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1 Introduction

When we think about building a sampling surface piece by piece from the inclusion zones of individ-
ual “Stem” objects, we assign the appropriate attribute value to each grid cell within the inclusion
zone for an object, with zero values elsewhere, and then algebraically add this grid layer to the
overall “Tract” grid. Thus, we “heap up” the inclusion zone density of the grid cells within the tract,
which in the end is a discrete estimate of the sampling surface.

“Phone: (603) 868-7667; Fax: (603) 868-7604.
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This class allows us to do the geometry associated with the individual “InclusionZone” objects
for each “Stem” object in the population. Recall that an “InclusionZone” object has both an
“ArealSampling” and “Stem” subclass as slots in its definition. For example, an object of subclass
“standUplZ” would have both a “circularPlot” class object and a “downLog” object making up the
overall bounding box. There are methods for the “InclusionZoneGrid” class objects that work with
each type of “InclusionZone” object. In general, the methods are all of the name izGrid, whose
signature objects are used to dispatch the appropriate method.

In the following, we show some general constructs of the class with respect to individual subclasses
of “InclusionZone” objects they are based on. Graphics play a big role in getting the idea, and
each class is a little different, so several illustrations are presented. Whether a surface within an
inclusion zone is constant or variable height depends on the sampling method. For example, what
we term “canonical” perpendicular distance sampling (PDS) has constant height surfaces, while
“omnibus” PDS has surfaces of varying height. In addition, the somewhat odd, but interesting
“full chainsaw” method where the entire sausage-based inclusion zone is filled with variable-height
individual chainsaw estimates is also in this latter category as are the Monte Carlo-based methods.

2 The “InclusionZoneGrid” Class

The base class is defined with the slots. ..

R> showClass('InclusionZoneGrid')

Class "InclusionZoneGrid" [package "sampSurf"]

Slots:
Name: description iz grid data bbox
Class: character InclusionZone RasterLayer data.frame matrix

Known Subclasses: "csFullInclusionZoneGrid"

2.1 Class slots

e description: Some descriptive text about this class.
e iz: An object of one of the “InclusionZone” subclasses.

e grid: A “RasterLayer” object.
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e data: A data frame holding the values for each of the per unit area estimates available in the
“InclusionZone” object in the columns, with rows for grid cells.

e bbor: The overall bounding box for the object, which includes the inclusion zone and the
“Stem” subclass object plus the grid. Sometimes the inclusion zone itself includes the stem,
but other times it does not.

I made a decision when designing this class to go with the slots above. A possible problem with this
design is the very real possiblity of people misunderstanding the class structure. This is because
the grid object has values of just zero and NA. In other words, it does not store the per unit area
estimates within the cells of the grid. These are stored in the data slot of the object and can be
swapped into the grid slot object with a simple command. ..

R> x@grid = setValues(x@grid, x@datal[,estimate])

where x is the “InclusionZoneGrid” object. Unfortunately, again this may cause problems with
misunderstanding, down the line as it is going to have to be done whenever one wants an underlying
grid with real per unit area values. An alternative to this would have been (and still could be)
to use a “RasterStack” or “RasterBrick” class for the grid slot. This would obviate the need for
the data slot. But it also has drawbacks, because these objects seem to be designed more for map
layers that are algebraically related. I did not want people unwittingly summing layers within this
object, for example, and thereby adding things like number of stems and cubic volume. I may
reconsider this, however, as the latter approach does have its benefits (even though is takes more
storage). Another potential drawback of the latter is that there seems to be no way to name the
“layers” within a brick or stack, they simply get assigned numbers, so we’d again have to keep track
of this with program code.

When plotting the object, the above substitution gets made automatically, one simply has to specify
the desired attribute to plot in the estimate argument to the plot method. For example, to plot

the coverage area surface, specify estimate = ’coverageArea’ in the plot command. The default
is to plot the surface for volume.

3 Example: The “standUplZ” Class

Refer to The “InclusionZone” Class vignette for more information on this class.

Here we demonstrate the construction of an “InclusionZoneGrid” object from an object of class
“standUplZ”.

