Quantitative genetics using the sommer package

Giovanny Covarrubias-Pazaran

2021-07-28

The sommer package was developed to provide R users with a powerful and reliable multivariate mixed
model solver for different genetic and non-genetic analyses in diploid and polyploid organisms. This package
allows the user to estimate variance components for a mixed model with the advantages of specifying the
variance-covariance structure of the random effects, specifying heterogeneous variances, and obtaining other
parameters such as BLUPs, BLUEs, residuals, fitted values, variances for fixed and random effects, etc. The
core algorithms of the package are coded in C++ using the Armadillo library to optimize dense matrix
operations common in the derect-inversion algorithms.

The package is focused on problems of the type p > n related to genomic prediction (hybrid prediction
& genomic selection) and GWAS analysis, although any general mixed model can be fitted as well. The
package provides kernels to estimate additive (A.mat), dominance (D.mat), and epistatic (E.mat) relationship
matrices that have been shown to increase prediction accuracy under certain scenarios or simply to estimate
the variance components of such. The package provides flexibility to fit other genetic models such as full and
half diallel models as well.

The vignettes aim to provide several examples in how to use the sommer package under different scenarios.
We will spend the rest of the space providing examples for:

SECTION 1: Introduction
1) Background in linear algebra

SECTION 2: Topics in quantitative genetics
1) Heritability (h?) calculation

2) Specifying heterogeneous variances in mixed models
3) Using the vpredict () calculator
4) Half and full diallel designs (using the overlay)
5) Genomic selection (predicting mendelian sampling)
« GBLUP
o« rTBLUP

) Indirect genetic effects
7) Single cross prediction (hybrid prediction)
) Spatial modeling (using the 2-dimensional splines)
) Multivariate genetic models and genetic correlations

SECTION 3: Special topics in quantitative genetics

1) Partitioned model
2) UDU’ decomposition
3) Mating designs

4) Dominance variance

SECTION 1: Introduction
Backgrounds in linear algebra

The core of the package is the mmer () function which solves the mixed model equations. The functions are an
interface to call the NR Direct-Inversion Newton-Raphson or Average Information (Tunnicliffe 1989; Gilmour
et al. 1995; Lee et al. 2016). Since version 2.0, sommer can handle multivariate models. Following Maier et
al. (2015), the multivariate (and by extension the univariate) mixed model implemented has the form:

y1=X161 + Ziui + €
Yo = XofBo + Zous + €2

yi = XiBi + Ziu; + ¢

where y; is a vector of trait phenotypes, §; is a vector of fixed effects, u; is a vector of random effects for
individuals and e; are residuals for trait 1 (i =1, ..., t). The random effects (u; ... u; and e;) are assumed
to be normally distributed with mean zero. X and Z are incidence matrices for fixed and random effects
respectively. The distributions of the multivariate response and the phenotypic variance covariance (V) are:

Y =XB+ 20U +¢
Y ~ MVN(X3, V)

Y1
Y=| %
Yt
X1
X = : :
Xy
Z\Kol Zi+ Ho?, ... Z1Koy, ,Z{+ Ho,,,
V= Lo z
Z1\ Koy, Z{+Hoe,, .. Z Ko} Zi + Ho?,
where K is the relationship or covariance matrix for the kth random effect (u=1,... k), and R=I is an identity

matrix for the residual term. The terms crg, and 02 denote the genetic (or any of the kth random terms) and
residual variance of trait i, respectively and g, and Te,, the genetic (or any of the kth random terms) and

residual covariance between traits i and j (1_1 RN A and j=1,...,t). The algorithm implemented optimizes
the log likelihood:
logL =1/2+In(|V]) + In(X'|V|X) +Y'PY

where || is the determinant of a matrix. The REML estimates are updated using a Newton optimization
algorithm of the form:

k41 _ gk k\—1 , dL |pk
0 =0+ (H") '« EW
Where 0 is the vector of variance components for random effects and covariance components among traits,

H~' is the inverse of the Hessian matrix of second derivatives for the kth cycle, 4 = 2 is the vector of first

derivatives of the likelihood with respect to the variance-covariance components. The Eigen decomposition
of the relationship matrix proposed by Lee and Van Der Werf (2016) was included in the Newton-Raphson
algorithm to improve time efficiency. Additionally, the popular vpredict () function to estimate standard

errors for linear combinations of variance components (i.e. heritabilities and genetic correlations) was added
to the package as well.

Please refer to the canonical papers listed in the Literature section to check how the algorithms work. We
have tested widely the methods to make sure they provide the same solution when the likelihood behaves
well, but for complex problems they might lead to slightly different answers. If you have any concern please
contact me at cova_ ruber@live.com.mx.

In the following section we will go in detail over several examples on how to use mixed models in univariate
and multivariate case and their use in quantitative genetics.

SECTION 2: Topics in quantitative genetics
1) Marker and non-marker based heritability calculation

Heritability is one of the most popular parameters among the breeding and genetics communities because of
the insight it provides in the inheritance of the trait and potential selection response. Heritability is usually
estimated as narrow sense (h?; only additive variance in the numerator 0%), and broad sense (H?; all genetic
variance in the numerator o2).

In a classical breeding experiment with no molecular markers, special designs are performed to estimate
and dissect the additive (¢%) and non-additive (e.g., dominance 0%, and epistatic 0%) variance along with
environmental variability. Designs such as generation analysis, North Carolina designs are used to dissect
02 and 0% to estimate the narrow sense heritability (h?) using only 0% in the numerator. When no special
design is available we can still disect the genetic variance (O’%) and estimate the broad sense heritability. In
this first example we will show the broad sense estimation which doesn’t use covariance matrices for the
genotypic effect (e.g., genomic-additive relationship matrices). For big models with no relationship matrices,
sommer’s direct inversion is a bad idea to use but we will still show how to do it, but keep in mind that
for very sparse models with no relationship matrices or other special covariance structures we recommend
using the 1mer () function from the lme4 package or any other package using MME-based algorithms (e.g.,
asreml-R).

