Introduction to surveysd

2019-07-15

The goal of surveysd is to combine all necessary steps to use calibrated bootstrapping with custom estimation functions. This vignette will cover the usage of the most important functions. For insights in the theory used in this package, refer to vignette("methodology").

Load dummy data

A test data set based on data(eusilc, package = "laeken") can be created with demo.eusilc()

library(surveysd)

set.seed(1234)
eusilc <- demo.eusilc(n = 2, prettyNames = TRUE)

eusilc[1:5, .(year, povertyRisk, gender, pWeight)]
year povertyRisk gender pWeight
2010 FALSE female 504.5696
2010 FALSE male 504.5696
2010 FALSE male 504.5696
2010 FALSE female 493.3824
2010 FALSE male 493.3824

Draw bootstrap replicates

Use stratified resampling without replacement to generate 10 samples. Those samples are consistent with respect to the reference periods.

dat_boot <- draw.bootstrap(eusilc, REP = 10, hid = "hid", weights = "pWeight", 
                           strata = "region", period = "year")

Calibrate bootstrap replicates

Calibrate each sample according to the distribution of gender (on a personal level) and region (on a household level).

dat_boot_calib <- recalib(dat_boot, conP.var = "gender", conH.var = "region")
## Convergence reached in 2 steps
## Convergence reached in 3 steps 
## 
## Convergence reached in 3 steps
## Convergence reached in 1 steps
## Convergence reached in 2 steps
## Convergence reached in 3 steps
## Convergence reached in 1 steps
## Convergence reached in 3 steps
## Convergence reached in 2 steps 
## 
## Convergence reached in 2 steps
dat_boot_calib[1:5, .(year, povertyRisk, gender, pWeight, w1, w2, w3, w4)]
year povertyRisk gender pWeight w1 w2 w3 w4
2010 FALSE female 504.5696 1.456272 1.458504 1006.351 1007.677
2010 FALSE male 504.5696 1.456272 1.458504 1006.351 1007.677
2010 FALSE male 504.5696 1.456272 1.458504 1006.351 1007.677
2011 FALSE female 504.5696 1.464918 1.563892 1012.509 1007.677
2011 FALSE male 504.5696 1.464918 1.563892 1012.509 1007.677

Estimate with respect to a grouping variable

Estimate relative amount of persons at risk of poverty per period and gender.

err.est <- calc.stError(dat_boot_calib, var = "povertyRisk", fun = weightedRatio, group = "gender")
err.est$Estimates
year n N gender val_povertyRisk stE_povertyRisk
2010 7267 3979572 male 12.02660 0.4889923
2010 7560 4202650 female 16.73351 0.5343574
2010 14827 8182222 NA 14.44422 0.4300383
2011 7267 3979572 male 12.81921 0.4693456
2011 7560 4202650 female 16.62488 0.4896667
2011 14827 8182222 NA 14.77393 0.4166631

The output contains estimates (val_povertyRisk) as well as standard errors (stE_povertyRisk) measured in percent.

Estimate with respect to several variables

Estimate relative amount of persons at risk of poverty per period for each region, gender, and combination of both.

group <- list("gender", "region", c("gender", "region"))
err.est <- calc.stError(dat_boot_calib, var = "povertyRisk", fun = weightedRatio, group = group)
head(err.est$Estimates)
year n N gender region val_povertyRisk stE_povertyRisk
2010 261 122741.8 male Burgenland 17.414524 3.175991
2010 288 137822.2 female Burgenland 21.432598 4.118974
2010 359 182732.9 male Vorarlberg 12.973259 2.147179
2010 374 194622.1 female Vorarlberg 19.883637 2.682142
2010 440 253143.7 male Salzburg 9.156964 2.080256
2010 484 282307.3 female Salzburg 17.939382 3.167576
## skipping 54 more rows