R> tra = Tract(c(x=100, y=100), cellSize = 0.5, units = 'metric’,
+ description = 'a 1-hectare tract')
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R> btr = bufferedTract (10, tra)
R> btr

Measurement units = metric
Area in square meters = 10000 (1 hectares)

class : bufferedTract
dimensions : 200, 200, 40000 (nrow, ncol, ncell)
resolution : 0.5, 0.5 (x, y)

extent : 0, 100, 0, 100 (zmin, xmax, ymin, ymax)
coord. ref. : NA

values : in memory

min value : 0

max value : 0

Buffer width = 10

R> dlogs = downLogs (1, container=btr@bufferRect, buttDiam=c (30,40),

+ logLen=c(6,10), topDiams=c(0,0.5), solidTypes=c(2,4),
+ vol2wgt=20.1, wgt2carbon=0.5)

R> sup = standUpIZ(dlogs@logs$log.1, 3)

R> izgSU = izGrid(sup, btr)

Here we have created a 200 by 200 cell raster grid in the form of a “Tract” object, having resolution
of 0.5 meters, yielding spatial extents of 100 x 100 meters, (i.e., a 1 hectare tract), with origin at
(0,0) meters. Then we create a buffered tract object with a 10-meter buffer, and drew a single
random “downLog” object within the tract, which we used to create an object of class “standUplZ”
with a 3 meter radius for the circular plot. Finally, using the “standUplZ” object and the underlying
buffered tract grid, we create the “InclusionZoneGrid” object that will be aligned to the tract grid.

Now, in the following example we plot this object. ..

R> plot (izgSU)

There are two ways to generate the object which depend on how one wants the underlying grid
developed. The argument wholeIZ determines how this is done, and defaults to TRUE. We can see
in Figure 1 that the underlying grid covers the entire inclusion zone plus the down log object. If
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Figure 1: An “InclusionZoneGrid” object based on a “standUplZ” object.

we wanted to just cover the inclusion zone only, with a minimal bounding grid we would do the
following (Figure 2)...

R> izmbgSU = izGrid(sup, btr, wholeIZ=FALSE)
R> plot (izmbgSU, gridCenters=TRUE)

4 On Design Motivation

Having now seen that we can make the grid object cover more than just the inclusion zone if
applicable (i.e., the stem lies partially outside it), we can delve a little more into the motivation
for this class. First, it is entirely possible to approach the sampling surface construction in a more
brute-force manner in one of at least two ways. ..
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Figure 2: An “InclusionZoneGrid” object based on a “standUplZ” object where only the actual
inclusion zone is covered by the bounding grid, and grid cell centers are plotted as an option.

1. Brute-force method 1...

e Make an exact duplicate of the tract and assign zeros to all its values.
e Then overlay the inclusion zone onto this to get a mask.
e Assign the per acre values to the cells within the masked inclusion zone and zero outside.

e Algebraically add this layer to the base tract and repeat for all stems.
2. Brute-force method 2. ..

e Use the rasterize function within “raster” with overlap=’sum’ on the “InclusionZone”
objects to sum them into the base tract grid.

e Repeat for all stems.

The problem with each of these approaches, even though they work, is the time it takes to implement
them. In each case they are working on the entire tract and take significantly more time to
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do the accumulation than overlaying onto the smaller grid within the “InclusionZoneGrid” class.
This is compounded if the tract is large, or the resolution is small, which we want usually for
better estimates. This, along with the thought that perhaps the following approach is simpler to
understand because one can see the individual surface components graphically, is why I elected to
go this route.

In slightly more detail, the steps in accumulating the surface under the “InclusionZoneGrid” scheme
are. ..

1. Create an “InclusionZoneGrid” object.
2. Expand its grid to the extent of the tract.

3. Add this expanded grid to the tract surface.

W

. Repeat for all stems.

Conceptually it is similar to the other approaches except that the actual overlay is done on a
minimal bounding grid for the object, and therefore is much faster. Expanding the grid mask in
the “InclusionZoneGrid” object takes little effort, and adding it is the same in all steps.

5 Example: The “sausagelZ” Class

Using the same grid and tree as above for an example with sausage sampling, we have. . .

R> saus = sausagelIZ(dlogs@logs$log.1l, 3)
R> izgSAUS = izGrid(saus, btr, wholelIZ=FALSE)
R> plot(izgSAUS)

Notice in Figure 3 that whether we specify using the whole inclusion zone or not is immaterial for
sausage sampling, because the entire log is always included within the zone. Also note that the
minimal bounding grid is always calculated to include the entire zone, even if there is an extra cell
padding all around. This is trivial and is necessary for making sure all cells within the zone get
assigned the correct value.

6 Example: The “chainSawlZ” Class

Here are a couple similar examples for the “chainSawIZ” class. Gove and Van Deusen (2011) discuss
how the inclusion zone is really just a point, the center point of the circular plot that intersects
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Figure 3: An “InclusionZoneGrid” object based on a “sausagelZ” object showing that the stem and
inclusion zone are covered by the bounding grid.

the downed log, rather than the plot itself. Therefore, under this method, we assign the sampling
surface value to only that one grid cell that contains the circular plot center point.