The following dataset has 41 potato lines evaluated in 5 locations across 3 years in an RCBD design. We
show how to fit the model and extract the variance components to calculate the h2.

library (sommer)
data(DT_example)
DT <- DT_example
A <- A_example

ansl <- mmer(Yield-~1,
random= ~ Name + Env + Env:Name + Env:Block,
rcov= ~ units,
data=DT, verbose = FALSE)

summary (ans1) $varcomp

VarComp VarCompSE Zratio Constraint
Name.Yield-Yield 3.718279 1.6959834 2.1924029 Positive
Env.Yield-Yield 12.008450 12.2771178 0.9781164 Positive

Env:Name.Yield-Yield 5.152643 1.4923912 3.4526091 Positive
Env:Block.Yield-Yield 0.000000 0.1156675 0.0000000 Positive
units.Yield-Yield 4.366189 0.6573086 6.6425245 Positive

(n.env <- length(levels(DT$Env)))

[1] 3

mailto:cova_ruber@live.com.mx

vpredict(ansl, h2 ~ V1 / (V1 + (V3/n.env) + (V5/(2*n.env))))

Estimate SE
h2 0.6032715 0.1344582

That is an estimate of broad-sense heritability.

Recently with markers becoming cheaper, thousand of markers can be run in the breeding materials. When
markers are available, a special design is not neccesary to dissect the additive genetic variance. The availability
of the additive, dominance and epistatic relationship matrices allow us to estimate 0%, 0% and o, although
given that A, D and E are not orthogonal the interpretation of models that fit more than the A matrix at the
same time becomes cumbersome.

Assume you have a population (even unreplicated) in the field but in addition we have genetic markers. Now
we can fit the model and estimate the genomic heritability that explains a portion of the additive genetic

variance (with high marker density 04 = 02, 1ons)

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
DT$idd <-DT$id; DT$ide <-DT$id
look at the data
A <- A.mat(GT) # additive relationship matriz
D <- D.mat(GT) # dominance relationship matriz
E <- E.mat(GT) # epistatic relationship matric
ans.ADE <- mmer(color-~1,
random=~vs (id,Gu=A) + vs(idd,Gu=D),
rcov=~units,
data=DT,verbose = FALSE)
(summary (ans.ADE) $varcomp)

VarComp VarCompSE Zratio Constraint
u:id.color-color .003662313 0.0012194780 3.003181 Positive
u:idd.color-color 0.001295013 0.0005269670 2.457485 Positive
units.color-color 0.002106905 0.0002864668 7.354794 Positive

(V1) / (V1+V3)) # marrow sense

o O O

?

vpredict (ans.ADE, h2

Estimate SE
h2 0.6348024 0.08840597

vpredict (ans.ADE, h2 ~ (V1+V2) / (V1+V2+V3)) # broad-sense

Estimate SE
h2 0.7017503 0.06057814

In this example we showed how to estimate the additive (¢%) and dominance (¢%) variance components

based on markers and estimate broad (H?) and narrow-sense heritability (h?). Notice that we used the vs()
function which indicates that the random effect inside the parenthesis (i.e. id, idd or ide) has a covariance
matrix (A, D, or E), that will be specified in the Gu argument of the vs() function. Please DO NOT provide
the inverse, but rather the original covariance matrix.

2) Specifying heterogeneous variances in univariate models

Very often in multi-environment trials, the assumption that genetic variance is the same across locations may
be too naive. Because of that, specifying a general genetic component and a location-specific genetic variance

is the way to go.

We estimate variance components for GC' As and SC A specifying the variance structure.

data(DT_cornhybrids)

DT <- DT_cornhybrids

DTi <- DTi_cornhybrids

GT <- GT_cornhybrids

fit the model

modFD <- mmer(Yield~1,
random=~ vs(at(Location,c("3","4")),GCA2),
rcov= ~ vs(ds(Location) ,units),
data=DT, verbose = FALSE)

summary (modFD)

#i#t

Multivariate Linear Mixed Model fit by REML

okokkokokokokkkkoooookokkkk - sommer 4.1 kkkokokokskskskokoskoskoskokokok sk ok koo
#i#

#it logLik AIC BIC Method Converge

Value -164.6839 331.3677 335.3592 NR TRUE

#it

Variance-Covariance components:

VarComp VarCompSE Zratio Constraint
3:GCA2.Yield-Yield 62.48 53.45 1.169 Positive
4:GCA2.Yield-Yield 97.99 79.56 1.232 Positive
l:units.Yield-Yield 216.82 30.77 T7.047 Positive
2:units.Yield-Yield 216.82 30.77 7.047 Positive
3:units.Yield-Yield 493.05 77.27 6.381 Positive
4:units.Yield-Yield 711.98 111.63 6.378 Positive
#i#

Fixed effects:

Trait Effect Estimate Std.Error t.value

1 Yield (Intercept) 138.1 0.9442 146.3

#i#

Groups and observations:

#i# Yield

3:GCA2 20
4:GCA2 20
##
Use the '$' sign to access results and parameters

In the previous example we showed how the at () function is used in the mmer () solver. By using the at ()
function you can specify that i.e. the GCA2 has a different variance in different Locations, in this case
locations 3 and 4, but also a main GCA variance. This is considered a CS + DIAG (compound symmetry +
diagonal) model.

In addition, other functions can be added on top to fit models with covariance structures, i.e. the Gu argument
from the vs() function to indicate a covariance matrix (A, pedigree or genomic relationship matrix)

data(DT_cornhybrids)
DT <- DT_cornhybrids
DTi <- DTi_cornhybrids
GT <- GT_cornhybrids
GT[1:4,1:4]

