The rOpenSci projects aims to provide programmatic access to scientific data repositories on the web. A vast majority of the packages in our current suite retrieve some form of biodiversity or taxonomic data. Since several of these datasets have been georeferenced, it provides numerous opportunities for visualizing species distributions, building species distribution maps, and for using it analyses such as species distribution models. In an effort to streamline access to these data, we have developed a package called spocc
, which provides a unified API to all the biodiversity sources that we provide. The obvious advantage is that a user can interact with a common API and not worry about the nuances in syntax that differ between packages. As more data sources come online, users can access even more data without significant changes to their code. However, it is important to note that spocc will never replicate the full functionality that exists within specific packages. Therefore users with a strong interest in one of the specific data sources listed below would benefit from familiarising themselves with the inner working of the appropriate packages.
spocc
currently interfaces with nine major biodiversity repositories
Global Biodiversity Information Facility (GBIF) (via rgbif
)
GBIF is a government funded open data repository with several partner organizations with the express goal of providing access to data on Earth's biodiversity. The data are made available by a network of member nodes, coordinating information from various participant organizations and government agencies.
Berkeley Ecoengine (via ecoengine
)
The ecoengine is an open API built by the Berkeley Initiative for Global Change Biology. The repository provides access to over 3 million specimens from various Berkeley natural history museums. These data span more than a century and provide access to georeferenced specimens, species checklists, photographs, vegetation surveys and resurveys and a variety of measurements from environmental sensors located at reserves across University of California's natural reserve system.
iNaturalist iNaturalist provides access to crowd sourced citizen science data on species observations.
VertNet (via rvertnet
)
Similar to rgbif
, ecoengine, and rbison
(see below), VertNet provides access to more than 80 million vertebrate records spanning a large number of institutions and museums primarly covering four major disciplines (mammology, herpetology, ornithology, and icthyology). Note that we don't currenlty support VertNet data in this package, but we should soon
Biodiversity Information Serving Our Nation (via rbison
)
Built by the US Geological Survey's core science analytic team, BISON is a portal that provides access to species occurrence data from several participating institutions.
eBird (via rebird
)
ebird is a database developed and maintained by the Cornell Lab of Ornithology and the National Audubon Society. It provides real-time access to checklist data, data on bird abundance and distribution, and communtiy reports from birders.
AntWeb (via AntWeb
)
AntWeb is the world's largest online database of images, specimen records, and natural history information on ants. It is community driven and open to contribution from anyone with specimen records, natural history comments, or images.
iDigBio (via ridigbio
)
iDigBio facilitates the digitization of biological and paleobiological specimens and their associated data, and houses specimen data, as well as providing their specimen data via RESTful web services.
OBIS OBIS (Ocean Biogeographic Information System) allows users to search marine species datasets from all of the world's oceans.
Important Note: It's important to keep in mind that several data providers interface with many of the above mentioned repositories. This means that occurence data obtained from BISON may be duplicates of data that are also available through GBIF. We do not have a way to resolve these duplicates or overlaps at this time but it is an issue we are hoping to resolve in future versions of the package. See ?spocc_duplicates
, after installation, for more.
The most significant function in spocc is the occ
(short for occurrence) function. occ
takes a query, often a species name, and searches across all data sources specified in the from
argument. For example, one can search for all occurrences of Sharp-shinned Hawks (Accipiter striatus) from the GBIF database with the following R call.
library('spocc')
(df <- occ(query = 'Accipiter striatus', from = 'gbif'))
#> Searched: gbif
#> Occurrences - Found: 447,930, Returned: 500
#> Search type: Scientific
#> gbif: Accipiter striatus (500)
The data returned are part of a S3
class called occdat
. This class has slots for each of the data sources described above. One can easily switch the source by changing the from
parameter in the function call above.
Within each data source is the set of species queried. In the above example, we only asked for occurrence data for one species, but we could have asked for any number. Let's say we asked for data for two species: Accipiter striatus, and Pinus contorta. Then the structure of the response would be
response -- |
| -- gbif ------- |
| -- Accipiter_striatus
| -- Pinus_contorta
| -- ecoengine -- |
| -- Accipiter_striatus
| -- Pinus_contorta
... and so on for each data source
If you only request data from gbif, like from = 'gbif'
, then the other four source slots are present in the response object, but have no data.
