Introduction to SuperML

Manish Saraswat

2020-02-23

SuperML R package is designed to unify the model training process in R like Python. Generally, it’s seen that people spend lot of time in searching for packages, figuring out the syntax for training machine learning models in R. This behaviour is highly apparent in users who frequently switch between R and Python. This package provides a python´s scikit-learn interface (fit, predict) to train models faster.

In addition to building machine learning models, there are handy functionalities to do feature engineering

This ambitious package is my ongoing effort to help the r-community build ML models easily and faster in R.

Install

You can install latest cran version using (recommended):

install.packages("superml")

You can install the developmemt version directly from github using:

devtools::install_github("saraswatmks/superml")

Caveats on superml installation

For machine learning, superml is based on the existing R packages. Hence, while installing the package, we don’t install all the dependencies. However, while training any model, superml will automatically install the package if its not found. Still, if you want to install all dependencies at once, you can simply do:

install.packages("superml", dependencies=TRUE)

Examples - Machine Learning Models

This package uses existing r-packages to build machine learning model. In this tutorial, we’ll use data.table R package to do all tasks related to data manipulation.

Regression Data

We’ll quickly prepare the data set to be ready to served for model training.

load("../data/reg_train.rda")
# if the above doesn't work, you can try: load("reg_train.rda")

library(data.table)
library(caret)
#> Loading required package: lattice
#> Loading required package: ggplot2
library(superml)

library(Metrics)
#> 
#> Attaching package: 'Metrics'
#> The following objects are masked from 'package:caret':
#> 
#>     precision, recall

