
simecol-Howto: Tips, Tricks and Building Blocks

Thomas Petzoldt
Technische Universität Dresden

Abstract

This document is intended as a lose collection of sections that describe different aspects
of modelling and model implementation in R unsing the simecol package.

The howto-collection supplements the original publication of the package (Petzoldt
and Rinke 2007) from which an updated version is also part of this package. Please refer
to the original publication when citing this work.

Keywords: R, simecol, ecological modeling, object-oriented programming (OOP), compiled
code, debugging.

1. Introduction

2. Building simecol objects

The intention behind simecol is the construction of ”‘all-in-one”’ model objects. That is, every-
thing that defines one particular model, equations and data are stored together in one simObj
(spoken: sim-Object), and only some general algorithms (e.g. diferential equation solvers or
interpolation routines) remain external, preferably as package functions (e.g. function lsoda
in package deSolve or as functions in the user workspace.
This strategy has three main advantages:

1. You can have several independent versions of one model in the computer memory at the
same time. These instances may have different settings, parameters and data or even
use different formula, but they don’t interfere with each other. Moreover, if all data
and functions are encapsulated in their simObjects, identifiers can be re-used and it is,
for example, not neccessary to keep track over a large number of variable names or to
invent new identifiers for parameter sets of different scenarios.

2. You can give simObjects away, either in binary form or as source code objects. Every-
thing essential to run such a model is included, not only the formula but also defaults
for parameter and data. You, or your users need only R, some packages and your model
object. It is also possible to start model objects directly from the internet or, on the
other side, to distribute model collections as R packages.

3. All simObjects can be handled, simulated and modified with the same generic functions,
e.g. sim, plot or parms. Your users can start playing with your models without the
need to understand all the internals.

2 simecol-Howto

While it is, of course, preferable to have all parts of a model encapsulated in one object, it is
not mandatory to have the complete working model object before using simecol.

simecol models (simObjects) can be built up step by step, starting with mixed applications
composed by rudimentary simObjects and ordinary user space functions and then encapsu-
lating all the parts until the final all-in-one object is ready.

2.1. An Example

We start with the example, given in the simecol-introduction (Petzoldt and Rinke 2007), an
implementation of the UPCA model of Blasius et al. (1999), but we write it in the usual
deSolve style, e.g. without using simecol:

R> f <- function(x, y, k) {

+ x * y/(1 + k * x)

+ }

R> func <- function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alpha1 * f(u, v, k1)

+ dv <- -b * v + alpha1 * f(u, v, k1) + -alpha2 *

+ f(v, w, k2)

+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

+ list(c(du, dv, dw))

+ })

+ }

R> times <- seq(0, 100, 0.1)

R> parms <- c(a = 1, b = 1, c = 10, alpha1 = 0.2, alpha2 = 1,

+ k1 = 0.05, k2 = 0, wstar = 0.006)

R> y <- c(u = 10, v = 5, w = 0.1)

The model is defined by 5 variables in the R user space, namely f, func, times, parms and
init. The implementation is similar to the examples of package deSolve and we can solve it
exactly in the same manner:

R> library(deSolve)

R> out <- lsoda(y, times, func, parms)

R> matplot(out[, 1], out[, -1], type = "l")

2.2. Transistion to simecol

If we compare this example with the simecol structure, we may see that they are kind of
similar. This obvious coincidence is quite natural, because the notation of both, deSolve and
simecol, is based on the state-space notation of control theory1.

Due to this, it needs only small restructuring and renaming to form a simObj:

1see http://en.wikipedia.org/wiki/State_space_(controls), version of 2008-11-01

http://en.wikipedia.org/wiki/State_space_(controls)

Thomas Petzoldt 3

0 20 40 60 80 100

0
5

10
15

out[, 1]

ou
t[,

 −
1]

Figure 1: Output of UPCA model, solved mit lsoda from package deSolve.

