification of the form "{outer}_{inner}".
• An rlang::zap() object, in which case both outer and inner names are

ignored and the result is unnamed.

vec_c 33

See the name specification topic.

.name_repair How to repair names, see repair options in vec_as_names().

Value

A vector with class given by .ptype, and length equal to the sum of the vec_size() of the contents
of

The vector will have names if the individual components have names (inner names) or if the argu-
ments are named (outer names). If both inner and outer names are present, an error is thrown unless
a .name_spec is provided.

Invariants

• vec_size(vec_c(x,y)) == vec_size(x) + vec_size(y)

• vec_ptype(vec_c(x,y)) == vec_ptype_common(x,y).

Dependencies

vctrs dependencies:
• vec_cast_common() with fallback
• vec_proxy()

• vec_restore()

base dependencies:
• base::c()

If inputs inherit from a common class hierarchy, vec_c() falls back to base::c() if there exists
a c() method implemented for this class hierarchy.

See Also

vec_cbind()/vec_rbind() for combining data frames by rows or columns.

Examples

vec_c(FALSE, 1L, 1.5)

Date/times --------------------------
c(Sys.Date(), Sys.time())
c(Sys.time(), Sys.Date())

vec_c(Sys.Date(), Sys.time())
vec_c(Sys.time(), Sys.Date())

Factors -----------------------------
c(factor("a"), factor("b"))
vec_c(factor("a"), factor("b"))

By default, named inputs must be length 1:
vec_c(name = 1)
try(vec_c(name = 1:3))

Pass a name specification to work around this:

34 vec_cast

vec_c(name = 1:3, .name_spec = "{outer}_{inner}")

See `?name_spec` for more examples of name specifications.

vec_cast Cast a vector to a specified type

Description

vec_cast() provides directional conversions from one type of vector to another. Along with
vec_ptype2(), this generic forms the foundation of type coercions in vctrs.

Usage

vec_cast(x, to, ..., x_arg = "", to_arg = "")

vec_cast_common(..., .to = NULL)

S3 method for class 'logical'
vec_cast(x, to, ...)

S3 method for class 'integer'
vec_cast(x, to, ...)

S3 method for class 'double'
vec_cast(x, to, ...)

S3 method for class 'complex'
vec_cast(x, to, ...)

S3 method for class 'raw'
vec_cast(x, to, ...)

S3 method for class 'character'
vec_cast(x, to, ...)

S3 method for class 'list'
vec_cast(x, to, ...)

Arguments

x Vectors to cast.

to, .to Type to cast to. If NULL, x will be returned as is.

... For vec_cast_common(), vectors to cast. For vec_cast(), vec_cast_default(),
and vec_restore(), these dots are only for future extensions and should be
empty.

x_arg, to_arg Argument names for x and to. These are used in error messages to inform the
user about the locations of incompatible types (see stop_incompatible_type()).

vec_cast 35

Value

A vector the same length as x with the same type as to, or an error if the cast is not possible. An
error is generated if information is lost when casting between compatible types (i.e. when there is
no 1-to-1 mapping for a specific value).

Implementing coercion methods

• For an overview of how these generics work and their roles in vctrs, see ?theory-faq-coercion.

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.

• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector").

Dependencies of vec_cast_common()

vctrs dependencies:

• vec_ptype2()

• vec_cast()

base dependencies:
Some functions enable a base-class fallback for vec_cast_common(). In that case the inputs are
deemed compatible when they have the same base type and inherit from the same base class.

See Also

Call stop_incompatible_cast() when you determine from the attributes that an input can’t be
cast to the target type.

Examples

x is a double, but no information is lost
vec_cast(1, integer())

When information is lost the cast fails
try(vec_cast(c(1, 1.5), integer()))
try(vec_cast(c(1, 2), logical()))

You can suppress this error and get the partial results
allow_lossy_cast(vec_cast(c(1, 1.5), integer()))
allow_lossy_cast(vec_cast(c(1, 2), logical()))

By default this suppress all lossy cast errors without
distinction, but you can be specific about what cast is allowed
by supplying prototypes
allow_lossy_cast(vec_cast(c(1, 1.5), integer()), to_ptype = integer())
try(allow_lossy_cast(vec_cast(c(1, 2), logical()), to_ptype = integer()))

No sensible coercion is possible so an error is generated
try(vec_cast(1.5, factor("a")))

Cast to common type
vec_cast_common(factor("a"), factor(c("a", "b")))

36 vec_chop

vec_chop Chopping

Description

• vec_chop() provides an efficient method to repeatedly slice a vector. It captures the pattern
of map(indices,vec_slice,x = x). When no indices are supplied, it is generally equivalent
to as.list().