A258 A634 A641 A680

A258 2.23285528 -0.3504778 -0.04756856 -0.32239362
A634 -0.35047780 1.4529169 0.45203869 -0.02293680
A641 -0.04756856 0.4520387 1.96940221 -0.09896791
A680 -0.32239362 -0.0229368 -0.09896791 1.65221984

fit the model
modFD <- mmer(Yield-~1,
random=~ vs(at(Location,c("3","4")),GCA2,Gu=GT),

rcov= ~ vs(ds(Location) ,units),

data=DT, verbose = FALSE)
summary (modFD)
#i#
H# Multivariate Linear Mixed Model fit by REML
olokokkokokokkkrkkkooolololokokk sommer 4.1 kkskskskokskskskskskskskoskoskok ok ok ok ok ok
#i#t
logLik AIC BIC Method Converge
Value -165.2286 332.4571 336.4486 NR TRUE
##
Variance-Covariance components:
VarComp VarCompSE Zratio Constraint
3:GCA2.Yield-Yield 26.64 26.16 1.0185 Positive
4:GCA2.Yield-Yield 37.51 37.78 0.9927 Positive
1l:units.Yield-Yield 216.77 30.75 7.0489 Positive
2:units.Yield-Yield 216.77 30.75 7.0489 Positive
3:units.Yield-Yield 503.62 77.87 6.4673 Positive
4:units.Yield-Yield 738.86 114.17 6.4715 Positive
#it
Fixed effects:
Trait Effect Estimate Std.Error t.value
1 Yield (Intercept) 138.1 0.9147 151
#i#t
Groups and observations:
#i# Yield

3:GCA2 40
4:GCA2 40
##
Use the '$' sign to access results and parameters

3) Using the vpredict calculator

Sometimes the user needs to calculate ratios or functions of specific variance-covariance components and
obtain the standard errors for such parameters. Examples of these are the genetic correlations, heritabilities,
etc. Using the CPdata we will show how to estimate the heritability and the standard error using the
vpredict () function that uses the delta method to come up with these parameters. This can be extended
for any linear combination of the variance components.

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
look at the data

A <- A.mat(GT) # additive relationship matriz
ans <- mmer(color~1,

random=~vs (id,Gu=A),

rcov=~units,

data=DT, verbose = FALSE)
(summary (ans . ADE) $varcomp)

3.1) Standar error for heritability

VarComp VarCompSE Zratio Constraint
u:id.color-color 0.003662313 0.0012194780 3.003181 Positive
u:idd.color-color 0.001295013 0.0005269670 2.457485 Positive
units.color-color 0.002106905 0.0002864668 7.354794 Positive

vpredict(ans, h2 ~ (V1) / (V1+V2))

Estimate SE
h2 0.6512157 0.06107574

The same can be used for multivariate models. Please check the documentation of the vpredict function to
see more examples.

data(DT_btdata)

DT <- DT btdata

mix3 <- mmer (cbind(tarsus, back) ~ sex,
random = ~ vs(dam, Gtc=unsm(2)) + vs(fosternest,Gtc=diag(2)),
rcov=~vs(units,Gtc=unsm(2)),
data = DT, verbose = FALSE)

summary (mix3)

3.2) Standar error for genetic correlation

##

Multivariate Linear Mixed Model fit by REML

H## kokkkkokkkkokokkkkokkkkokkkk sommer 4.1 kkskskskokskskkokokkkokokkk ok kK k

##

#i# logLik AIC BIC Method Converge

Value -651.5865 1315.173 1347.646 NR TRUE

##

Variance-Covariance components:

VarComp VarCompSE Zratio Constraint
u:dam.tarsus-tarsus 0.21847 0.04743 4.606 Positive
u:dam.tarsus-back -0.03618 0.02644 -1.369 Unconstr
u:dam.back-back 0.05973 0.03073 1.944 Positive
u:fosternest.tarsus-tarsus 0.07304 0.02891 2.526 Positive
u:fosternest.back-back 0.13158 0.03890 3.383 Positive
u:units.tarsus-tarsus 0.56699 0.03082 18.397 Positive
u:units.tarsus-back -0.03004 0.02581 -1.164 Unconstr
u:units.back-back 0.80494 0.04361 18.459 Positive
##

Fixed effects:

Trait Effect Estimate Std.Error t.value

1 tarsus (Intercept) -0.40631 0.06720 -6.0466
2 back (Intercept) -0.01459 0.06489 -0.2248
3 tarsus sexMale 0.76905 0.05711 13.4670

4 back sexMale 0.01057 0.06704 0.1577

5 tarsus sexUNK 0.21231 0.12665 1.6763
6 back sexUNK 0.09976 0.14794 0.6743
##

Groups and observations:

tarsus back

u:dam 106 106

u:fosternest 104 104

##

Use the '$' sign to access results and parameters

calculate the genetic correlation
vpredict (mix3, gen.cor ~ V2 / sqrt(Vix*V3))

#i Estimate SE
gen.cor -0.3167271 0.2228247

4) Half and full diallel designs (use of the overlay)

When breeders are looking for the best single-cross combinations, diallel designs have been by far the most
used design in crops like maize. There are 4 types of diallel designs depending on whether reciprocal and
self-crosses (omission of parents) are performed (full diallel with parents n"2; full diallel without parents
n(n-1); half diallel with parents 1/2 * n(n+1); half diallel without parents 1/2 * n(n-1)). In this example
we will show a full diallel design (reciprocal crosses are performed) and half diallel designs (only one of the
directions is performed).

In the first data set we show a full diallel among 40 lines from 2 heterotic groups, 20 in each. Therefore 400
possible hybrids are possible. We have pehnotypic data for 100 of them across 4 locations. We use the data
available to fit a model of the form:

y=XB+ Zuiy + Zus + Zug + ¢

We estimate variance components for GCA;, GCAs and SC A and use them to estimate heritability. Addi-
tionally BLUPs for GCA and SCA effects can be used to predict crosses.

data(DT_cornhybrids)
DT <- DT_cornhybrids
DTi <- DTi_cornhybrids
GT <- GT_cornhybrids

modFD <- mmer (Yield~Location,
random=~GCA1+GCA2+SCA,
rcov=~units,
data=DT, verbose = FALSE)
(suma <- summary(modFD)$varcomp)

VarComp VarCompSE Zratio Constraint
GCAl.Yield-Yield 0.000000 16.50337 0.0000000 Positive
GCA2.Yield-Yield 7.412226 18.94200 0.3913116 Positive
SCA.Yield-Yield 187.560303 41.59428 4.5092817 Positive
units.Yield-Yield 221.142463 18.14716 12.1860656 Positive

Vgca <- sum(sumal[1:2,1])
Vsca <- sumal[3,1]

Ve <- sumal[4,1]

Va = 4#Vgca

Vd = 4%Vsca

Vg <- Va + Vd
(H2 <- Vg / (Vg + (Ve)))

[1] 0.7790856
(h2 <- Va / (Vg + (Ve)))

[1] 0.02961832

Don’t worry too much about the small h2 value, the data was simulated to be mainly dominance variance,
therefore the Va was simulated extremely small leading to such value of narrow sense h2.