R> csaw = chainSawIZ(dlogs@logs$log.1, plotRadius = 3,

+ plotCenter = coordinates(dlogs@logs$log.1@location)[1,] + c(1,-1))
R> izgCSaw = izGrid(csaw, btr, wholeIZ=FALSE)
R> izgCSaw

Object of class: InclusionZoneGrid

InclusionZone class: chainSawIZ
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units of measurement: metric

Grid class: RasterLayer
Number of grid cells =1
Cell dimensions: (nrows=1, ncol=1)
Grid cell valuesx*x*...
gridValues Freq
1 0 1
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 111.8 353.7 1950 1633 519.6 2247 1124
1st Qu. 111.8 3563.7 1950 1633 519.6 2247 1124
Median 111.8 353.7 1950 1633 519.6 2247 1124
Mean 111.8 353.7 1950 1633 519.6 2247 1124
3rd Qu. 111.8 353.7 1950 1633 519.6 2247 1124
Max. 111.8 353.7 1950 1633 519.6 2247 1124

Encapulating bounding box...
min max
X 74.494977 81.827153
y 34.280080 40.279325

R> plot(izgCSaw, gridCenters=TRUE)

Figure 4 shows the concept for a given circular plot location showing volume in cubic meters per
hectare. This clearly shows that only one grid cell gets assigned a value. Note in the above that
there is only a single grid cell in the object comprising the “InclusionZoneGrid”.

We can also show the minimal bounding grid that includes the whole circular plot plus the log, as
we have done in previous examples. Figure 5 presents this graphically.

R> izgCSaw = izGrid(csaw, btr, wholeIZ=TRUE)
R> plot(izgCSaw, gridCenters=TRUE, estimate='Density’,
+ showPlotCenter=TRUE, izCenterColor = 'white')

As with the other figures, the overall minimal bounding grid in Figure 5 has all grid cells other
than the one at the center of the circular plot set to zero. Therefore, doing any subsequent map
algebra will have no effect on the sampling surface using this enlarged grid. Showing this minimal
bounding grid is more an effort to help illustrate the underlying concepts.
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Figure 4: An “InclusionZoneGrid” object based on a “chainSawlZ” object showing that the inclusion
zone is only a single point, and therefore is assigned to just one grid cell.

It is especially important to recognize that the center point of the circular plot does not necessarily
lie at the center of any given grid cell. Depending upon the cell resolution used, this can make the
placement of this respective cell look “off-center” with respect to the circlular plot’s perimeter itself.
It is only true that the center point falls somewhere within the inclusion zone grid cell, which could
even be right on the edge. This is shown in Figure 5 where we use a white cross for the circular
plot center, and is demonstrated below in terms of actual coordinates. ..

R> cpt = perimeter(csaw, whatSense='point') #circular plot centerpoint

R> cn = cellFromXY(izgCSaw@grid, cpt) #cell number for plot center point
R> xy = xyFromCell (izgCSaw@grid, cn) #cell center point

R> rbind(coordinates(cpt), xy)

X y
[1,] 78.827153 37.279702



The “InclusionZoneGrid” Class. . . 86 Example: The “chainSawlZ” Class Gove 11

%_l_
R [ ) ) ) ) ) ) N ) ) ) )

o | [H[+[H[+]+ +[+[+

¥ ++[+]+]+ + [+ [+ 350
+{+[+[+]+ | +[+ 300
+{+[+[+ |+ [+ [N+ [+

w | [FF[E]F ++ [+ [+ [+ ]+ [+ 250

® ++ [+ [+ A+ 200
+[+ ++ A 150
+[F [+ [+ [+ [+ [+][+][+]H]+

o | [H[* [+ [+ [+ ][+ ]+ ]A]+ 100

® +|+ + 4]+ [+ [+]+] ]+ ]+ 50
+[+ [+ [+ [+ [ [+ ]S4 +]+ o
+[+ ++ |+ [+ [+ [ 5[]+ ]+

< | [#]+ i Fl+[+[+[+]+

™

Figure 5: An “InclusionZoneGrid” object based on a “chainSawlZ” object showing the minimal
bounding grid for the entire inclusion zone object; this also illustrates that the inclusion zone is
only a single point, since only one grid cell is non-zero valued in terms of number of stems per unit
area estimate.