• vec_unchop() combines a list of vectors into a single vector, placing elements in the output
according to the locations specified by indices. It is similar to vec_c(), but gives greater
control over how the elements are combined. When no indices are supplied, it is identical to
vec_c().

If indices selects every value in x exactly once, in any order, then vec_unchop() is the inverse of
vec_chop() and the following invariant holds:

vec_unchop(vec_chop(x, indices), indices) == x

Usage

vec_chop(x, indices = NULL)

vec_unchop(
x,
indices = NULL,
ptype = NULL,
name_spec = NULL,
name_repair = c("minimal", "unique", "check_unique", "universal")

)

Arguments

x A vector

indices For vec_chop(), a list of positive integer vectors to slice x with, or NULL. If
NULL, x is split into its individual elements, equivalent to using an indices of
as.list(vec_seq_along(x)).
For vec_unchop(), a list of positive integer vectors specifying the locations to
place elements of x in. Each element of x is recycled to the size of the corre-
sponding index vector. The size of indices must match the size of x. If NULL, x
is combined in the order it is provided in, which is equivalent to using vec_c().

ptype If NULL, the default, the output type is determined by computing the common
type across all elements of x. Alternatively, you can supply ptype to give the
output a known type.

name_spec A name specification for combining inner and outer names. This is relevant
for inputs passed with a name, when these inputs are themselves named, like
outer = c(inner = 1), or when they have length greater than 1: outer = 1:2.
By default, these cases trigger an error. You can resolve the error by providing a
specification that describes how to combine the names or the indices of the inner
vector with the name of the input. This specification can be:

vec_chop 37

• A function of two arguments. The outer name is passed as a string to the
first argument, and the inner names or positions are passed as second argu-
ment.

• An anonymous function as a purrr-style formula.
• A glue specification of the form "{outer}_{inner}".
• An rlang::zap() object, in which case both outer and inner names are

ignored and the result is unnamed.

See the name specification topic.

name_repair How to repair names, see repair options in vec_as_names().

Value

• vec_chop(): A list of size vec_size(indices) or, if indices == NULL, vec_size(x).

• vec_unchop(): A vector of type vec_ptype_common(!!!x), or ptype, if specified. The size
is computed as vec_size_common(!!!indices) unless the indices are NULL, in which case
the size is vec_size_common(!!!x).

Dependencies of vec_chop()

• vec_slice()

Dependencies of vec_unchop()

• vec_c()

Examples

vec_chop(1:5)
vec_chop(1:5, list(1, 1:2))
vec_chop(mtcars, list(1:3, 4:6))

If `indices` selects every value in `x` exactly once,
in any order, then `vec_unchop()` inverts `vec_chop()`
x <- c("a", "b", "c", "d")
indices <- list(2, c(3, 1), 4)
vec_chop(x, indices)
vec_unchop(vec_chop(x, indices), indices)

When unchopping, size 1 elements of `x` are recycled
to the size of the corresponding index
vec_unchop(list(1, 2:3), list(c(1, 3, 5), c(2, 4)))

Names are retained, and outer names can be combined with inner
names through the use of a `name_spec`
lst <- list(x = c(a = 1, b = 2), y = 1)
vec_unchop(lst, list(c(3, 2), c(1, 4)), name_spec = "{outer}_{inner}")

An alternative implementation of `ave()` can be constructed using
`vec_chop()` and `vec_unchop()` in combination with `vec_group_loc()`
ave2 <- function(.x, .by, .f, ...) {

indices <- vec_group_loc(.by)$loc
chopped <- vec_chop(.x, indices)
out <- lapply(chopped, .f, ...)
vec_unchop(out, indices)

38 vec_compare

}

breaks <- warpbreaks$breaks
wool <- warpbreaks$wool

ave2(breaks, wool, mean)

identical(
ave2(breaks, wool, mean),
ave(breaks, wool, FUN = mean)

)

vec_compare Compare two vectors

Description

Compare two vectors

Usage

vec_compare(x, y, na_equal = FALSE, .ptype = NULL)

Arguments

x, y Vectors with compatible types and lengths.

na_equal Should NA values be considered equal?

.ptype Override to optionally specify common type

Value

An integer vector with values -1 for x < y, 0 if x == y, and 1 if x > y. If na_equal is FALSE, the
result will be NA if either x or y is NA.