You can quickly get just the GBIF data by indexing to it, like
df$gbif
#> Species [Accipiter striatus (500)]
#> First 10 rows of [Accipiter_striatus]
#>
#> name longitude latitude prov
#> 1 Accipiter striatus 0.00000 0.00000 gbif
#> 2 Accipiter striatus -71.06930 42.34816 gbif
#> 3 Accipiter striatus -97.25801 32.89462 gbif
#> 4 Accipiter striatus -72.54554 41.22175 gbif
#> 5 Accipiter striatus -104.83266 21.47117 gbif
#> 6 Accipiter striatus -75.17209 40.34000 gbif
#> 7 Accipiter striatus -78.11608 37.98438 gbif
#> 8 Accipiter striatus -97.64102 30.55880 gbif
#> 9 Accipiter striatus -135.32701 57.05420 gbif
#> 10 Accipiter striatus -109.95193 23.79093 gbif
#> .. ... ... ... ...
#> Variables not shown: issues (chr), key (int), datasetKey (chr),
#> publishingOrgKey (chr), publishingCountry (chr), protocol (chr),
#> lastCrawled (chr), lastParsed (chr), extensions (chr), basisOfRecord
#> (chr), sex (chr), establishmentMeans (chr), taxonKey (int),
#> kingdomKey (int), phylumKey (int), classKey (int), orderKey (int),
#> familyKey (int), genusKey (int), speciesKey (int), scientificName
#> (chr), kingdom (chr), phylum (chr), order (chr), family (chr), genus
#> (chr), species (chr), genericName (chr), specificEpithet (chr),
#> taxonRank (chr), continent (chr), stateProvince (chr), year (int),
#> month (int), day (int), eventDate (time), modified (chr),
#> lastInterpreted (chr), references (chr), identifiers (chr), facts
#> (chr), relations (chr), geodeticDatum (chr), class (chr), countryCode
#> (chr), country (chr), institutionID (chr), county (chr), language
#> (chr), gbifID (chr), type (chr), preparations (chr), catalogNumber
#> (chr), occurrenceStatus (chr), institutionCode (chr), rights (chr),
#> identifier (chr), verbatimEventDate (chr), higherGeography (chr),
#> nomenclaturalCode (chr), endDayOfYear (chr), locality (chr),
#> verbatimLocality (chr), collectionCode (chr), occurrenceID (chr),
#> disposition (chr), otherCatalogNumbers (chr), startDayOfYear (chr),
#> occurrenceRemarks (chr), accessRights (chr), higherClassification
#> (chr), dateIdentified (chr), rightsHolder (chr), informationWithheld
#> (chr), datasetName (chr), taxonID (chr), recordedBy (chr),
#> http...unknown.org.occurrenceDetails (chr), eventTime (chr),
#> identificationID (chr), dynamicProperties (chr),
#> identificationVerificationStatus (chr), locationAccordingTo (chr),
#> identifiedBy (chr), georeferencedDate (chr), georeferencedBy (chr),
#> georeferenceProtocol (chr), georeferenceVerificationStatus (chr),
#> verbatimCoordinateSystem (chr), individualID (chr),
#> previousIdentifications (chr), identificationQualifier (chr),
#> samplingProtocol (chr), georeferenceSources (chr), elevation (dbl),
#> elevationAccuracy (dbl), lifeStage (chr), waterBody (chr),
#> recordNumber (chr), samplingEffort (chr), locationRemarks (chr),
#> scientificNameID (chr), georeferenceRemarks (chr), source (chr),
#> fieldNotes (chr), infraspecificEpithet (chr), collectionID (chr),
#> ownerInstitutionCode (chr), datasetID (chr), verbatimElevation (chr),
#> vernacularName (chr), habitat (chr)
When you get data from multiple providers, the fields returned are slightly different, e.g.:
df <- occ(query = 'Accipiter striatus', from = c('gbif', 'ecoengine'), limit = 25)
head(df$gbif$data$Accipiter_striatus)[1:6,1:10]
#> name longitude latitude issues
#> 1 Accipiter striatus 0.00000 0.00000 cucdmis,gass84,mdatunl,zerocd
#> 2 Accipiter striatus -71.06930 42.34816 cdround,cudc,gass84
#> 3 Accipiter striatus -97.25801 32.89462 cdround,cudc,gass84