[2,] 78.750000 37.250000

6.1 Snapping to the grid

As another example, suppose we wanted to develop a figure that shows essentially the same depiction
as in Figure 5, but also including the overall sausage inclusion zone, and the plot center exactly
aligned to a grid cell center. First we would make a “Tract” object that just holds the sausage
inclusion zone object, the log, and the chainsaw inclusion zone object (complete with plot radius
as in Figure 5). We can use the above steps to advantage to snap the plot centerpoint to the grid
as follows. ..
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R> xyExtent = c(x=10, y=10)

R> tra2 = Tract(xyExtent, cellSize=0.5)

R> d1 = downLog(buttDiam=40, topDiam=15, logLen=6.5, logAngle=pi/4,

+ centerOffset=xyExtent/2 )

R> cn = cellFromXY(tra2, c(x=6.5, y=4.5))

R> (cpt = xyFromCell(tra2, cn)l[,,drop=TRUE]) #coerce to vector from matrix

X y
6.75 4.25

R> izCS = chainSawIZ(dl, plotRadius = 2, plotCenter = cpt) #cell-based chainsaw iz

R> izgCS = izGrid(izCS, tra2) #and chainsaw iz grid object
R> hiz = heapIZ(izgCS, tra2) #heap it into the tract object
R> izSaus = sausageIZ(dl, plotRadius=2) #overall sausage inclusion zone

We use the heapIZ method in the above to “heap” the “InclusionZoneGrid” object for the single
grid cell corresponding to the chainsaw method at that point, onto the tract. The rest of the idea
behind this should be fairly standard and is covered in more detail in the vignettes for the respective
objects.

To plot this object, we need to basically build it up from scratch, the result is shown in Figure 6. . .

R> plot(hiz, axes=TRUE, gridLines=TRUE)

R> plot(dl, add=TRUE)

R> plot(izSaus, add=TRUE, izColor=NA, lty='dashed', izBorder='gray40')
R> plot(izCS, add=TRUE, izColor=NA, showPlotCenter=TRUE,

+ izCenterColor='white', ltyBolt='solid')

7 The “csFulllnclusionZoneGrid” Class

Gove and Van Deusen (2011) describe a certain protocol for the chainsaw method that leads directly
to the sausage method. They also show by simulation how the chainsaw method is biased for
whole-log attributes, because the full inclusion zone for the log is the sausage zone under this
particular protocol. To show this, every grid point within the sausage inclusion zone has to be
estimated individually with its midpoint acting as the center of the circular plot, and then applying
the chainsaw method to that plot. Again, this is repeated for every grid cell within the sausage
inclusion zone.
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10

Figure 6: A built-up plot showing not only the “InclusionZoneGrid” object for one cell of the
chainsaw method, but also the sausage object inclusion zone as would be determined by protocol 1
of Gove and Van Deusen (2011).

This necessitates a new class, actually a subclass of “InclusionZoneGrid” with one extra slot, and
some more validity checking, as well as a new constructor for the objects. The extra slot is just
used to store the result of each “chainSawlZ” object applied to each of the internal inclusion zone
grid cells.

The class is defined with the slots. ..

R> showClass('csFullInclusionZoneGrid')

Class "csFullInclusionZoneGrid" [package "sampSurf"]

Slots:



The “InclusionZoneGrid” Class. . . 87 The “csFulllnclusionZoneGrid” Class Gove 14

Name : chiz  description iz grid data
Class: list character InclusionZone  RasterLayer data.frame
Name : bbox
Class: matrix

Extends: "InclusionZoneGrid"

7.1 Class slots

e chiz: This is a list object containing NAs for cells outside the inclusion zone, but containing
the full set of “InclusionZoneGrid” objects corresponding to each grid cell within the inclusion
zone. As mentioned above, the grid cell center is used as the center point of the circular plot
that defines the chainsaw intersection with the log.

The nice thing about the subclass extension for this new object is that only one slot was added;
therefore, all of the functions that work on “InclusionZoneGrid” objects will also work on objects
of this new class “csFulllnclusionZoneGrid”. These include the print, show, summary, and plot
routines.

In addition, because each of the componets of the list in chiz is of class “InclusionZoneGrid” (or
NA), we can apply any of the methods for that class on the individual slots. For example, we can
plot them as in Figure 4, and look at how the chainsaw method works as we step from one cell to
the next, showing the intersections of the circular plots with the log.