S3 dispatch

vec_compare() is not generic for performance; instead it uses vec_proxy_compare() to

Dependencies

• vec_cast_common() with fallback

• vec_recycle_common()

• vec_proxy_compare()

vec_count 39

Examples

vec_compare(c(TRUE, FALSE, NA), FALSE)
vec_compare(c(TRUE, FALSE, NA), FALSE, na_equal = TRUE)

vec_compare(1:10, 5)
vec_compare(runif(10), 0.5)
vec_compare(letters[1:10], "d")

df <- data.frame(x = c(1, 1, 1, 2), y = c(0, 1, 2, 1))
vec_compare(df, data.frame(x = 1, y = 1))

vec_count Count unique values in a vector

Description

Count the number of unique values in a vector. vec_count() has two important differences to
table(): it returns a data frame, and when given multiple inputs (as a data frame), it only counts
combinations that appear in the input.

Usage

vec_count(x, sort = c("count", "key", "location", "none"))

Arguments

x A vector (including a data frame).

sort One of "count", "key", "location", or "none".

• "count", the default, puts most frequent values at top

• "key", orders by the output key column (i.e. unique values of x)

• "location", orders by location where key first seen. This is useful if you
want to match the counts up to other unique/duplicated functions.

• "none", leaves unordered.

Value

A data frame with columns key (same type as x) and count (an integer vector).

Dependencies

• vec_proxy_equal()

• vec_slice()

• vec_order()

40 vec_duplicate

Examples

vec_count(mtcars$vs)
vec_count(iris$Species)

If you count a data frame you'll get a data frame
column in the output
str(vec_count(mtcars[c("vs", "am")]))

Sorting ---------------------------------------

x <- letters[rpois(100, 6)]
default is to sort by frequency
vec_count(x)

by can sort by key
vec_count(x, sort = "key")

or location of first value
vec_count(x, sort = "location")
head(x)

or not at all
vec_count(x, sort = "none")

vec_duplicate Find duplicated values

Description

• vec_duplicate_any(): detects the presence of duplicated values, similar to anyDuplicated().
• vec_duplicate_detect(): returns a logical vector describing if each element of the vector

is duplicated elsewhere. Unlike duplicated(), it reports all duplicated values, not just the
second and subsequent repetitions.

• vec_duplicate_id(): returns an integer vector giving the location of the first occurrence of
the value.

Usage

vec_duplicate_any(x)

vec_duplicate_detect(x)

vec_duplicate_id(x)

Arguments

x A vector (including a data frame).

Value

• vec_duplicate_any(): a logical vector of length 1.
• vec_duplicate_detect(): a logical vector the same length as x.
• vec_duplicate_id(): an integer vector the same length as x.

vec_equal 41

Missing values

In most cases, missing values are not considered to be equal, i.e. NA == NA is not TRUE. This be-
haviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all
NaN are also considered to be equal.)

Dependencies

• vec_proxy_equal()

See Also

vec_unique() for functions that work with the dual of duplicated values: unique values.

Examples

vec_duplicate_any(1:10)
vec_duplicate_any(c(1, 1:10))

x <- c(10, 10, 20, 30, 30, 40)
vec_duplicate_detect(x)
Note that `duplicated()` doesn't consider the first instance to
be a duplicate
duplicated(x)

Identify elements of a vector by the location of the first element that
they're equal to:
vec_duplicate_id(x)
Location of the unique values:
vec_unique_loc(x)
Equivalent to `duplicated()`:
vec_duplicate_id(x) == seq_along(x)

vec_equal Test if two vectors are equal

Description

vec_equal_na() tests a special case: equality with NA. It is similar to is.na but:

• Considers the missing element of a list to be NULL.

• Considered data frames and records to be missing if every component is missing. This pre-
serves the invariant that vec_equal_na(x) is equal to vec_equal(x,vec_init(x),na_equal
= TRUE).

Usage

vec_equal(x, y, na_equal = FALSE, .ptype = NULL)

vec_equal_na(x)

42 vec_init

Arguments

x Vectors with compatible types and lengths.

y Vectors with compatible types and lengths.

na_equal Should NA values be considered equal?

.ptype Override to optionally specify common type

Value

A logical vector the same size as. Will only contain NAs if na_equal is FALSE.

Dependencies

• vec_cast_common() with fallback

• vec_recycle_common()

• vec_proxy_equal()

Examples

vec_equal(c(TRUE, FALSE, NA), FALSE)
vec_equal(c(TRUE, FALSE, NA), FALSE, na_equal = TRUE)
vec_equal_na(c(TRUE, FALSE, NA))

vec_equal(5, 1:10)
vec_equal("d", letters[1:10])

df <- data.frame(x = c(1, 1, 2, 1, NA), y = c(1, 2, 1, NA, NA))
vec_equal(df, data.frame(x = 1, y = 2))
vec_equal_na(df)

vec_init Initialize a vector

Description

Initialize a vector

Usage

vec_init(x, n = 1L)

Arguments

x Template of vector to initialize.

n Desired size of result.