#> 4 Accipiter striatus -72.54554 41.22175 cdround,cudc,gass84
#> 5 Accipiter striatus -104.83266 21.47117 cdround,cudc,gass84
#> 6 Accipiter striatus -75.17209 40.34000 cdround,cudc,gass84
#> prov key datasetKey
#> 1 gbif 1064538129 84b26828-f762-11e1-a439-00145eb45e9a
#> 2 gbif 1065595652 50c9509d-22c7-4a22-a47d-8c48425ef4a7
#> 3 gbif 1052607342 50c9509d-22c7-4a22-a47d-8c48425ef4a7
#> 4 gbif 1065586305 50c9509d-22c7-4a22-a47d-8c48425ef4a7
#> 5 gbif 1065595128 50c9509d-22c7-4a22-a47d-8c48425ef4a7
#> 6 gbif 1065588599 50c9509d-22c7-4a22-a47d-8c48425ef4a7
#> publishingOrgKey publishingCountry protocol
#> 1 8a471700-4ce8-11db-b80e-b8a03c50a862 US DWC_ARCHIVE
#> 2 28eb1a3f-1c15-4a95-931a-4af90ecb574d US DWC_ARCHIVE
#> 3 28eb1a3f-1c15-4a95-931a-4af90ecb574d US DWC_ARCHIVE
#> 4 28eb1a3f-1c15-4a95-931a-4af90ecb574d US DWC_ARCHIVE
#> 5 28eb1a3f-1c15-4a95-931a-4af90ecb574d US DWC_ARCHIVE
#> 6 28eb1a3f-1c15-4a95-931a-4af90ecb574d US DWC_ARCHIVE
head(df$ecoengine$data$Accipiter_striatus)
#> longitude latitude type state_province
#> 1 -122.1706 37.42894 Feature California
#> 2 -122.2238 37.46977 Feature California
#> 3 -122.2238 37.46977 Feature California
#> 4 -122.2238 37.46977 Feature California
#> 5 -122.2238 37.46977 Feature California
#> 6 -122.2238 37.46977 Feature California
#> coordinate_uncertainty_in_meters recorded_by begin_date end_date
#> 1 1000 C. J. Pierson 1895-01-25 1895-01-25
#> 2 1000 C. Littlejohn 1922-11-22 1922-11-22
#> 3 1000 C. Littlejohn 1892-11-18 1892-11-18
#> 4 1000 C. Littlejohn 1914-10-11 1914-10-11
#> 5 1000 C. Littlejohn 1922-11-22 1922-11-22
#> 6 1000 C. Littlejohn 1922-10-25 1922-10-25
#> source
#> 1 https://ecoengine.berkeley.edu/api/sources/8/
#> 2 https://ecoengine.berkeley.edu/api/sources/8/
#> 3 https://ecoengine.berkeley.edu/api/sources/8/
#> 4 https://ecoengine.berkeley.edu/api/sources/8/
#> 5 https://ecoengine.berkeley.edu/api/sources/8/
#> 6 https://ecoengine.berkeley.edu/api/sources/8/
#> url
#> 1 https://ecoengine.berkeley.edu/api/observations/CAS%3AORN%3A73314/
#> 2 https://ecoengine.berkeley.edu/api/observations/CAS%3AORN%3A73315/
#> 3 https://ecoengine.berkeley.edu/api/observations/CAS%3AORN%3A73338/
#> 4 https://ecoengine.berkeley.edu/api/observations/CAS%3AORN%3A73318/
#> 5 https://ecoengine.berkeley.edu/api/observations/CAS%3AORN%3A73319/
#> 6 https://ecoengine.berkeley.edu/api/observations/CAS%3AORN%3A73320/
#> country name locality key
#> 1 United States Accipiter striatus velox Stanford University CAS:ORN:73314
#> 2 United States Accipiter striatus velox Redwood City CAS:ORN:73315
#> 3 United States Accipiter striatus velox Redwood City CAS:ORN:73338
#> 4 United States Accipiter striatus velox Redwood City CAS:ORN:73318
#> 5 United States Accipiter striatus velox Redwood City CAS:ORN:73319
#> 6 United States Accipiter striatus velox Redwood City CAS:ORN:73320
#> remote_resource last_modified observation_type prov
#> 1 2014-06-02 specimen ecoengine
#> 2 2014-06-02 specimen ecoengine
#> 3 2014-06-02 specimen ecoengine
#> 4 2014-06-02 specimen ecoengine
#> 5 2014-06-02 specimen ecoengine
#> 6 2014-06-02 specimen ecoengine
We provide a function occ2df
that pulls out a few key columns needed for making maps:
head(occ2df(df))
#> name longitude latitude prov date
#> 1 Accipiter striatus 0.00000 0.00000 gbif 2014-12-31 23:00:00
#> 2 Accipiter striatus -71.06930 42.34816 gbif 2015-01-22 17:48:59
#> 3 Accipiter striatus -97.25801 32.89462 gbif 2015-01-05 23:00:00
#> 4 Accipiter striatus -72.54554 41.22175 gbif 2015-01-06 23:00:00