7.2 Object Construction and Plotting

Now, object construction takes quite a while because it has to compute the chainsaw intersections,
etc., for each internal sausage grid cell. So here we use an existing object to demonstrate the
idea. In the following, we show how to make an object of class “csFulllnclusionZoneGrid” using
its constructor, but do not evaluate it (we use the existing object instead); the steps leading to its
creation are also shown. ..

R> btLog = sampleLogs(1, buttDiam=c(30,40), sampleRect=buffTr@bufferRect,
+ logLen=c(4,6), topDiams=c(0, 0.5) )

R> btLog = downLogs (btLog)

R> btLog = btLog@logs$log.1

R> btLog.sa = sausagelIZ(btLog, 3)

R> btlog.izgsa = izGrid(btLog.sa, buffTr)

R> btLog.izgFCS = izGridCSFull(btLog.izgsa, buffTr)
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where buffTr is essentially the same as btr used in the previous examples.

R> btLog.izgFCS

Object of class: csFulllnclusionZoneGrid

InclusionZone class: sausagelZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 391
Cell dimensions: (nrows=17, ncol=23)
Grid cell valuesx*x*...
gridValues Freq
1 0 229
2 <NA> 162

**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...

volume Density Length surfaceArea coverageArea biomass
Min. 0.04731 353.7 12.68 2.568 0.8174 1.031
1st Qu. 4.79100 353.7 425.90 166.700 53.0000 104.400
Median 17.92000 353.7 812.00 406.600 129.3000 390.600 1
Mean 19.52000 353.7 841.80 407.900 129.8000 425.600 2
3rd Qu. 34.56000 353.7 1247.00 638.300 203.1000 753.500 3
Max. 39.58000 353.7 1659.00 828.100 263.4000 862.900 4

Encapulating bounding box...

min max
x 61.5 73
y 30.5 39

carbon

0.
52.
95.
.8000
76.
31.

12

5157
2200
3000

7000
4000

One thing to note in particular, is that with the exception of density in the printed summary of the
object above, the summary statistics vary here because the grid cells are composed of individual
chainsaw estimates; this is not true for methods where the cells internal to the inclusion zone only

take a single constant value (e.g., stand-up, sausage, point relascope, etc.).

And plotting the object is as usual. ..
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R> plot(btLog.izgFCS, gridCenters=TRUE, showNeedle=TRUE)
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Figure 7: A “csFulllnclusionZoneGrid” object based on a “sausagelZ” object.

As mentioned above, because the chiz slot contains a list of “InclusionZoneGrid” objects, for each
grid cell within the inclusion zone, or NA for grid cells outside the zone, we can step through the
internal cells one at a time, looking at summaries or plotting them. One way to do this would be
the following. ..

R> cdx = ifelse(is.na(btLog.izgFCS@chiz), FALSE, TRUE)
R> c¢csl = btLog.izgFCS@chiz[cdx]
R> length(csl)

[1] 229

R> sapply(csl[1:4], class)
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izgCS.38 izgCS.39 izgCs. 40 izgCS.41
"InclusionZoneGrid" "InclusionZoneGrid" "InclusionZoneGrid" "InclusionZoneGrid"

Again, we could then plot the slivers we are interested in, stepping through to see how the chainsaw
method slices the log up for each individual grid cell.

8 Example: The “pointRelascopelZ” Class

Here we present an example for the point relascope sampling method (Gove et al. 1999, Gove et al.
2001). ..

R> (angle = .StemEnv$rad2Deg(2*atan(1/2)))
[1] 53.130102

R> prs.as = pointRelascope(angle, units='metric')
R> prs.iz = pointRelascopelZ(dlogs@logs$log.l, prs=prs.as)
R> (izgPRS = izGrid(prs.iz, btr))

Object of class: InclusionZoneGrid

InclusionZone class: pointRelascopelZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 720
Cell dimensions: (nrows=30, ncol=24)
Grid cell valuesx*x*...
gridValues Freq
1 0 434
2 <NA> 286
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon
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Min. 35.85 91.9 660.7 529.7 168.6 720.5 360.3
1st Qu. 35.85 91.9 660.7 529.7 168.6 720.5 360.3
Median  35.85 91.9 660.7 529.7 168.6 720.5 360.3
Mean 35.85 91.9 660.7 529.7 168.6 720.5 360.3
3rd Qu. 35.85 91.9 660.7 529.7 168.6 720.5 360.3
Max. 35.85 91.9 660.7 529.7 168.6 720.5 360.3

Encapulating bounding box...

min max
x 72 84
y 31 46

R> plot (izgPRS)

9 Example: The “perpendicularDistancelZ” Class

Here we present an example for the perpendicular distance sampling method (Williams and Gove
2003, Williams et al. 2005, Ducey et al. 2008), this example happens to be for volume estimation.
Please note that, because we know the log’s true volume from simulation, we can in fact estimate
all the other attributes for the log. Normally, however, we do not know the true volume from field
measurements, so we would only be able to estimate volume under “canonical” PDS, and would use
the “omnibus” variant PDS given in the next section to estimate these other quantities. . .