Dependencies

• vec_slice()

vec_is_list 43

Examples

vec_init(1:10, 3)
vec_init(Sys.Date(), 5)
vec_init(mtcars, 2)

vec_is_list Is the object a list?

Description

vec_is_list() tests if x is considered a list in the vctrs sense. It returns TRUE if:

• x is a bare list with no class.

• x is a list explicitly inheriting from "list".

Usage

vec_is_list(x)

Arguments

x An object.

Details

Notably, data frames and S3 record style classes like POSIXlt are not considered lists.

If x inherits explicitly from "list", it is also required that the proxy returned by vec_proxy() is a
list. If it is not, an error is thrown.

Examples

vec_is_list(list())
vec_is_list(list_of(1))

vec_is_list(data.frame())

vec_match Find matching observations across vectors

Description

vec_in() returns a logical vector based on whether needle is found in haystack. vec_match()
returns an integer vector giving location of needle in haystack, or NA if it’s not found.

44 vec_match

Usage

vec_match(
needles,
haystack,
...,
na_equal = TRUE,
needles_arg = "",
haystack_arg = ""

)

vec_in(
needles,
haystack,
...,
na_equal = TRUE,
needles_arg = "",
haystack_arg = ""

)

Arguments

needles, haystack

Vector of needles to search for in vector haystack. haystack should usually be
unique; if not vec_match() will only return the location of the first match.
needles and haystack are coerced to the same type prior to comparison.

... These dots are for future extensions and must be empty.

na_equal If TRUE, missing values in needles can be matched to missing values in haystack.
If FALSE, they propagate, missing values in needles are represented as NA in the
return value.

needles_arg, haystack_arg

Argument tags for needles and haystack used in error messages.

Details

vec_in() is equivalent to %in%; vec_match() is equivalent to match().

Value

A vector the same length as needles. vec_in() returns a logical vector; vec_match() returns an
integer vector.

Missing values

In most cases places in R, missing values are not considered to be equal, i.e. NA == NA is not TRUE.
The exception is in matching functions like match() and merge(), where an NA will match another
NA. By vec_match() and vec_in() will match NAs; but you can control this behaviour with the
na_equal argument.

Dependencies

• vec_cast_common() with fallback

• vec_proxy_equal()

vec_names 45

Examples

hadley <- strsplit("hadley", "")[[1]]
vec_match(hadley, letters)

vowels <- c("a", "e", "i", "o", "u")
vec_match(hadley, vowels)
vec_in(hadley, vowels)

Only the first index of duplicates is returned
vec_match(c("a", "b"), c("a", "b", "a", "b"))

vec_names Get or set the names of a vector

Description

These functions work like rlang::names2(), names() and names<-(), except that they return or
modify the the rowwise names of the vector. These are:

• The usual names() for atomic vectors and lists

• The row names for data frames and matrices

• The names of the first dimension for arrays Rowwise names are size consistent: the length of
the names always equals vec_size().

vec_names2() returns the repaired names from a vector, even if it is unnamed. See vec_as_names()
for details on name repair.

vec_names() is a bare-bones version that returns NULL if the vector is unnamed.

vec_set_names() sets the names or removes them.

Usage

vec_names2(
x,
...,
repair = c("minimal", "unique", "universal", "check_unique"),
quiet = FALSE

)

vec_names(x)

vec_set_names(x, names)

Arguments

x A vector with names

... These dots are for future extensions and must be empty.

repair Either a string or a function. If a string, it must be one of "check_unique",
"minimal", "unique", or "universal". If a function, it is invoked with a vector
of minimal names and must return minimal names, otherwise an error is thrown.

46 vec_order

• Minimal names are never NULL or NA. When an element doesn’t have a
name, its minimal name is an empty string.

• Unique names are unique. A suffix is appended to duplicate names to make
them unique.

• Universal names are unique and syntactic, meaning that you can safely use
the names as variables without causing a syntax error.

The "check_unique" option doesn’t perform any name repair. Instead, an error
is raised if the names don’t suit the "unique" criteria.

quiet By default, the user is informed of any renaming caused by repairing the names.
This only concerns unique and universal repairing. Set quiet to TRUE to silence
the messages.

names A character vector, or NULL.

Value

vec_names2() returns the names of x, repaired. vec_names() returns the names of x or NULL if
unnamed. vec_set_names() returns x with names updated.