#> 5 Accipiter striatus -104.83266 21.47117 gbif 2015-01-20 23:00:00
#> 6 Accipiter striatus -75.17209 40.34000 gbif 2015-01-11 20:50:25
#> key
#> 1 1064538129
#> 2 1065595652
#> 3 1052607342
#> 4 1065586305
#> 5 1065595128
#> 6 1065588599
One problem you often run in to is that there can be various names for the same taxon in any one source. For example:
df <- occ(query = 'Pinus contorta', from = c('gbif', 'ecoengine'), limit = 50)
head(df$gbif$data$Pinus_contorta)[1:6, 1:5]
#> name longitude latitude issues prov
#> 1 Pinus contorta 11.78660 58.16500 cudc,depunl,gass84 gbif
#> 2 Pinus contorta -110.69412 44.72325 cdround,cudc,gass84 gbif
#> 3 Pinus contorta 16.66390 56.63950 cudc,depunl,gass84 gbif
#> 4 Pinus contorta 17.84890 59.12440 cudc,depunl,gass84 gbif
#> 5 Pinus contorta 9.38997 62.56203 cdround,gass84 gbif
#> 6 Pinus contorta 9.39000 62.56203 cdround,gass84 gbif
head(df$ecoengine$data$Pinus_contorta)[1:6, 1:5]
#> longitude latitude type state_province
#> 1 -120.6080 39.61928 Feature California
#> 2 -117.5978 34.24155 Feature California
#> 3 -117.6086 34.23254 Feature California
#> 4 -119.4270 38.00443 Feature California
#> 5 -119.4896 38.01118 Feature California
#> 6 -119.6049 38.05735 Feature California
#> coordinate_uncertainty_in_meters
#> 1 1000
#> 2 1000
#> 3 1000
#> 4 1000
#> 5 1000
#> 6 1000
This is fine, but when trying to make a map in which points are colored for each taxon, you can have many colors for a single taxon, where instead one color per taxon is more appropriate. There is a function in spocc
called fixnames
, which has a few options in which you can take the shortest names (usually just the plain binomials like Homo sapiens), or the original name queried, or a vector of names supplied by the user.
df <- fixnames(df, how = 'shortest')
head(df$gbif$data$Pinus_contorta[,1:2])
#> name longitude
#> 1 Pinus contorta 11.78660
#> 2 Pinus contorta -110.69412
#> 3 Pinus contorta 16.66390
#> 4 Pinus contorta 17.84890
#> 5 Pinus contorta 9.38997
#> 6 Pinus contorta 9.39000
head(df$ecoengine$data$Pinus_contorta[,1:2])
#> longitude latitude
#> 1 -120.6080 39.61928
#> 2 -117.5978 34.24155
#> 3 -117.6086 34.23254
#> 4 -119.4270 38.00443
#> 5 -119.4896 38.01118
#> 6 -119.6049 38.05735
df_comb <- occ2df(df)
head(df_comb); tail(df_comb)
#> name longitude latitude prov date key
#> 1 Pinus contorta 11.78660 58.16500 gbif 2015-01-17 23:00:00 1052933649
#> 2 Pinus contorta -110.69412 44.72325 gbif 2015-01-01 23:00:00 1088897277
#> 3 Pinus contorta 16.66390 56.63950 gbif 2015-01-03 23:00:00 1051515518
#> 4 Pinus contorta 17.84890 59.12440 gbif 2015-02-14 23:00:00 1058422905
#> 5 Pinus contorta 9.38997 62.56203 gbif 2015-02-19 23:00:00 1092518927
#> 6 Pinus contorta 9.39000 62.56203 gbif 2015-02-19 23:00:00 1092518920
#> name longitude latitude prov date
#> 95 Pinus contorta -119.4536 37.59285 ecoengine 1935-08-08
#> 96 Pinus contorta -120.9033 38.62829 ecoengine 1934-10-11
#> 97 Pinus contorta -119.9077 38.63392 ecoengine 1934-10-11
#> 98 Pinus contorta -119.9077 38.63392 ecoengine 1934-10-11
#> 99 Pinus contorta -119.9077 38.63392 ecoengine 1934-10-11
#> 100 Pinus contorta -119.9043 38.60915 ecoengine 1934-10-11
#> key
#> 95 CalPhotos:5555+5555+0000+1419:2
#> 96 CalPhotos:5555+5555+0000+1719:2
#> 97 CalPhotos:5555+5555+0000+1721:4
#> 98 CalPhotos:5555+5555+0000+1722:2
#> 99 CalPhotos:5555+5555+0000+1723:2
#> 100 CalPhotos:5555+5555+0000+1724:3
All mapping functionality is now in a separate package spoccutils, to make spocc
easier to maintain.