R> pdsmet = perpendicularDistance(kpds=50, units='metric')
R> iz.pdsv = perpendicularDistanceIZ(dlogs@logs$log.1, pdsmet)
R> (izgPDS = izGrid(iz.pdsv, btr))

Object of class: InclusionZoneGrid

InclusionZone class: perpendicularDistancelZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 399
Cell dimensions: (nrows=21, ncol=19)
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Figure 8: An “InclusionZoneGrid” object based on a “pointRelascopelZ” object showing that the
stem and inclusion zone are covered by the bounding grid.

Grid cell valuesx*x*...
gridValues Freq
1 0 156
2 <NA> 243
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 100 256.4 1843 1478 470.3 2010 1005
1st Qu. 100 256.4 1843 1478 470.3 2010 1005
Median 100 256.4 1843 1478 470.3 2010 1005
Mean 100 256.4 1843 1478 470.3 2010 1005
3rd Qu. 100 256.4 1843 1478 470.3 2010 1005
Max. 100 256.4 1843 1478 470.3 2010 1005
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Encapulating bounding box...
min max

x 74.0 83.5

y 34.5 45.0

R> plot(izgPDS)
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Figure 9: An “InclusionZoneGrid” object based on a “perpendicularDistancelZ” object showing that
the stem and inclusion zone are covered by the bounding grid.

As noted in The InclusionZone Class vignette, the inclusion zone for PDS is developed directly
from the dataframe in the taper slot of the “downLog” object. It can be seen here that if that
taper approximation is poor because it uses too few points, it has the potential to exclude grid
cells that would otherwise normally be included. This in turn could lead to unexpected “simulation
bias” in the sampling surface result (the same thing can happen from using too large a grid cell).
Thus, it is fairly important to use a good number of log sections in the taper dataframe to avoid
this possibility.
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10 Example: The “omnibusPDSIZ” Class

An extension to “canonical” PDS presented in the previous section and given by Ducey et al.
(2008), allows one to estimate any attribute on the log and is sometimes referred to as “omnibus”
PDS. Because this method uses stem measurements perpendicular to the sample point to form the
estimates, it has varying height surface in each case, except that for the variable we use for the
PPS selection of the log!. ..

R> iz.opds = omnibusPDSIZ(dlogs@logs$log.1, pdsmet)
R> (izgOPDS = izGrid(iz.opds, btr))

Object of class: InclusionZoneGrid

InclusionZone class: omnibusPDSIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 399
Cell dimensions: (nrows=21, ncol=19)
Grid cell values*x*. ..
gridValues Freq
1 0 156
2 <NA> 243
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 100 138.2 993.5 1117 355.7 2010 1005
1st Qu. 100 162.5 1168.0 1212 385.7 2010 1005
Median 100 203.5 1463.0 1356 431.6 2010 1005
Mean 100 255.6 1838.0 1477 470.0 2010 1005
3rd Qu. 100  291.4 2095.0 1622 516.4 2010 1005
Max. 100 886.7 6375.0 2830 901.0 2010 1005

Encapulating bounding box...

!Note that if log selection is with PP to volume, then since both biomass and carbon are simply scaled versions
of volume, their surfaces will also be constant.
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min max
x 74.0 83.5
y 34.5 45.0

R> plot(izgOPDS, estimate='coverageArea')
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Figure 10: An “InclusionZoneGrid” object based on a “omnibusPDSIZ” object showing the variable
height sampling surface for coverage area.

11 Example: The “distanceLimitedlZ” Class

Here we interject a method that is not a PDS variant, but we introduce it now because it is used
in the distance limited PDS method presented below. There are two protocols for distance limited
sampling: (i) a standard/canonical (DLS) with constant surface heights for all attributes, and
(i1) a crude Monte Carlo based protocol (DLMCS) with varying surface height for most, but not
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all attributes. The first protocol is discussed here, while DLMCS is discussed in the next section.
The protocols are discussed in detail in Gove et al. (2012a). The inclusion zone is covered in The
“InclusionZone” Class vignette.