Examples

vec_names2(1:3)
vec_names2(1:3, repair = "unique")
vec_names2(c(a = 1, b = 2))

`vec_names()` consistently returns the rowwise names of data frames and arrays:
vec_names(data.frame(a = 1, b = 2))
names(data.frame(a = 1, b = 2))
vec_names(mtcars)
names(mtcars)
vec_names(Titanic)
names(Titanic)

vec_set_names(1:3, letters[1:3])
vec_set_names(data.frame(a = 1:3), letters[1:3])

vec_order Order and sort vectors

Description

Order and sort vectors

Usage

vec_order(x, direction = c("asc", "desc"), na_value = c("largest", "smallest"))

vec_sort(x, direction = c("asc", "desc"), na_value = c("largest", "smallest"))

Arguments

x A vector
direction Direction to sort in. Defaults to ascending.
na_value Should NAs be treated as the largest or smallest values?

vec_ptype 47

Value

• vec_order() an integer vector the same size as x.

• vec_sort() a vector with the same size and type as x.

Dependencies of vec_order()

• vec_proxy_compare()

Dependencies of vec_sort()

• vec_proxy_compare()

• vec_order()

• vec_slice()

Examples

x <- round(c(runif(9), NA), 3)
vec_order(x)
vec_sort(x)
vec_sort(x, "desc")

Can also handle data frames
df <- data.frame(g = sample(2, 10, replace = TRUE), x = x)
vec_order(df)
vec_sort(df)
vec_sort(df, "desc")

vec_ptype Find the prototype of a set of vectors

Description

vec_ptype() returns the unfinalised prototype of a single vector. vec_ptype_common() finds the
common type of multiple vectors. vec_ptype_show() nicely prints the common type of any num-
ber of inputs, and is designed for interactive exploration.

Usage

vec_ptype(x, ..., x_arg = "")

vec_ptype_common(..., .ptype = NULL)

vec_ptype_show(...)

Arguments

x A vector

... For vec_ptype(), these dots are for future extensions and must be empty.
For vec_ptype_common() and vec_ptype_show(), vector inputs.

x_arg Argument name for x. This is used in error messages to inform the user about
the locations of incompatible types.

48 vec_ptype

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of
Alternatively, you can supply .ptype to give the output known type. If getOption("vctrs.no_guessing")
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

Value

vec_ptype() and vec_ptype_common() return a prototype (a size-0 vector)

vec_ptype()

vec_ptype() returns size 0 vectors potentially containing attributes but no data. Generally, this is
just vec_slice(x,0L), but some inputs require special handling.

• While you can’t slice NULL, the prototype of NULL is itself. This is because we treat NULL as
an identity value in the vec_ptype2() monoid.

• The prototype of logical vectors that only contain missing values is the special unspecified
type, which can be coerced to any other 1d type. This allows bare NAs to represent missing
values for any 1d vector type.

See internal-faq-ptype2-identity for more information about identity values.

Because it may contain unspecified vectors, the prototype returned by vec_ptype() is said to be
unfinalised. Call vec_ptype_finalise() to finalise it. Commonly you will need the finalised
prototype as returned by vec_slice(x,0L).

vec_ptype_common()

vec_ptype_common() first finds the prototype of each input, then successively calls vec_ptype2()
to find a common type. It returns a finalised prototype.

Dependencies of vec_ptype()

• vec_slice() for returning an empty slice

Dependencies of vec_ptype_common()

• vec_ptype2()

• vec_ptype_finalise()

Examples

Unknown types --
vec_ptype_show()
vec_ptype_show(NA)
vec_ptype_show(NULL)

Vectors --
vec_ptype_show(1:10)
vec_ptype_show(letters)
vec_ptype_show(TRUE)

vec_ptype_show(Sys.Date())
vec_ptype_show(Sys.time())

vec_ptype2.logical 49

vec_ptype_show(factor("a"))
vec_ptype_show(ordered("a"))

Matrices ---
The prototype of a matrix includes the number of columns
vec_ptype_show(array(1, dim = c(1, 2)))
vec_ptype_show(array("x", dim = c(1, 2)))

Data frames --
The prototype of a data frame includes the prototype of
every column
vec_ptype_show(iris)

The prototype of multiple data frames includes the prototype
of every column that in any data frame
vec_ptype_show(

data.frame(x = TRUE),
data.frame(y = 2),
data.frame(z = "a")

)

vec_ptype2.logical Find the common type for a pair of vectors

Description

vec_ptype2() defines the coercion hierarchy for a set of related vector types. Along with vec_cast(),
this generic forms the foundation of type coercions in vctrs.

vec_ptype2() is relevant when you are implementing vctrs methods for your class, but it should not
usually be called directly. If you need to find the common type of a set of inputs, call vec_ptype_common()
instead. This function supports multiple inputs and finalises the common type.