In the second data set we show a small half diallel with 7 parents crossed in one direction. There are n(n-1)/2
possible crosses; 7(6)/2 = 21 unique crosses. Parents appear as males or females indistictly. Each with two
replications in a CRD. For a half diallel design a single GCA variance component for both males and females
can be estimated and an SCA as well (¢£C A and 0ZCA respectively), and BLUPs for GCA and SCA of the
parents can be extracted. We will show first how to do so with the mmer () function using the overlay()
function. The specific model here is:

y=XB+ Zug+ Zus +¢

data("DT_halfdiallel")
DT <- DT_halfdiallel

head (DT)

rep geno male female sugar
1 1 12 1 2 13.950509
2 2 12 1 2 9.756918
3 1 13 1 3 13.906355
4 2 13 1 3 9.119455
#5 1 14 1 4 5.174483
6 2 14 1 4 8.452221

DT$femalef <- as.factor(DT$female)
DT$malef <- as.factor(DT$male)
DT$genof <- as.factor(DT$geno)
model using overlay
modh <- mmer (sugar-1,
random=~vs (overlay(femalef ,malef))
+ genof,
data=DT, verbose = FALSE)
summary (modh) $varcomp

VarComp VarCompSE Zratio Constraint
u:femalef.sugar-sugar 5.507899 3.5741151 1.541052 Positive
genof.sugar-sugar 1.815784 1.3629575 1.332238 Positive
units.sugar-sugar 3.117538 0.9626094 3.238632 Positive

Notice how the overlay() argument makes the overlap of incidence matrices possible making sure that male
and female are joint into a single random effect.

5) Genomic selection: predicting mendelian sampling

In this section we will use wheat data from CIMMYT to show how genomic selection is performed. This is
the case of prediction of specific individuals within a population. It basically uses a similar model of the form:

y=Xp+Zu+e

and takes advantage of the variance covariance matrix for the genotype effect known as the additive relationship
matrix (A) and calculated using the A.mat function to establish connections among all individuals and predict
the BLUPs for individuals that were not measured. The prediction accuracy depends on several factors such
as the heritability (h?), training population used (TP), size of TP, etc.

data(DT_wheat)

DT <- DT_wheat

GT <- GT_wheat

colnames (DT) <- paste0("X",1:ncol(DT))

DT <- as.data.frame(DT) ;DT$id <- as.factor(rownames(DT))
select environment 1

rownames (GT) <- rownames (DT)

K <- A.mat(GT) # additive relationship matriz
colnames(K) <- rownames(K) <- rownames(DT)

GBLUP pedigree-based approach
set.seed(12345)

y.trn <- DT

vv <- sample(rownames(DT),round(nrow(DT)/5))
y.tronlvv,"X1"] <- NA

head(y.trn)

X1 X2 X3 X4 id
775 1.6716295 -1.72746986 -1.89028479 0.0509159 775
2166 -0.2527028 0.40952243 0.30938553 -1.7387588 2166
2167 NA -0.64862633 -0.79955921 -1.0535691 2167
2465 0.7854395 0.09394919 .57046773 0.5517574 2465
3881 0.9983176 -0.28248062 .61868192 -0.1142848 3881
3889 2.3360969 0.62647587 .07353311 0.7195856 3889

GBLUP
ans <- mmer (X1-~1,
random=~vs (id, Gu=K) ,
rcov=~units,
data=y.trn, verbose = FALSE) # kinship based
ansU u:id $X1 <- as.data.frame(ans$U$ u:id $X1)
rownames (ansU u:id $X1) <- gsub("id","",rownames(ansU u:id $X1))
cor (ansU u:id $X1[vv,],DT[vv,"X1"], use="complete")

O = O

[1] 0.5737594

TrBLUP

ans2 <- mmer(X1~1,
random=~vs (1ist (GT), buildGu = FALSE),
rcov=~units, getPEV = FALSE,
data=y.trn, verbose = FALSE) # kinship based

u <- GT %%, as.matrix(ans2U u:GT $X1) # BLUPs for individuals
rownames (u) <- rownames (GT)
cor(ulvv,],DT[vv,"X1"]) # same correlation

[1] 0.5737681

the same can be applied in multi-response models 4in GBLUP or rrBLUP
Please notice that when specifying the marker matrix as a random effect we used the argument

‘buildGu=FALSE’ to inform the ‘mmer’ function that a covariance matrix for the levels of the random effect
shouldn’t be built. Imagine a model with 100,000 markers, that would imply a relationship matrix of 100,000

10

x 100,000. If that matrix is a diagonal it would only compromise the speed and memory of the function. By
setting ‘buildGu=FALSE’ the mmer solver will avoid the matrix multiplications using that huge diagonal
matrix. If you want to specify a relationship matrix for the marker matrix then you cannot use that ‘buildGu’
argument.

6) Indirect genetic effects
General variance structures can be used to fit indirect genetic effects. Here, we use an example dataset to
show how we can fit the variance and covariance components between two or more different random effects.

We first fit a direct genetic effects model:
data(DT_ige)

DT <- DT_ige
Af <- A_ige
An <- A_ige

Direct genetic effects model
modDGE <- mmer (trait ~ block,

random = ~ focal,

rcov = ~ units,

data = DT, verbose=FALSE)
summary (modDGE) $varcomp

VarComp VarCompSE Zratio Constraint
focal.trait-trait 19894.45 3118.3474 6.379806 Positive
units.trait-trait 10134.22 477.9483 21.203584 Positive

We now fit the indirect genetic effects model without covariance between DGE and IGE:

data(DT_ige)
DT <- DT_ige
A <- A_ige

Indirect genetic effects model
modDGE <- mmer (trait ~ block,
random = ~ focal + neighbour,
rcov = ~ units,
data = DT, verbose=FALSE)
summary (modDGE) $varcomp