R> dlsMet = distanceLimited(3, units='metric')
R> iz.dls = distanceLimitedIZ(dlogs@logs$log.1, dls=dlsMet)
R> (izgDLS = izGrid(iz.dls, btr))

Object of class: InclusionZoneGrid

InclusionZone class: distancelLimitedIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 380
Cell dimensions: (nrows=19, ncol=20)
Grid cell values*x*. ..
gridValues Freq
1 0 172
2 <NA> 208
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 90.42 231.8 1667 1336 425.2 1817 908.7
1st Qu. 90.42 231.8 1667 1336 425.2 1817 908.7
Median 90.42 231.8 1667 1336 425.2 1817 908.7
Mean 90.42 231.8 1667 1336 425.2 1817 908.7
3rd Qu. 90.42 231.8 1667 1336 425.2 1817 908.7
Max. 90.42 231.8 1667 1336 425.2 1817 908.7

Encapulating bounding box...

min max
x 73.0 83
y 33.5 43

R> plot(izgDLS, estimate='biomass')
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Figure 11: An “InclusionZoneGrid” object based on a “distanceLimitedIZ” object showing the vari-
able height sampling surface for biomass.

The surfaces for log length and log density will be exactly the same under this protocol as the
Monte Carlo variant as can be verified with the results in the following section. All other attribute
surfaces will differ between the two protocols, as is illustrated for biomass in Figure 11.

12 Example: The “distanceLimitedMCIZ"” Class

The Monte Carlo protocol for distance limited sampling is illustrated here. The inclusion zone is
covered in The “InclusionZone” Class vignette, and the surface will be constant only for log length
and density and be exactly the same as for DLS. An example follows. ..

R> dlsMet = distanceLimited(3, units='metric')
R> iz.dlmcs = distanceLimitedMCIZ(dlogs@logs$log.1l, dls=dlsMet)
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R> (izgDLMCS = izGrid(iz.dlmcs, btr))

Object of class: InclusionZoneGrid

InclusionZone class: distancelLimitedMCIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 380
Cell dimensions: (nrows=19, ncol=20)
Grid cell valuesx*x*...
gridValues Freq
1 0 172
2 <NA> 208
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 23.49 231.8 1667 701.3 223.2  472.1 236.0
1st Qu. 54.06 231.8 1667 1064.0 338.7 1087.0 543.3
Median 87.26 231.8 1667 13562.0 430.3 1754.0 876.9
Mean 90.04 231.8 1667 1333.0 424.2 1810.0 904.9
3rd Qu. 125.10 231.8 1667 1619.0 515.2 2514.0 1257.0
Max. 167.80 231.8 1667 1874.0 596.6 3372.0 1686.0

Encapulating bounding box...
min max

x 73.0 83

y 33.5 43

R> plot (izgDLMCS, estimate='biomass')

Note from the summary output that the surface is indeed variable for all attributes other than
density and Length. This is illustrated for biomass in Figure 12.
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Figure 12: An “InclusionZoneGrid” object based on a “distanceLimitedMCIZ” object showing the
variable height sampling surface for biomass.

13 Example: The “distanceLimitedPDSIZ” Class

This class, as explained in The “InclusionZone” Class vignette, is a sampling method that restricts
the maximum width of the PDS inclusion zone, effectively truncating the search distance for logs.
The composite effect comes from the fact that the inclusion zone can have one of three variations:
(i) the inclusion zone is all PDS, (%i) the inclusion zone is all DLS, or (4i) it is a combination of
the two. This flexibility can make things a bit messy, however. We again define several different
protocols within this method. First, “canonical” DLPDS uses DLS for the truncated portion of the
inclusion zone and canonical PDS for the section that is treated as a normal PDS sample.? In the
second protocol, we substitute omnibus PDS for any section that is to be sampled with PDS, while
DLMCS is used for the distance limited portion, and refer to this as “omnibus” DLPDS. Note that
the difference is entirely based on the protocols for both the PDS and distance limited components

20f course, in field applications, this method is limited to sampling only for the PPS selection variable in the PDS
component for the same reasons as described above.
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(if any) for each log. Both components of the inclusion zone can, therefore, be either constant or
variable depending on the PPS selection strategy (volume, surface area or coverage area) and the
particular attribute we are estimating (refer to the last few sections for more information). Finally,
there is a “hybrid” protocol, which uses canonical PDS and DLMCS, and was the original distance
limited method introduced by Ducey et al. (2012). Again, this method is useful only for the design
attribute in field application and is design-unbiased. The sampling surface will be flat for the PDS
component, but can be either flat or sloping for the DLMCS component. Details on each of the
three methods can be found in Gove et al. (2012b).