head(reg_train)
#>    Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour
#> 1:  1         60       RL          65    8450   Pave  <NA>      Reg         Lvl
#> 2:  2         20       RL          80    9600   Pave  <NA>      Reg         Lvl
#> 3:  3         60       RL          68   11250   Pave  <NA>      IR1         Lvl
#> 4:  4         70       RL          60    9550   Pave  <NA>      IR1         Lvl
#> 5:  5         60       RL          84   14260   Pave  <NA>      IR1         Lvl
#> 6:  6         50       RL          85   14115   Pave  <NA>      IR1         Lvl
#>    Utilities LotConfig LandSlope Neighborhood Condition1 Condition2 BldgType
#> 1:    AllPub    Inside       Gtl      CollgCr       Norm       Norm     1Fam
#> 2:    AllPub       FR2       Gtl      Veenker      Feedr       Norm     1Fam
#> 3:    AllPub    Inside       Gtl      CollgCr       Norm       Norm     1Fam
#> 4:    AllPub    Corner       Gtl      Crawfor       Norm       Norm     1Fam
#> 5:    AllPub       FR2       Gtl      NoRidge       Norm       Norm     1Fam
#> 6:    AllPub    Inside       Gtl      Mitchel       Norm       Norm     1Fam
#>    HouseStyle OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl
#> 1:     2Story           7           5      2003         2003     Gable  CompShg
#> 2:     1Story           6           8      1976         1976     Gable  CompShg
#> 3:     2Story           7           5      2001         2002     Gable  CompShg
#> 4:     2Story           7           5      1915         1970     Gable  CompShg
#> 5:     2Story           8           5      2000         2000     Gable  CompShg
#> 6:     1.5Fin           5           5      1993         1995     Gable  CompShg
#>    Exterior1st Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond Foundation
#> 1:     VinylSd     VinylSd    BrkFace        196        Gd        TA      PConc
#> 2:     MetalSd     MetalSd       None          0        TA        TA     CBlock
#> 3:     VinylSd     VinylSd    BrkFace        162        Gd        TA      PConc
#> 4:     Wd Sdng     Wd Shng       None          0        TA        TA     BrkTil
#> 5:     VinylSd     VinylSd    BrkFace        350        Gd        TA      PConc
#> 6:     VinylSd     VinylSd       None          0        TA        TA       Wood
#>    BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2
#> 1:       Gd       TA           No          GLQ        706          Unf
#> 2:       Gd       TA           Gd          ALQ        978          Unf
#> 3:       Gd       TA           Mn          GLQ        486          Unf
#> 4:       TA       Gd           No          ALQ        216          Unf
#> 5:       Gd       TA           Av          GLQ        655          Unf
#> 6:       Gd       TA           No          GLQ        732          Unf
#>    BsmtFinSF2 BsmtUnfSF TotalBsmtSF Heating HeatingQC CentralAir Electrical
#> 1:          0       150         856    GasA        Ex          Y      SBrkr
#> 2:          0       284        1262    GasA        Ex          Y      SBrkr
#> 3:          0       434         920    GasA        Ex          Y      SBrkr
#> 4:          0       540         756    GasA        Gd          Y      SBrkr
#> 5:          0       490        1145    GasA        Ex          Y      SBrkr
#> 6:          0        64         796    GasA        Ex          Y      SBrkr
#>    1stFlrSF 2ndFlrSF LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath FullBath
#> 1:      856      854            0      1710            1            0        2
#> 2:     1262        0            0      1262            0            1        2
#> 3:      920      866            0      1786            1            0        2
#> 4:      961      756            0      1717            1            0        1
#> 5:     1145     1053            0      2198            1            0        2
#> 6:      796      566            0      1362            1            0        1
#>    HalfBath BedroomAbvGr KitchenAbvGr KitchenQual TotRmsAbvGrd Functional
#> 1:        1            3            1          Gd            8        Typ
#> 2:        0            3            1          TA            6        Typ
#> 3:        1            3            1          Gd            6        Typ
#> 4:        0            3            1          Gd            7        Typ
#> 5:        1            4            1          Gd            9        Typ
#> 6:        1            1            1          TA            5        Typ
#>    Fireplaces FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars
#> 1:          0        <NA>     Attchd        2003          RFn          2
#> 2:          1          TA     Attchd        1976          RFn          2
#> 3:          1          TA     Attchd        2001          RFn          2
#> 4:          1          Gd     Detchd        1998          Unf          3
#> 5:          1          TA     Attchd        2000          RFn          3
#> 6:          0        <NA>     Attchd        1993          Unf          2
#>    GarageArea GarageQual GarageCond PavedDrive WoodDeckSF OpenPorchSF
#> 1:        548         TA         TA          Y          0          61
#> 2:        460         TA         TA          Y        298           0
#> 3:        608         TA         TA          Y          0          42
#> 4:        642         TA         TA          Y          0          35
#> 5:        836         TA         TA          Y        192          84
#> 6:        480         TA         TA          Y         40          30
#>    EnclosedPorch 3SsnPorch ScreenPorch PoolArea PoolQC Fence MiscFeature
#> 1:             0         0           0        0   <NA>  <NA>        <NA>
#> 2:             0         0           0        0   <NA>  <NA>        <NA>
#> 3:             0         0           0        0   <NA>  <NA>        <NA>
#> 4:           272         0           0        0   <NA>  <NA>        <NA>
#> 5:             0         0           0        0   <NA>  <NA>        <NA>
#> 6:             0       320           0        0   <NA> MnPrv        Shed
#>    MiscVal MoSold YrSold SaleType SaleCondition SalePrice
#> 1:       0      2   2008       WD        Normal    208500
#> 2:       0      5   2007       WD        Normal    181500
#> 3:       0      9   2008       WD        Normal    223500
#> 4:       0      2   2006       WD       Abnorml    140000
#> 5:       0     12   2008       WD        Normal    250000
#> 6:     700     10   2009       WD        Normal    143000

split <- createDataPartition(y = reg_train$SalePrice, p = 0.7)
xtrain <- reg_train[split$Resample1]
xtest <- reg_train[!split$Resample1]
# remove features with 90% or more missing values
# we will also remove the Id column because it doesn't contain
# any useful information
na_cols <- colSums(is.na(xtrain)) / nrow(xtrain)
na_cols <- names(na_cols[which(na_cols > 0.9)])

xtrain[, c(na_cols, "Id") := NULL]
xtest[, c(na_cols, "Id") := NULL]

# encode categorical variables
cat_cols <- names(xtrain)[sapply(xtrain, is.character)]

for(c in cat_cols){
    lbl <- LabelEncoder$new()
    lbl$fit(c(xtrain[[c]], xtest[[c]]))
    xtrain[[c]] <- lbl$transform(xtrain[[c]])
    xtest[[c]] <- lbl$transform(xtest[[c]])
}
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA' 
#> The data contains NA values. Imputing NA with 'NA'