Usage

S3 method for class 'logical'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'integer'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'double'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'complex'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'character'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

S3 method for class 'raw'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

50 vec_recycle

S3 method for class 'list'
vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

vec_ptype2(x, y, ..., x_arg = "", y_arg = "")

Arguments

x, y Vector types.

... These dots are for future extensions and must be empty.

x_arg, y_arg Argument names for x and y. These are used in error messages to inform the user
about the locations of incompatible types (see stop_incompatible_type()).

Implementing coercion methods

• For an overview of how these generics work and their roles in vctrs, see ?theory-faq-coercion.

• For an example of implementing coercion methods for simple vectors, see ?howto-faq-coercion.

• For an example of implementing coercion methods for data frame subclasses, see ?howto-faq-coercion-data-frame.

• For a tutorial about implementing vctrs classes from scratch, see vignette("s3-vector").

Dependencies

• vec_ptype() is applied to x and y

See Also

stop_incompatible_type() when you determine from the attributes that an input can’t be cast to
the target type.

vec_recycle Vector recycling

Description

vec_recycle(x,size) recycles a single vector to given size. vec_recycle_common(...) recycles
multiple vectors to their common size. All functions obey the vctrs recycling rules, described below,
and will throw an error if recycling is not possible. See vec_size() for the precise definition of
size.

Usage

vec_recycle(x, size, ..., x_arg = "")

vec_recycle_common(..., .size = NULL)

vec_recycle 51

Arguments

x A vector to recycle.

size Desired output size.

... • For vec_recycle_common(), vectors to recycle.

– For vec_recycle(), these dots should be empty.

x_arg Argument name for x. These are used in error messages to inform the user about
which argument has an incompatible size.

.size Desired output size. If omitted, will use the common size from vec_size_common().

Recycling rules

The common size of two vectors defines the recycling rules, and can be summarise with the follow-
ing table:

(Note NULLs are handled specially; they are treated like empty arguments and hence don’t affect the
size)

This is a stricter set of rules than base R, which will usually return output of length max(nx,ny),
warning if the length of the longer vector is not an integer multiple of the length of the shorter.

We say that two vectors have compatible size if they can be recycled to be the same length.

Dependencies

• vec_slice()

52 vec_seq_along

Examples

Inputs with 1 observation are recycled
vec_recycle_common(1:5, 5)
vec_recycle_common(integer(), 5)
Not run:
vec_recycle_common(1:5, 1:2)

End(Not run)

Data frames and matrices are recycled along their rows
vec_recycle_common(data.frame(x = 1), 1:5)
vec_recycle_common(array(1:2, c(1, 2)), 1:5)
vec_recycle_common(array(1:3, c(1, 3, 1)), 1:5)

vec_seq_along Useful sequences

Description

vec_seq_along() is equivalent to seq_along() but uses size, not length. vec_init_along()
creates a vector of missing values with size matching an existing object.

Usage

vec_seq_along(x)

vec_init_along(x, y = x)

Arguments

x, y Vectors

Value

• vec_seq_along() an integer vector with the same size as x.

• vec_init_along() a vector with the same type as x and the same size as y.

Examples

vec_seq_along(mtcars)
vec_init_along(head(mtcars))

vec_size 53

vec_size Number of observations

Description

vec_size(x) returns the size of a vector. vec_is_empty() returns TRUE if the size is zero, FALSE
otherwise.

The size is distinct from the length() of a vector because it generalises to the "number of obser-
vations" for 2d structures, i.e. it’s the number of rows in matrix or a data frame. This definition
has the important property that every column of a data frame (even data frame and matrix columns)
have the same size. vec_size_common(...) returns the common size of multiple vectors.

list_sizes() returns an integer vector containing the size of each element of a list. It is nearly
equivalent to, but faster than, map_int(x,vec_size), with the exception that list_sizes() will
error on non-list inputs, as defined by vec_is_list(). list_sizes() is to vec_size() as lengths()
is to length().

Usage

vec_size(x)

vec_size_common(..., .size = NULL, .absent = 0L)

list_sizes(x)

vec_is_empty(x)

Arguments

x, ... Vector inputs or NULL.
.size If NULL, the default, the output size is determined by recycling the lengths of all

elements of Alternatively, you can supply .size to force a known size; in
this case, x and ... are ignored.

.absent The size used when no input is provided, or when all input is NULL. If left as
NULL when no input is supplied, an error is thrown.