VarComp VarCompSE Zratio Constraint
focal.trait-trait 20550.511 3148.6833 6.526700 Positive
neighbour.trait-trait 2926.704 607.4191 4.818261 Positive
units.trait-trait 7301.084 363.8236 20.067649 Positive

We now fit the indirect genetic effects model with covariance between DGE and IGE for which we will use
the gvs () function:
Indirect genetic effects model
modIGE <- mmer (trait ~ block,
random = ~ gvs(focal, neighbour),
rcov = ~ units,
data = DT, verbose=FALSE)
summary (modIGE) $varcomp

VarComp VarCompSE Zratio Constraint

11

focal:focal.trait-trait 21014.516 3212.3586 6.541772 Positive

focal:neighbour.trait-trait -7469.401 1246.1105 -5.994173 Unconstr
neighbour:neighbour.trait-trait 2964.707 576.9991 5.138149 Positive
units.trait-trait 7297.715 357.8869 20.391120 Positive

On top of that we can include a relationship matrix for the two random effects that are being forced to
co-vary

Indirect genetic effects model

modIGE <- mmer(trait ~ block,
random = ~ gvs(focal, neighbour, Gu=list(Af,An)),
rcov = ~ units,
data = DT, verbose=FALSE)

summary (modIGE) $varcomp

VarComp VarCompSE Zratio Constraint
focal:focal.trait-trait 27806.797 4162.7014 6.679988 Positive
focal:neighbour.trait-trait -9901.351 1532.8048 -6.459630 Unconstr
neighbour:neighbour.trait-trait 3638.534 611.4065 5.951089 Positive
units.trait-trait 7409.998 359.9827 20.584320 Positive

7) Genomic selection: single cross prediction

When doing prediction of single cross performance the phenotype can be dissected in three main components,
the general combining abilities (GCA) and specific combining abilities (SCA). This can be expressed with the
same model analyzed in the diallel experiment mentioned before:

y=XB+ Zuy + Zuy + Zug + ¢
with:

up ~ N(0, K1021)

ug ~ N(0, K3022)

us ~ N(0, Kz02s)

And we can specify the K matrices. The main difference between this model and the full and half diallel
designs is the fact that this model will include variance covariance structures in each of the three random
effects (GCA1, GCA2 and SCA) to be able to predict the crosses that have not ocurred yet. We will use the
data published by Technow et al. (2015) to show how to do prediction of single crosses.

data(DT_technow)
DT <- DT_technow
Md <- Md_technow
Mf <- Mf_technow
Ad <- Ad_technow
Af <- Af_technow
RUN THE PREDICTION MODEL
y.trn <- DT
vvl <- which('!is.na(DT$GY))
vv2 <- sample(vvl, 100)
y.trnlvv2,"GY"] <- NA
anss2 <- mmer(GY-~1,
random=~vs(dent,Gu=Ad) + vs(flint,Gu=Af),
rcov=~units,
data=y.trn, verbose = FALSE)
summary (anss2) $varcomp

12

VarComp VarCompSE Zratio Constraint
u:dent.GY-GY 16.06423 2.5737578 6.241548 Positive
u:flint.GY-GY 11.42070 2.1591718 5.289390 Positive
units.GY-GY 16.81801 0.7689509 21.871368 Positive

zul <- model.matrix(~dent-1,y.trn) 7*), anss2U u:dent” $GY
zu2 <- model.matrix(~flint-1,y.trn) %*% anss2U u:flint” $GY
u <- zul+zu2+anss2$Betal[l,"Estimate"]

cor(ulvv2,], DT$GY[vv2])

[1] 0.7756383

In the previous model we only used the GCA effects (GCA1 and GCA2) for practicity, altough it’s been shown
that the SCA effect doesn’t actually help that much in increasing prediction accuracy, but does increase a lot
the computation intensity required since the variance covariance matrix for SCA is the kronecker product of
the variance covariance matrices for the GCA effects, resulting in a 10578 x 10578 matrix that increases in a
very intensive manner the computation required.

A model without covariance structures would show that the SCA variance component is insignificant compared
to the GCA effects. This is why including the third random effect doesn’t increase the prediction accuracy.

8) Spatial modeling: using the 2-dimensional spline

We will use the CPdata to show the use of 2-dimensional splines for accomodating spatial effects in field
experiments. In early generation variety trials the availability of seed is low, which makes the use of
unreplicated designs a neccesity more than anything else. Experimental designs such as augmented designs
and partially-replicated (p-rep) designs are becoming ever more common these days.

In order to do a good job modeling the spatial trends happening in the field, special covariance structures
have been proposed to accomodate such spatial trends (i.e. autoregressive residuals; arl). Unfortunately,
some of these covariance structures make the modeling rather unstable. More recently, other research groups
have proposed the use of 2-dimensional splines to overcome such issues and have a more robust modeling of
the spatial terms (Lee et al. 2013; Rodriguez-Alvarez et al. 2018).

In this example we assume an unreplicated population where row and range information is available which
allows us to fit a 2 dimensional spline model.

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
mimic two fields
A <- A.mat(GT)
mix <- mmer(Yield~1,
random=~vs(id, Gu=A) +
vs (Rowf) +
vs(Colf) +
vs (spl2D(Row,Col)),
rcov=~vs(units),
data=DT, verbose = FALSE)

summary (mix)

##

Multivariate Linear Mixed Model fit by REML

olokkokololokkkkkkkooolololokokk sommer 4.1 kkskokokokskskskskskskskskskokkok ok ko
#it

logLik AIC BIC Method Converge

13

Value -151.2011 304.4021 308.2938 NR TRUE

#i#

Variance-Covariance components:

VarComp VarCompSE Zratio Constraint
u:id.Yield-Yield 783.4 319.3 2.4536 Positive
u:Rowf.Yield-Yield 814.7 390.5 2.0863 Positive
u:Colf.Yield-Yield 182.2 129.7 1.4053 Positive
u:Row.Yield-Yield 513.6 694.7 0.7393 Positive
u:units.Yield-Yield 2922.6 294.1 9.9368 Positive
#i#t

Fixed effects:

Trait Effect Estimate Std.Error t.value

1 Yield (Intercept) 132.1 8.791 15.03

#i#

Groups and observations:

#i#t Yield

u:id 363

u:Rowf 13

u:Colf 36

u:Row 168

#it

Use the '$' sign to access results and parameters

make a plot to observe the spatial effects found by the spl2D()

W <- with(DT,spl2D(Row,Col)) # 2D spline incidence matriz

DT$spatial <- W/*/mix$U$ u:Row $Yield # 2D spline BLUPs

lattice: :levelplot(spatial~Row*Col, data=DT) # plot the spatial effect by row and column

- 10
30 =
-5
— 20 - =
@)
O
-0
10 A -
- -5

Row

Notice that the job is done by the sp12D() function that takes the Row and Col information to fit a spatial
kernel.