# removing noise column
noise <- c('GrLivArea','TotalBsmtSF')

xtrain[, c(noise) := NULL]
xtest[, c(noise) := NULL]

# fill missing value with  -1
xtrain[is.na(xtrain)] <- -1
xtest[is.na(xtest)] <- -1

KNN Regression

SVM Regression

Simple Regresison

lf <- LMTrainer$new(family="gaussian")
lf$fit(X = xtrain, y = "SalePrice")
summary(lf$model)
#> 
#> Call:
#> stats::glm(formula = f, family = self$family, data = X, weights = self$weights)
#> 
#> Deviance Residuals: 
#>     Min       1Q   Median       3Q      Max  
#> -312721   -14153     -156    12115   244735  
#> 
#> Coefficients: (1 not defined because of singularities)
#>                 Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)   -8.869e+05  1.547e+06  -0.573 0.566473    
#> MSSubClass    -1.067e+02  5.380e+01  -1.983 0.047704 *  
#> MSZoning      -6.443e+02  1.405e+03  -0.459 0.646618    
#> LotFrontage   -4.261e+01  3.312e+01  -1.287 0.198554    
#> LotArea        5.286e-01  1.198e-01   4.412 1.14e-05 ***
#> Street        -4.959e+04  1.965e+04  -2.524 0.011768 *  
#> LotShape      -5.552e+02  1.982e+03  -0.280 0.779415    
#> LandContour    1.862e+03  1.809e+03   1.029 0.303795    
#> Utilities             NA         NA      NA       NA    
#> LotConfig      1.063e+03  1.050e+03   1.013 0.311359    
#> LandSlope      7.696e+03  4.620e+03   1.666 0.096130 .  
#> Neighborhood  -7.277e+02  1.766e+02  -4.120 4.12e-05 ***
#> Condition1    -1.831e+03  8.433e+02  -2.171 0.030203 *  
#> Condition2     8.107e+02  5.482e+03   0.148 0.882473    
#> BldgType      -1.563e+03  1.998e+03  -0.782 0.434228    
#> HouseStyle     5.478e+02  8.798e+02   0.623 0.533653    
#> OverallQual    1.450e+04  1.357e+03  10.689  < 2e-16 ***
#> OverallCond    4.953e+03  1.229e+03   4.030 6.03e-05 ***
#> YearBuilt      4.486e+02  8.102e+01   5.537 3.98e-08 ***
#> YearRemodAdd   8.126e+01  7.812e+01   1.040 0.298532    
#> RoofStyle      6.332e+03  2.012e+03   3.147 0.001699 ** 
#> RoofMatl      -2.530e+04  3.552e+03  -7.124 2.08e-12 ***
#> Exterior1st   -2.487e+02  5.735e+02  -0.434 0.664661    
#> Exterior2nd    3.682e+02  5.392e+02   0.683 0.494803    
#> MasVnrType     4.476e+03  1.558e+03   2.872 0.004166 ** 
#> MasVnrArea     3.590e+01  6.962e+00   5.156 3.07e-07 ***
#> ExterQual      4.947e+03  2.381e+03   2.078 0.037969 *  
#> ExterCond      2.716e+02  1.697e+03   0.160 0.872881    
#> Foundation    -2.724e+03  2.024e+03  -1.345 0.178800    
#> BsmtQual       6.312e+03  1.439e+03   4.387 1.28e-05 ***
#> BsmtCond      -3.555e+03  1.851e+03  -1.921 0.055091 .  
#> BsmtExposure   9.860e+02  8.425e+02   1.170 0.242165    
#> BsmtFinType1  -1.270e+03  7.624e+02  -1.666 0.095961 .  
#> BsmtFinSF1     9.079e+00  5.589e+00   1.624 0.104604    
#> BsmtFinType2   9.813e+02  1.284e+03   0.764 0.445024    
#> BsmtFinSF2    -9.117e-01  1.107e+01  -0.082 0.934395    