R> library("simecol")

R> f <- function(x, y, k){x*y / (1+k*x)} # Holling II

R> upca <- new("odeModel",

+ main = function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alpha1 * f(u, v, k1)

+ dv <- -b * v + alpha1 * f(u, v, k1) +

+ - alpha2 * f(v, w, k2)

+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

+ list(c(du, dv, dw))

+ })

+ },

+ times = seq(0, 100, 0.1),

+ parms = c(a=1, b=1, c=10, alpha1=0.2, alpha2=1, k1=0.05, k2=0, wstar=0.006),

+ init = c(u=10, v=5, w=0.1),

+ solver = "lsoda"

+)

You may notice, that the assignment operators “<-” changed to declarative “=” for the slot
definitions, that some of the names (y, func) were changed to the pre-defined slot names
of simecol and that all the slot definitions are now comma separated arguments of the new
function that creates the upca object. The solver method lsoda is also given as a character

4 simecol-Howto

string pointing to the original lsoda function in package deSolve.

The new object can now be simulated with the sim function of simecol, that returns the
object with all original slots and an additional slot out holding the output values. A generic
plot function is available for basic plotting of the outputs:

R> upca <- sim(upca)

R> plot(upca)

and it is also possible to extract the results with the accessor function out, and to use an
arbitrary, user-defined plot function:

R> plotupca <- function(obj, ...) {

+ o <- out(obj)

+ matplot(o[, 1], o[, -1], type = "l", ...)

+ legend("topleft", legend = c("u", "v", "w"), lty = 1:3,

+ , bg = "white", col = 1:3)

+ }

R> plotupca(upca)

O.K., that’s it, but note that function f is not yet part of the simecol object, what we call
here a “mixed implementation”. This function codef is rather simple here, and it would be
also possible to call functions of arbitrary complexity from main.

2.3. Creating scenarios

After defining one simecol object (that we can call a parent object or a prototype), we can
now create derived objects, simply by copying (cloning) and modification. As an example, we
create two scenarios with different parameter sets:

R> sc1 <- sc2 <- upca

R> parms(sc1)["wstar"] <- 0

R> parms(sc2)["wstar"] <- 0.1

R> sc1 <- sim(sc1)

R> sc2 <- sim(sc2)

R> par(mfrow = c(1, 2))

R> plotupca(sc1, ylim = c(0, 250))

R> plotupca(sc2, ylim = c(0, 250))

If we simulate and plot these scenarios, we see an exponentially growing u in both cases, and
cycles resp. an equilibrium state for v and w for the scenarios respectively (figure 2).

If we change now the functional response function f from Holling II to Lotka-Volterra:

R> f <- function(x, y, k) {

+ x * y

+ }

both model scenarios, sc1 and sc2 are affected by this new definition:

Thomas Petzoldt 5

0 20 40 60 80

0
50

10
0

20
0

o[, 1]

o[
, −

1]

u
v
w

0 20 40 60 80
0

50
10

0
20

0

o[, 1]

o[
, −

1]

u
v
w

Figure 2: Two scenarios of the UPCA model (left: wstar=0, right: wstar=0.1; functional
response f is Holling II).

R> sc1 <- sim(sc1)

R> sc2 <- sim(sc2)

R> par(mfrow = c(1, 2))

R> plotupca(sc1, ylim = c(0, 15))

R> plotupca(sc2, ylim = c(0, 15))

with a stable limit cycle for u and v in scenario 1 and an equilibrium for all state variables
in scenario 2 (figure 3). You may also note that the new function f has exactly the same
parameters as above, including the, in the second case obsolete, parameter k.
In the examples above, function f is an ordinary function in the user workspace, but it is also
possible to implement such functions (or sub-models) directly as part of the model object.
As one possibility, one might consider to define local functions within main, but that would
have the disadvantage that such functions are not easily accessible from outside.
To enable this, simecol has an optional slot “equations”, that can hold a list of submodels.
This equations-slot can be defined either during object creation, or functions may be added
afterwards. In the following, we derive to new clones with the default parameter settings from
the original upca-object, and then add the Holling II functional resonse to scenario 1 and the
Lotka-Volterra functional response to scenario 2 (figure 4):