Details

There is no vctrs helper that retrieves the number of columns: as this is a property of the type.

vec_size() is equivalent to NROW() but has a name that is easier to pronounce, and throws an error
when passed non-vector inputs.

Value

An integer (or double for long vectors).

vec_size_common() returns .absent if all inputs are NULL or absent, 0L by default.

Invariants

• vec_size(dataframe) == vec_size(dataframe[[i]])

• vec_size(matrix) == vec_size(matrix[,i,drop = FALSE])

• vec_size(vec_c(x,y)) == vec_size(x) + vec_size(y)

54 vec_split

The size of NULL

The size of NULL is hard-coded to 0L in vec_size(). vec_size_common() returns .absent when
all inputs are NULL (if only some inputs are NULL, they are simply ignored).

A default size of 0 makes sense because sizes are most often queried in order to compute a total
size while assembling a collection of vectors. Since we treat NULL as an absent input by principle,
we return the identity of sizes under addition to reflect that an absent input doesn’t take up any size.

Note that other defaults might make sense under different circumstances. For instance, a default
size of 1 makes sense for finding the common size because 1 is the identity of the recycling rules.

Dependencies

• vec_proxy()

See Also

vec_slice() for a variation of [compatible with vec_size(), and vec_recycle() to recycle
vectors to common length.

Examples

vec_size(1:100)
vec_size(mtcars)
vec_size(array(dim = c(3, 5, 10)))

vec_size_common(1:10, 1:10)
vec_size_common(1:10, 1)
vec_size_common(integer(), 1)

list_sizes(list("a", 1:5, letters))

vec_split Split a vector into groups

Description

This is a generalisation of split() that can split by any type of vector, not just factors. Instead of
returning the keys in the character names, the are returned in a separate parallel vector.

Usage

vec_split(x, by)

Arguments

x Vector to divide into groups.
by Vector whose unique values defines the groups.

Value

A data frame with two columns and size equal to vec_size(vec_unique(by)). The key column
has the same type as by, and the val column is a list containing elements of type vec_ptype(x).

Note for complex types, the default data.frame print method will be suboptimal, and you will
want to coerce into a tibble to better understand the output.

vec_unique 55

Dependencies

• vec_group_loc()

• vec_chop()

Examples

vec_split(mtcars$cyl, mtcars$vs)
vec_split(mtcars$cyl, mtcars[c("vs", "am")])

if (require("tibble")) {
as_tibble(vec_split(mtcars$cyl, mtcars[c("vs", "am")]))
as_tibble(vec_split(mtcars, mtcars[c("vs", "am")]))

}

vec_unique Find and count unique values

Description

• vec_unique(): the unique values. Equivalent to unique().

• vec_unique_loc(): the locations of the unique values.

• vec_unique_count(): the number of unique values.

Usage

vec_unique(x)

vec_unique_loc(x)

vec_unique_count(x)

Arguments

x A vector (including a data frame).

Value

• vec_unique(): a vector the same type as x containing only unique values.

• vec_unique_loc(): an integer vector, giving locations of unique values.

• vec_unique_count(): an integer vector of length 1, giving the number of unique values.

Dependencies

• vec_proxy_equal()

Missing values

In most cases, missing values are not considered to be equal, i.e. NA == NA is not TRUE. This be-
haviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all
NaN are also considered to be equal.)

56 %0%

See Also

vec_duplicate for functions that work with the dual of unique values: duplicated values.

Examples

x <- rpois(100, 8)
vec_unique(x)
vec_unique_loc(x)
vec_unique_count(x)

`vec_unique()` returns values in the order that encounters them
use sort = "location" to match to the result of `vec_count()`
head(vec_unique(x))
head(vec_count(x, sort = "location"))

Normally missing values are not considered to be equal
NA == NA

But they are for the purposes of considering uniqueness
vec_unique(c(NA, NA, NA, NA, 1, 2, 1))

%0% Default value for empty vectors

Description

Use this inline operator when you need to provide a default value for empty (as defined by vec_is_empty())
vectors.

Usage

x %0% y

Arguments

x A vector

y Value to use if x is empty. To preserve type-stability, should be the same type as
x.