#> BsmtUnfSF      4.139e+00  5.277e+00   0.784 0.433040    
#> Heating       -6.717e+02  3.602e+03  -0.186 0.852124    
#> HeatingQC     -1.244e+03  1.400e+03  -0.889 0.374457    
#> CentralAir     3.564e+03  5.220e+03   0.683 0.494967    
#> Electrical     3.257e+03  1.994e+03   1.634 0.102676    
#> `1stFlrSF`     5.827e+01  7.050e+00   8.264 4.70e-16 ***
#> `2ndFlrSF`     5.097e+01  5.866e+00   8.689  < 2e-16 ***
#> LowQualFinSF   5.024e+01  2.183e+01   2.301 0.021616 *  
#> BsmtFullBath   1.043e+04  2.875e+03   3.629 0.000300 ***
#> BsmtHalfBath   7.068e+03  4.481e+03   1.577 0.115049    
#> FullBath       5.511e+03  3.078e+03   1.791 0.073680 .  
#> HalfBath       9.987e+02  2.931e+03   0.341 0.733366    
#> BedroomAbvGr  -9.788e+03  1.892e+03  -5.173 2.81e-07 ***
#> KitchenAbvGr  -2.529e+04  5.869e+03  -4.309 1.81e-05 ***
#> KitchenQual    5.420e+03  1.793e+03   3.023 0.002567 ** 
#> TotRmsAbvGrd   4.951e+03  1.370e+03   3.613 0.000319 ***
#> Functional    -6.199e+03  1.471e+03  -4.213 2.76e-05 ***
#> Fireplaces    -3.105e+03  2.511e+03  -1.237 0.216538    
#> FireplaceQu    4.681e+03  1.322e+03   3.542 0.000417 ***
#> GarageType     1.116e+03  1.224e+03   0.912 0.362168    
#> GarageYrBlt   -1.392e+00  5.058e+00  -0.275 0.783201    
#> GarageFinish   2.139e+03  1.433e+03   1.493 0.135761    
#> GarageCars     1.367e+04  3.397e+03   4.023 6.20e-05 ***
#> GarageArea    -2.927e+00  1.150e+01  -0.254 0.799235    
#> GarageQual     7.193e+03  3.239e+03   2.221 0.026584 *  
#> GarageCond    -5.070e+03  3.096e+03  -1.638 0.101799    
#> PavedDrive    -5.657e+02  3.208e+03  -0.176 0.860090    
#> WoodDeckSF     2.764e+01  9.006e+00   3.069 0.002206 ** 
#> OpenPorchSF    2.246e+01  1.742e+01   1.289 0.197590    
#> EnclosedPorch  1.691e+01  1.832e+01   0.923 0.356189    
#> `3SsnPorch`    4.264e+01  3.189e+01   1.337 0.181589    
#> ScreenPorch    7.476e+01  1.836e+01   4.072 5.04e-05 ***
#> PoolArea      -1.420e+02  2.800e+01  -5.072 4.72e-07 ***
#> Fence         -2.151e+03  1.208e+03  -1.781 0.075281 .  
#> MiscVal        4.080e-01  1.928e+00   0.212 0.832457    
#> MoSold        -3.455e+01  3.606e+02  -0.096 0.923676    
#> YrSold        -1.068e+02  7.714e+02  -0.138 0.889971    
#> SaleType       1.711e+03  1.123e+03   1.523 0.128123    
#> SaleCondition  1.265e+03  1.417e+03   0.893 0.372115    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for gaussian family taken to be 924586571)
#> 
#>     Null deviance: 6.5130e+12  on 1023  degrees of freedom
#> Residual deviance: 8.7836e+11  on  950  degrees of freedom
#> AIC: 24120
#> 
#> Number of Fisher Scoring iterations: 2
predictions <- lf$predict(df = xtest)
#> Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
#> prediction from a rank-deficient fit may be misleading
rmse(actual = xtest$SalePrice, predicted = predictions)
#> [1] 39199.97