R> sc1 <- sc2 <- upca

R> equations(sc1)$f <- function(x, y, k) {

6 simecol-Howto

0 20 40 60 80

0
5

10
15

o[, 1]

o[
, −

1]

u
v
w

0 20 40 60 80
0

5
10

15

o[, 1]

o[
, −

1]

u
v
w

Figure 3: Two scenarios of the UPCA model (left: wstar=0, right: wstar=0.1; functional
response f is Holling II).

+ x * y/(1 + k * x)

+ }

R> equations(sc2)$f <- function(x, y, k) {

+ x * y

+ }

R> sc1 <- sim(sc1)

R> sc2 <- sim(sc2)

R> par(mfrow = c(1, 2))

R> plotupca(sc1, ylim = c(0, 15))

R> plotupca(sc2, ylim = c(0, 15))

This method allows to compare models with different structure and it is also possible to define
model objects with different versions of submodels built-in, that can be alternatively enabled:

R> upca <- new("odeModel", main = function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alpha1 * f(u, v, k1)

+ dv <- -b * v + alpha1 * f(u, v, k1) + -alpha2 *

+ f(v, w, k2)

+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

+ list(c(du, dv, dw))

Thomas Petzoldt 7

0 20 40 60 80

0
5

10
15

o[, 1]

o[
, −

1]

u
v
w

0 20 40 60 80
0

5
10

15

o[, 1]

o[
, −

1]

u
v
w

Figure 4: Two scenarios of the UPCA model (left: functional response f is Holling II, right f
is Lotka-Volterra).

+ })

+ }, equations = list(f1 = function(x, y, k) {

+ x * y

+ }, f2 = function(x, y, k) {

+ x * y/(1 + k * x)

+ }), times = seq(0, 100, 0.1), parms = c(a = 1, b = 1, c = 10,

+ alpha1 = 0.2, alpha2 = 1, k1 = 0.05, k2 = 0, wstar = 0.006),

+ init = c(u = 10, v = 5, w = 0.1), solver = "lsoda")

R> equations(upca)$f <- equations(upca)$f1

2.4. Debugging

As stated before, joint encapsulation of all functions and data in simObjects has many ad-
vantages, but there is also one disadvantage, namely debugging. Debugging of S4 objects
may be cumbersome, especially when slot-functions (e.g. main, equations, initfunc) come
into play. These difficulties are not much important for well-functioning ready-made model
objects, but they may appear as an additional burden during the development of simecol
objects, in particular if these models are technically not that simple as our example.

Fortunately, there is an easy workaround, that is, implementing the technically challenging
parts in the user-workspace first using the above mentioned mixed style and after everything

8 simecol-Howto

works satisfactorily, integrating these parts to the object. In the example below, we implement
the main model as workspace function fmain2 with the same interface (parameters and return
values) as above, that is then called by the main-function of the simObj:

R> f <- function(x, y, k) {

+ x * y/(1 + k * x)

+ }

R> fmain <- function(time, y, parms) {

+ with(as.list(c(parms, y)), {

+ du <- a * u - alpha1 * f(u, v, k1)

+ dv <- -b * v + alpha1 * f(u, v, k1) + -alpha2 *

+ f(v, w, k2)

+ dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

+ list(c(du, dv, dw))

+ })

+ }

R> upca <- new("odeModel", main = function(time, y, parms) fmain(time,

+ y, parms), times = seq(0, 100, 0.1), parms = c(a = 1,

+ b = 1, c = 10, alpha1 = 0.2, alpha2 = 1, k1 = 0.05,

+ k2 = 0, wstar = 0.006), init = c(u = 10, v = 5, w = 0.1),

+ solver = "lsoda")