Examples

1:10 %0% 5
integer() %0% 5

Index

?howto-faq-coercion-data-frame, 2
%0%, 56
%in%, 44

anyDuplicated(), 40
as.list(), 36
as_list_of (list_of), 16

base type, 25, 35
base::c(), 19, 30, 33
base::make.names(), 26, 28

data.frame, 25, 26
df_cast (df_ptype2), 2
df_cast(), 23
df_ptype2, 2
df_ptype2(), 11, 23
duplicated(), 40

expression, 25

faq-error-incompatible-attributes, 3
finalised, 48
finalises, 49

howto guide, 19
howto-faq-coercion, 4
howto-faq-coercion-data-frame, 8

identity, 19
internal-faq-ptype2-identity, 14, 48
is.na, 41
is_list_of (list_of), 16

length(), 53
lengths(), 53
list_of, 16
list_sizes (vec_size), 53

match(), 44
merge(), 44

name specification topic, 18, 33, 37
name_spec, 17
names(), 45

new_vctr(), 18

reference-faq-compatibility, 18
reserved, 28
rlang::names2(), 28, 45
rlang::zap(), 18, 32, 37

seq_along(), 52
size, 48
split(), 54
stop_incompatible_cast(), 35
stop_incompatible_type(), 3, 17, 34, 50

theory overview, 19
theory-faq-coercion, 20
tib_cast (df_ptype2), 2
tib_cast(), 11
tib_ptype2 (df_ptype2), 2
tib_ptype2(), 11
type, 53
typeof(), 25

unique(), 55
unspecified, 48

validate_list_of (list_of), 16
vec-rep, 24
vec_as_names, 26
vec_as_names(), 29, 33, 37, 45
vec_assert, 25
vec_assign(), 30
vec_bind, 28
vec_c, 32
vec_c(), 19, 29, 30, 36, 37
vec_cast, 34
vec_cast(), 3, 19, 35, 49
vec_cast.vctrs_list_of (list_of), 16
vec_cast_common (vec_cast), 34
vec_cast_common(), 30, 33, 38, 42, 44
vec_cbind (vec_bind), 28
vec_cbind(), 8, 33
vec_chop, 36
vec_chop(), 55
vec_compare, 38
vec_count, 39

57

58 INDEX

vec_count(), 19
vec_duplicate, 40, 56
vec_duplicate_any (vec_duplicate), 40
vec_duplicate_detect (vec_duplicate), 40
vec_duplicate_id (vec_duplicate), 40
vec_equal, 41
vec_equal_na (vec_equal), 41
vec_group_loc(), 55
vec_in (vec_match), 43
vec_init, 42
vec_init(), 30
vec_init_along (vec_seq_along), 52
vec_is (vec_assert), 25
vec_is_empty (vec_size), 53
vec_is_empty(), 56
vec_is_list, 43
vec_is_list(), 53
vec_match, 43
vec_names, 45
vec_names2 (vec_names), 45
vec_order, 46
vec_order(), 39, 47
vec_proxy(), 19, 25, 30, 33, 43, 54
vec_proxy_compare(), 38, 47
vec_proxy_equal(), 39, 41, 42, 44, 55
vec_ptype, 47
vec_ptype(), 25, 50
vec_ptype2 (vec_ptype2.logical), 49
vec_ptype2(), 3, 19, 34, 35, 48
vec_ptype2.logical, 49
vec_ptype2.vctrs_list_of (list_of), 16
vec_ptype_common (vec_ptype), 47
vec_ptype_common(), 49
vec_ptype_finalise(), 48
vec_ptype_show (vec_ptype), 47
vec_rbind (vec_bind), 28
vec_rbind(), 8, 19, 33
vec_recycle, 50
vec_recycle(), 54
vec_recycle_common (vec_recycle), 50
vec_recycle_common(), 38, 42
vec_rep (vec-rep), 24
vec_rep_each (vec-rep), 24
vec_restore(), 19, 30, 33
vec_seq_along, 52
vec_set_names (vec_names), 45
vec_size, 53
vec_size(), 45, 50
vec_size_common (vec_size), 53
vec_size_common(), 51
vec_slice(), 19, 24, 37, 39, 47, 48, 51, 54
vec_sort (vec_order), 46

vec_split, 54
vec_unchop (vec_chop), 36
vec_unique, 55
vec_unique(), 41
vec_unique_count (vec_unique), 55
vec_unique_loc (vec_unique), 55

zapped, 29

	df_ptype2
	faq-error-incompatible-attributes
	howto-faq-coercion
	howto-faq-coercion-data-frame
	internal-faq-ptype2-identity
	list_of
	name_spec
	reference-faq-compatibility
	theory-faq-coercion
	vec-rep
	vec_assert
	vec_as_names
	vec_bind
	vec_c
	vec_cast
	vec_chop
	vec_compare
	vec_count
	vec_duplicate
	vec_equal
	vec_init
	vec_is_list
	vec_match
	vec_names
	vec_order
	vec_ptype
	vec_ptype2.logical
	vec_recycle
	vec_seq_along
	vec_size
	vec_split
	vec_unique
	%0%
	Index