Lasso Regression

Ridge Regression

Logistic Regression with CV

Random Forest

rf <- RFTrainer$new(n_estimators = 500,classification = 0)
rf$fit(X = xtrain, y = "SalePrice")
pred <- rf$predict(df = xtest)
rf$get_importance()
#>               tmp.order.tmp..decreasing...TRUE..
#> OverallQual                         851141093154
#> GarageCars                          543432846752
#> GarageArea                          516876871803
#> 1stFlrSF                            455215579840
#> YearBuilt                           353643428887
#> GarageYrBlt                         270776166946
#> TotRmsAbvGrd                        245291633779
#> FullBath                            237648654877
#> BsmtFinSF1                          228928144052
#> ExterQual                           217239164448
#> 2ndFlrSF                            200955475376
#> YearRemodAdd                        185111643401
#> LotArea                             183604542285
#> FireplaceQu                         135943402607
#> MasVnrArea                          133234231707
#> KitchenQual                         132688819478
#> Fireplaces                          131545119503
#> BsmtQual                            106127952582
#> Foundation                           91183755051
#> LotFrontage                          86638860362
#> OpenPorchSF                          78913428084
#> BsmtUnfSF                            74068580543
#> WoodDeckSF                           67589665696
#> BsmtFinType1                         66763485071
#> HeatingQC                            55961299176
#> Neighborhood                         55202869365
#> BedroomAbvGr                         44462438646
#> GarageType                           44077677491
#> MoSold                               40583559479
#> Exterior2nd                          39556400578
#> MSSubClass                           36117441873
#> OverallCond                          32373395419
#> HalfBath                             31499472769
#> GarageFinish                         30757218169
#> RoofStyle                            27971841689
#> Exterior1st                          27891891648
#> HouseStyle                           26139092758
#> BsmtFullBath                         25741188958
#> SaleType                             23237072645
#> LotShape                             22866062392
#> SaleCondition                        21972141745
#> MasVnrType                           19581436553
#> YrSold                               19498533543
#> LandContour                          18776176249
#> BsmtExposure                         18506415951
#> MSZoning                             17924121768
#> RoofMatl                             17518630037
#> LotConfig                            13829433621
#> BsmtHalfBath                         13598617391
#> LandSlope                            13585472731
#> ScreenPorch                          13573416011
#> BldgType                             12944754332
#> GarageQual                           11350048833
#> EnclosedPorch                        10301069753
#> CentralAir                           10263123802
#> Condition1                            8673929149
#> BsmtCond                              7316006842
#> GarageCond                            7049152113
#> KitchenAbvGr                          6879979650
#> BsmtFinSF2                            6101127998
#> BsmtFinType2                          5763938629
#> ExterCond                             5686339958
#> Functional                            5206294563
#> LowQualFinSF                          4957845417
#> Fence                                 4656313900
#> PavedDrive                            3454428095
#> Heating                               3213052335
#> 3SsnPorch                             2706887579
#> Electrical                            2176546975
#> MiscVal                               1742846900
#> PoolArea                              1584610825
#> Condition2                             442990801
#> Street                                 218735977
#> Utilities                                      0
rmse(actual = xtest$SalePrice, predicted = pred)
#> [1] 31742.83

Xgboost

Grid Search

xgb <- XGBTrainer$new(objective ="reg:linear")

gst <-GridSearchCV$new(trainer = xgb,
                             parameters = list(n_estimators = c(10,50), max_depth = c(5,2)),
                             n_folds = 3,
                             scoring = c('accuracy','auc'))
gst$fit(xtrain, "SalePrice")
#> [1] "entering grid search"
#> [1] "In total, 4 models will be trained"
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:139727.328125 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [10] train-rmse:15665.415039
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:143033.781250 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [10] train-rmse:15812.692383
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:143991.125000 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [10] train-rmse:16764.001953
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:139727.328125 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [50] train-rmse:3843.248779
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:143033.781250 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [50] train-rmse:3932.498535
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:143991.125000 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [50] train-rmse:4439.479980
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:140423.640625 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [10] train-rmse:29755.812500
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:143791.296875 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [10] train-rmse:28921.111328
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:144911.234375 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [10] train-rmse:32092.230469
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:140423.640625 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [50] train-rmse:17377.691406
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:143791.296875 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [50] train-rmse:16180.614258
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-rmse:144911.234375 
#> Will train until train_rmse hasn't improved in 50 rounds.
#> 
#> [50] train-rmse:18942.558594
gst$best_iteration()
#> $n_estimators
#> [1] 10
#> 
#> $max_depth
#> [1] 5
#> 
#> $accuracy_avg
#> [1] 0
#> 
#> $accuracy_sd
#> [1] 0
#> 
#> $auc_avg
#> [1] NaN
#> 
#> $auc_sd
#> [1] NA

Random Search

Binary Classification Data

Here, we will solve a simple binary classification problem (predict people who survived on titanic ship). The idea here is to demonstrate how to use this package to solve classification problems.