This function fmain as well as any other submodels like f can now be debugged with the
usual R tools, e.g. debug:

R> debug(fmain)

R> upca <- sim(upca)

and debugging can be stopped by undebug(fmain). If everything works, you can add the
body of fmain to upca manually, and it is even possible to do this in the formalized simecol
way of object modification:

R> main(upca) <- fmain # assign workspace function to main slot

R> equations(upca)$f <- f # assign workspace function to equations

R> rm(fmain, f) # optional, for saving memory and avoiding confusion

R> str(upca) # show the object

Formal class 'odeModel' [package "simecol"] with 10 slots
..@ parms : Named num [1:8] 1e+00 1e+00 1e+01 2e-01 1e+00 5e-02 0e+00 6e-03
.. ..- attr(*, "names")= chr [1:8] "a" "b" "c" "alpha1" ...
..@ init : Named num [1:3] 10 5 0.1
.. ..- attr(*, "names")= chr [1:3] "u" "v" "w"
..@ observer : NULL
..@ main :function (time, y, parms)

2Note that this function must never be named “func”, for some rather esotheric internal reasons which we
shall not discuss further here.

Thomas Petzoldt 9

..@ equations:List of 1

.. ..$ f:function (x, y, k)

..@ times : num [1:1001] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ...

..@ inputs : NULL

..@ solver : chr "lsoda"

..@ out : NULL

..@ initfunc : NULL

3. Different ways to store simObjects

One of the main advantages of simecol is, that model objects can be made persistent and that
it is easy to distribute and share simObjects over the internet.

The most obvious and simple form is, of course, to use the original source code of the objects,
i.e. the function call to the new with all the slots which creates the S4-object (see section
2.2), but there are also other possibilities.

simecol objects can be saved in binary form as S4 object binaries with the save method of R,
which stores the whole object with all its equations, initial values, parameters etc. and also
the simulation outputs if the model was simulated before saving.

R> save(upca, file="upca.Rdata") # persistent storage of the model object

R> load("upca.Rdata") # load the model

Another possibility is conversion of the S4 object to a list representation:

R> l.upca <- as.list(upca)

This method allows to get an alternative text representation of the simObj, that can be
manipulated by code parsing programs or dumped to the hard disk:

R> dput(l.upca, file = "upca_list.R")

and this is completely reversible via:

R> l.upca <- dget("upca_list.R")

R> upca <- as.simObj(l.upca)

Sometimes it may be required to save simObjects in an un-initialized form, in particular if
they are to be distributed in packages.

.... functions

4. Using alternative solver packages

PBSddeSolve-example

10 simecol-Howto

user-defined solvers and assigning a function to the solver-slot

5. Implementing models in compiled languages

References

Blasius B, Huppert A, Stone L (1999). “Complex Dynamics and Phase Synchronization in
Spatially Extended Ecological Systems.” Nature, 399, 354–359.

Petzoldt T, Rinke K (2007). “simecol: An Object-Oriented Framework for Ecological Modeling
in R.” Journal of Statistical Software, 22(9), 1–31. ISSN 1548-7660. URL http://www.
jstatsoft.org/v22/i09.

Affiliation:

Thomas Petzoldt
Institut für Hydrobiologie
Technische Universität Dresden
01062 Dresden, Germany
E-mail: thomas.petzoldt@tu-dresden.de
URL: http://tu-dresden.de/Members/thomas.petzoldt/

http://www.jstatsoft.org/v22/i09
http://www.jstatsoft.org/v22/i09
mailto:thomas.petzoldt@tu-dresden.de
http://tu-dresden.de/Members/thomas.petzoldt/

	Introduction
	Building simecol objects
	An Example
	Transistion to simecol
	Creating scenarios
	Debugging

	Different ways to store simObjects
	Using alternative solver packages
	Implementing models in compiled languages