14

9) Multivariate genetic models and genetic correlations

Sometimes is important to estimate genetic variance-covariance among traits—multi-reponse models are very
useful for such a task. Let see an example with 3 traits (color, Yield, and Firmness) and a single random
effect (genotype; id) although multiple effects can be modeled as well. We need to use a variance covariance
structure for the random effect to be able to obtain the genetic covariance among traits.

data(DT_cpdata)

DT <- DT_cpdata

GT <- GT_cpdata

MP <- MP_cpdata

A <- A.mat(GT)

ans.m <- mmer (cbind(Yield,color)~1,
random=~ vs(id, Gu=A, Gtc=unsm(2))
+ vs(Rowf,Gtc=diag(2))
+ vs(Colf,Gtc=diag(2)),
rcov=~ vs(units, Gtc=unsm(2)),
data=DT, verbose = FALSE)

Now you can extract the BLUPs using randef (ans.m) or simply ans.m$U. Also, genetic correlations and
heritabilities can be calculated easily.

cov2cor (ans.m$sigma$ u:id")

Yield color
Yield 1.0000000 0.1234441
color 0.1234441 1.0000000

SECTION 3: Special topics in Quantitative genetics
1) Partitioned model

The partitioned model was popularized by () to show that marker effects can be obtained by fitting a GBLUP
model to reduce the computational burden and then recover them by creating some special matrices MM’ for
GBLUP and M’(M’M)- to recover marker effects. Here we show a very easy example using the DT cpdata:

library (sommer)
data("DT_cpdata")
DT <- DT_cpdata
M <- GT_cpdata

e

MARKER MODEL

HUBRRRBRAR BB

mix.marker <- mmer(color-~1,
random=~Rowf+vs (M) ,
rcov=~units,data=DT,
verbose = FALSE)

me.marker <- mix.markerU u:M $color
RRBHHARRRBBHHHAHR

PARTITIONED GBLUP MODEL
HARAHRHHRAHHBAHRH

15

MMT <-tcrossprod(M) ## MM' = additive relationship matriz
MMTinv<-solve(MMT) ## inverse
MTMMTinv<-t (M) %*/MMTinv # M' J*} (M'M)-

mix.part <- mmer(color-~1,
random=~Rowf+vs(id, Gu=MMT),
rcov=~units,data=DT,
verbose = FALSE)

#convert BLUPs to marker effects me=M'(M'M)- u
me . part<-MIMMTinv/*/matrix (mix.partU u:id $color,ncol=1)

compare marker effects between both models
plot(me.marker,me.part)

(@)
O
O
— (@

—

o O

g _
- o
©
Q._ p—
(D\—l
S o

CD__

o

|

O
(9p]
O
S lo
CID [[[[[[

—0.003 —-0.002 -0.001 0.000 0.001 0.002

me.marker

As can be seen, these two models are equivalent with the exception that the partitioned model is more
computationally efficient.

2) UDU’ decomposition

Lee and Van der Warf (2015) proposed a decomposition of the relationship matrix A=UDU’ together
with a transformation of the response and fixed effects Uy = Ux + UZ + e, to fit a model where the
phenotypic variance matrix V is a diagonal because the relationship matrix is the diagonal matrix D from
the decomposition that can be inverted easily and make multitrait models more feasible.

data("DT_wheat")

rownames (GT_wheat) <- rownames(DT_wheat)
G <- A.mat(GT_wheat)

Y <- data.frame(DT_wheat)

make the decompostition
UD<-eigen(G) # get the decomposition: G = UDU'

16

U<-UD$vectors

D<-diag(UD$values)# This will be our new 'relationship-matriz'
rownames (D) <- colnames(D) <- rownames(G)

X<-model.matrix(~1, data=Y) # here: only one fized effect (intercept)
UX<-t (U) %*%X # premultiply X and y by U’

UY <- t(U) %x*) as.matrix(Y) # multivariate

dataset for decomposed model
DTd<-data.frame(id = rownames(G) ,UY, UX =UX[,1])
DTd$id<-as.character (DTd$id)

modeld <- mmer(cbind(X1,X2) ~ UX - 1,
random = ~vs(id,Gu=D),
rcov = ~vs(units),
data=DTd, verbose = FALSE)

dataset for mormal model
DTn<-data.frame(id = rownames(G) , DT_wheat)
DTn$id<-as.character (DTn$id)

modeln <- mmer (cbind(X1,X2) ~ 1,
random = ~vs(id,Gu=G),
rcov = ~vs(units),
data=DTn, verbose = FALSE)

compare regular and transformed blups
plot (x=(solve(t(U)))%*/%modeldU u:id $X2[colnames(D)],
y=modelnU u:id $X2[colnames(D)], xlab="UDU blup",

ylab="blup")
C)C

o | o
i

o _]

o

o
= -
o]

Q

‘TI_

&

o

(\I_ OOO

I P

I I I I I I I
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0

UDU blup

As can be seen, the two models are equivalent. Despite the fact that sommer doesn’t take a great advantage
of this trick because it was built for dense matrices using the Armadillo library. Other software may be better

17

using this trick.