Data Preparation

# load class
load('../data/cla_train.rda')
# if the above doesn't work, you can try: load("cla_train.rda")

head(cla_train)
#>    PassengerId Survived Pclass
#> 1:           1        0      3
#> 2:           2        1      1
#> 3:           3        1      3
#> 4:           4        1      1
#> 5:           5        0      3
#> 6:           6        0      3
#>                                                   Name    Sex Age SibSp Parch
#> 1:                             Braund, Mr. Owen Harris   male  22     1     0
#> 2: Cumings, Mrs. John Bradley (Florence Briggs Thayer) female  38     1     0
#> 3:                              Heikkinen, Miss. Laina female  26     0     0
#> 4:        Futrelle, Mrs. Jacques Heath (Lily May Peel) female  35     1     0
#> 5:                            Allen, Mr. William Henry   male  35     0     0
#> 6:                                    Moran, Mr. James   male  NA     0     0
#>              Ticket    Fare Cabin Embarked
#> 1:        A/5 21171  7.2500              S
#> 2:         PC 17599 71.2833   C85        C
#> 3: STON/O2. 3101282  7.9250              S
#> 4:           113803 53.1000  C123        S
#> 5:           373450  8.0500              S
#> 6:           330877  8.4583              Q

# split the data
split <- createDataPartition(y = cla_train$Survived,p = 0.7)
xtrain <- cla_train[split$Resample1]
xtest <- cla_train[!split$Resample1]

# encode categorical variables - shorter way
for(c in c('Embarked','Sex','Cabin')){
    lbl <- LabelEncoder$new()
    lbl$fit(c(xtrain[[c]], xtest[[c]]))
    xtrain[[c]] <- lbl$transform(xtrain[[c]])
    xtest[[c]] <- lbl$transform(xtest[[c]])
}
#> The data contains blank values. Imputing them with 'NA' 
#> The data contains blank values. Imputing them with 'NA' 
#> The data contains blank values. Imputing them with 'NA' 
#> The data contains blank values. Imputing them with 'NA' 
#> The data contains blank values. Imputing them with 'NA'

# impute missing values
xtrain[, Age := replace(Age, is.na(Age), median(Age, na.rm = T))]
xtest[, Age := replace(Age, is.na(Age), median(Age, na.rm = T))]

# drop these features
to_drop <- c('PassengerId','Ticket','Name')

xtrain <- xtrain[,-c(to_drop), with=F]
xtest <- xtest[,-c(to_drop), with=F]

Now, our data is ready to be served for model training. Let’s do it.

KNN Classification

Naive Bayes Classification

SVM Classification

Logistic Regression

Lasso Logistic Regression

Ridge Logistic Regression

Random Forest

Xgboost

Grid Search

xgb <- XGBTrainer$new(objective="binary:logistic")
gst <-GridSearchCV$new(trainer = xgb,
                             parameters = list(n_estimators = c(10,50),
                             max_depth = c(5,2)),
                             n_folds = 3,
                             scoring = c('accuracy','auc'))
gst$fit(xtrain, "Survived")
#> [1] "entering grid search"
#> [1] "In total, 4 models will be trained"
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.144231 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [10] train-error:0.108173
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.134615 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [10] train-error:0.112981
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.115385 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [10] train-error:0.084135
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.144231 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [50] train-error:0.045673
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.134615 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [50] train-error:0.045673
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.115385 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [50] train-error:0.038462
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.211538 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [10] train-error:0.158654
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.201923 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [10] train-error:0.168269
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.206731 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [10] train-error:0.141827
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.211538 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [50] train-error:0.127404
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.201923 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [50] train-error:0.132212
#> converting the data into xgboost format..
#> starting with training...
#> [1]  train-error:0.206731 
#> Will train until train_error hasn't improved in 50 rounds.
#> 
#> [50] train-error:0.108173
gst$best_iteration()
#> $n_estimators
#> [1] 10
#> 
#> $max_depth
#> [1] 5
#> 
#> $accuracy_avg
#> [1] 0
#> 
#> $accuracy_sd
#> [1] 0
#> 
#> $auc_avg
#> [1] 0.8619512
#> 
#> $auc_sd
#> [1] 0.02280628

Random Search

Let’s create some new feature based on target variable using target encoding and test a model.