3) Mating designs

Estimating variance components has been a topic of interest for the breeding community for a long time.
Here we show how to calculate additive and dominance variance using the North Carolina Design I (Nested
design) and North Carolina Design IT (Factorial design) using the classical Expected Mean Squares method
and the REML methods from sommer and how these two are equivalent.

data(DT_expdesigns)

DT <- DT_expdesigns$carl

DT <- aggregate(yield~set+male+female+rep, data=DT, FUN = mean)
DT$setf <- as.factor(DT$set)

DT$repf <- as.factor(DT$rep)

DT$malef <- as.factor(DT$male)

DT$femalef <- as.factor(DT$female)
levelplot(yield~male*female|set, data=DT, main="NC design I")

NC design |
10 15 20
| | | | | | | |
set set
2.0
Q
g 15+
Q£
1.0
I I I I
10 15 20 25 30
North Carolina Design I (Nested design) male

HAHRAAARRHRRRRRRAAHRAAA AR AR HRH

Expected Mean Square method

HARAHAAABRRRRRRHARRRAARRRAB BB

mixl <- Im(yield~ setf + setf:repf + femalef:malef:setf + malef:setf, data=DT)

MS <- anova(mixl); MS

Analysis of Variance Table
#i#

18

Response: yield
#i#t Df Sum Sq Mean Sq F value Pr(>F)
setf 1 0.1780 0.17796 1.6646 0.226012
setf:repf 2 0.9965 0.49824 4.6605 0.037141 *
setf:malef 4 7.3904 1.84759 17.2822 0.000173 *x*x
setf:femalef:malef 6 1.6083 0.26806 2.5074 0.095575 .

1

Residuals 10 1.0691 0.10691
-
Signif. codes: O 'kkx' 0.001 'x*k' 0.01 'x' 0.05 '.' 0.1 ' ' 1

msl <- MS["setf:malef","Mean Sq"]

ms2 <- MS["setf:femalef:malef","Mean Sq"]
mse <- MS["Residuals","Mean Sq"]

nrep=2

nfem=2

Vifm <- (ms2-mse)/nrep

Vm <- (ms1-ms2)/(nrep*nfem)

Calculate Va and Vd

Va=4*Vm # assuming no tinbreeding (4/(1+F))
Vd=4*(Vfm-Vm) # assuming no inbreeding(4/(1+F)"2)
Vg=c(Va,Vd); names(Vg) <- c("va","vd"); Vg

Va vd
1.579537 -1.257241

HHUH R YRR AR RIS AR R

REML method

HAHHRHAAABRIARBRRAA AR RAA AR A

mix2 <- mmer(yield~ setf + setf:repf,
random=~femalef :malef:setf + malef:setf,
data=DT, verbose = FALSE)

vc <- summary(mix2)$varcomp; vc

VarComp VarCompSE Zratio Constraint
femalef:malef:setf.yield-yield 0.08056338 0.08096526 0.9950364 Positive
malef:setf.yield-yield 0.39480593 0.32832346 1.2024908 Positive
units.yield-yield 0.10691762 0.04785610 2.2341480 Positive

Vfm <- vc[1,"VarComp"]
Vm <- vc[2,"VarComp"]

Calculate Va and Vd

Va=4*Vm # assuming no tnbreeding (4/(1+F))
Vd=4*(Vfm-Vm) # assuming no inbreeding(4/(1+F)"2)
Vg=c(Va,Vd); names(Vg) <- c("Va","vd"); Vg

Va vd
1.579224 -1.256970

As can be seen the REML method is easier than manipulating the MS and we arrive to the same results.

DT <- DT_expdesigns$car?2
DT <- aggregate(yield~set+male+female+rep, data=DT, FUN = mean)
DT$setf <- as.factor(DT$set)

19

DT$repf <- as.factor(DT$rep)
DT$malef <- as.factor(DT$male)
DT$femalef <- as.factor(DT$female)

levelplot(yield~male*female|set, data=DT, main="NC desing II")

North Carolina Design II (Factorial design)

head (DT)

female

10

set male female rep yield setf repf malef femalef

1 1 1 1 1 831.03
2 1 2 1 1 1046.55
3 1 3 1 1 853.33
4 1 4 1 1 940.00
5 1 5 1 1 802.00
6 1 1 2 1 625.93

N=with(DT,table(female, male, set))
nmale=length(which(N[1,,1] > 0))
nfemale=length(which(N[,1,1] > 0))
nrep=table(N[,,1])

nrep=as.numeric(names (nrep[which(names(nrep) !=0)]1))

HARHAHARR R AR R R RRRAHRAAAA AR BB
Expected Mean Square method
g

mixl <- Im(yield~ setf + setf:repf +

femalef:malef:setf + malef:setf + femalef:setf, data=DT)

MS <- anova(mixl); MS

1

e

1

N

20

1

= o N

I S e

NC desing |l
2 6
| | | |
set set
I I
6 10
male

Analysis of Variance Table

##

Response: yield
##

setf

setf:repf

setf:malef

setf:femalef

setf:femalef:malef 32

Residuals
##H ——-
Signif. codes: O

Tokokok !

Sum Sq Mean Sq F value

847836 847836 45.6296
144345 36086 1.9421
861053 107632 5.7926
527023 65878 3.5455
807267 256227 1.3577
1783762 185681

0.001 'xx' 0.01 'x' O.

msl <- MS["setf:malef","Mean Sq"]

ms2 <- MS["setf:femalef","Mean Sq"]

ms3 <- MS["setf:femalef:malef","Mean Sq"]
mse <- MS["Residuals","Mean Sq"]
nrep=length(unique (DT$rep))
nfem=length(unique (DT$female))
nmal=length(unique (DT$male))

Vfm <- (ms3-mse)/nrep;

Vf <- (ms2-ms3)/(nrep*nmale) ;
Vm <- (msl-ms3)/(nrep*nfemale);

Va=4*Vm; # assuming no
Va=4%Vf; # assuming no

Vd=4*(Vfm) ; # assuming

Vg=c(Va,Vd); names(Vg)

#i# Va Vd
10840.192 8861.659

inbreeding (4/(1+F))
inbreeding (4/(1+F))
no inbreeding (4/(1+F) "2)
<= c("va","vd"); Vg

HARAARBAARHAARRBAARRARRRAARRHHA

REML method

e

mix2 <- mmer(yield~ setf + setf:repf ,
random=~femalef :malef:setf + malef:setf + femalef:setf,
data=DT, verbose = FALSE)

vc <- summary(mix2)$varcomp; vc

##

units.yield-yield
Vifm <- vc[1,"VarComp"]

Vm <- vc[2,"VarComp"]
VEf <- vc[3,"VarComp"]

Va=4%Vm; # assuming no
Va=4xVf; # assuming no

Vd=4*(Vfm) ; # assuming

Vg=c(Va,Vd); names(Vg)

VarComp VarCompSE
femalef:malef:setf.yield-yield 2215.618
malef:setf.yield-yield

femalef:setf.yield-yield

5493.338
2710.176
18580.739

inbreeding (4/(1+F))
inbreeding (4/(1+F))
no inbreeding (4/(1+F)"2)
<- C(”Va” , qun) ; Vg

21

Pr(>F)
1.097e-09 *x*x
0.109652
5.032e-06 **x*
0.001227 *x*
0.129527

o5 '.*0.1 " "1

Zratio Constraint

2284.794 0.9697231 Positive
3610.989 1.5212836 Positive
2236.621 1.2117280 Positive
2681.742 6.9286068 Positive

Va vd
10840.704 8862.471

As can be seen, the REML method is easier than manipulating the MS and we arrive to the same results.

4) Dominance variance

The estimation of non-additive variance has been proposed to be a challenge since the additive and dominance
relationship matrices are not orthogonal. In recent literature it has been proposed that the best practice to
fit the dominance component is to fit the additive component first and then fix the value of that variance c

data(DT_cpdata)
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
create the vartiance-covariance matriz
A <- A.mat(GT) # additive relationship matriz
look at the data and fit the model
mixl <- mmer(Yield~1,
random=~vs (id,Gu=A),
rcov=~units,
data=DT, verbose = FALSE)

1 HHHH
adding dominance and forcing the other VC's
#H##H# #H#HH
DT$idd <- DT$id;

D <- D.mat(GT) # dominance relationship matriz
mm <- matrix(3,1,1) ## matriz to fixz the var comp

mix2 <- mmer(Yield~1,
random=~vs(id, Gu=A, Gti=mix1$sigma_scaled$ u:id~, Gtc=mm)
+ vs(idd, Gu=D, Gtc=unsm(1)),
rcov=~vs(units,Gti=mix1$sigma_scaled$units, Gtc=mm),
data=DT, verbose = FALSE)

analyze wvariance components
summary (mix1) $varcomp

VarComp VarCompSE Zratio Constraint
u:id.Yield-Yield 650.4145 325.5562 1.997856 Positive
units.Yield-Yield 4031.0153 344.6051 11.697493 Positive

summary (mix2) $varcomp

#i# VarComp VarCompSE Zratio Constraint
u:id.Yield-Yield 650.4145 504.0820 1.2902950 Fixed
u:idd.Yield-Yield 166.9563 292.3026 0.5369617 Positive
u:units.Yield-Yield 4031.0153 360.7273 11.1746898 Fixed

Final remarks
Keep in mind that sommer uses a direct inversion (DI) algorithm which can be very slow for large datasets.

The package is focused on problems of the type p > n (more random effect levels than observations) and
models with dense covariance structures. For example, for experiments with dense covariance structures

22

with low-replication (i.e. 2000 records from 1000 individuals replicated twice with a covariance structure of
1000x1000) sommer will be faster than MME-based software. Also for genomic problems with large number
of random effect levels, i.e. 300 individuals (n) with 100,000 genetic markers (p). For highly replicated
trials with small covariance structures or n > p (i.e. 2000 records from 200 individuals replicated 10 times
with covariance structure of 200x200) asreml or other MME-based algorithms will be much faster and we
recommend you to opt for those. When datasets are big, the installation of the OpenBLAS library can make
sommer quite fast and sometimes faster than asreml given the capacbility of sommer to take advantage of the
multi-processor architecture of some systems.

Literature
Covarrubias-Pazaran G. 2016. Genome assisted prediction of quantitative traits using the R package sommer.
PLoS ONE 11(6):1-15.

Covarrubias-Pazaran G. 2018. Software update: Moving the R package sommer to multivariate mixed models
for genome-assisted prediction. doi: https://doi.org/10.1101/354639

Bernardo Rex. 2010. Breeding for quantitative traits in plants. Second edition. Stemma Press. 390 pp.

Gilmour et al. 1995. Average Information REML: An efficient algorithm for variance parameter estimation in
linear mixed models. Biometrics 51(4):1440-1450.

Henderson C.R. 1975. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics
vol. 31(2):423-447.

Kang et al. 2008. Efficient control of population structure in model organism association mapping. Genetics
178:1709-1723.

Lee, D.-J., Durban, M., and Eilers, P.H.C. (2013). Efficient two-dimensional smoothing with P-spline ANOVA
mixed models and nested bases. Computational Statistics and Data Analysis, 61, 22 - 37.

Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based on genomic
information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.

Maier et al. 2015. Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia,
bipolar disorder, and major depressive disorder. Am J Hum Genet; 96(2):283-294.

Rodriguez-Alvarez, Maria Xose, et al. Correcting for spatial heterogeneity in plant breeding experiments with
P-splines. Spatial Statistics 23 (2018): 52-71.

Searle. 1993. Applying the EM algorithm to calculating ML and REML estimates of variance components.
Paper invited for the 1993 American Statistical Association Meeting, San Francisco.

Yu et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of
relatedness. Genetics 38:203-208.

Tunnicliffe W. 1989. On the use of marginal likelihood in time series model estimation. JRSS 51(1):15-27.

23

https://doi.org/10.1101/354639
http://dx.doi.org/10.1101/027201

	SECTION 1: Introduction
	Backgrounds in linear algebra

	SECTION 2: Topics in quantitative genetics
	1) Marker and non-marker based heritability calculation
	2) Specifying heterogeneous variances in univariate models
	3) Using the vpredict calculator
	4) Half and full diallel designs (use of the overlay)
	5) Genomic selection: predicting mendelian sampling
	6) Indirect genetic effects
	7) Genomic selection: single cross prediction
	8) Spatial modeling: using the 2-dimensional spline
	9) Multivariate genetic models and genetic correlations

	SECTION 3: Special topics in Quantitative genetics
	1) Partitioned model
	2) UDU' decomposition
	3) Mating designs
	4) Dominance variance
	Final remarks

	Literature