R> iz.dlpds = distancelLimitedPDSIZ(dlogs@logs$log.1, pds=pdsmet, dls=dlsMet)
R> (izgDLPDS = izGrid(iz.dlpds, btr))

Object of class: InclusionZoneGrid

InclusionZone class: distanceLimitedPDSIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 270
Cell dimensions: (nrows=15, ncol=18)
Grid cell valuesx*x*...
gridValues Freq
1 0 131
2 <NA> 139
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 100.0 279.0 1667 1664 529.8 2010 1005
1st Qu. 100.0 279.0 1667 1664 529.8 2010 1005
Median 133.0 279.0 1667 1664 529.8 2673 1337
Mean 117.9 302.2 2172 1742 554.3 2369 1185
3rd Qu. 133.0 329.6 2770 1833 583.3 2673 1337
Max. 133.0 329.6 2770 1833 583.3 2673 1337

Encapulating bounding box...
min max

x 74.0 83

y 35.5 43
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R> plot(ingLPDS, estimate='biomass', showPDSPart=TRUE)

s
<
N
<
2500
2000
o ]
<
1500
1000
Qo _|
™
500
0
© _]
™

74 76 78 80 82

Figure 13: An “InclusionZoneGrid” object based on a “distanceLimitedPDSIZ” object showing the
variable “stair step” height sampling surface for biomass.

Figure 13 shows® the two inclusion zones in the hybrid region. Since biomass is a scaled version of
volume (the PPS selection variable), the PDS component surface is constant as in Figure 9. The
DLS component is also constant, just as the surface generated in Figure 11. Now we are able to see
why this is a hybrid scheme more clearly. Note from the object summary that the combination of
the two types of inclusion zone objects makes all of the attributes variable in case (i), since both
PDS and DLS will always produce constant height surfaces that will, in general, not be the same
height, resulting in the entire surface resembling a “step” function.

3The log is randomly generated with each run of this document, and so differs with each creation, but the
parameters are chosen such that it should show the two zones of case (%ii).
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14 Example: The “omnibusDLPDSIZ” Class

Omnibus DLPDS is a Monte Carlo-based method. Again, this is similar to canonical DLPDS with
the exception that omnibus PDS is employed within the PDS component of the inclusion zone, and
DLMCS is used in the distance limited portion, if any. This method will be more appropriate for
most field applications since one is able to estimate any attribute shown in Ducey et al. (2008). The
resulting surface will be variable as described in the sections for the individual component methods
above.

R> iz.odlpds = omnibusDLPDSIZ(dlogs@logs$log.1, pds=pdsmet, dls=dlsMet)
R> (izgODLPDS = izGrid(iz.odlpds, btr))

Object of class: InclusionZoneGrid

InclusionZone class: omnibusDLPDSIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 270
Cell dimensions: (nrows=15, ncol=18)
Grid cell valuesx*x*...
gridValues Freq
1 0 131
2 <NA> 139
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 100.0 199.7 1667 1451 462.0 2010 1005
1st Qu. 100.0 279.0 1667 1560 496.6 2010 1005
Median 104.8 279.0 1667 1691 538.3 2106 1053
Mean 117.8 301.9 2170 1741 554.2 2367 1184
3rd Qu. 135.1 279.0 2296 1821 579.5 2715 13567
Max. 167.8 763.7 6419 2840 904.1 3372 1686

Encapulating bounding box...
min max
x 74.0 83
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y 35.5 43

R> plot(izgODLPDS, estimate='surfaceArea', showPDSPart=TRUE)
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Figure 14: An “InclusionZoneGrid” object based on a “omnibusDLPDSIZ” object showing the
variable height sampling surface for surface area.

It may be difficult to see in Figure 14, but the surface is actually slightly convex from butt to tip,
because it varies in the reverse sense for each of the two components; i.e., larger near the butt for
DLMCS, but larger near the tip for omnibus PDS.

15 Example: The “hybridDLPDSIZ” Class

Hybrid DLPDS is similar to canonical DLPDS with the exception that DLMCS is employed within
the DLS component of the inclusion zone, if any. This is the original DLPDS method introduced
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by Ducey et al. (2012) The resulting surface will be flat or variable depending on the attribute, as
described in the sections for the individual component methods above.

R> iz.hdlpds = hybridDLPDSIZ(dlogs@logs$log.l, pds=pdsmet, dls=dlsMet)
R> (izgHDLPDS = izGrid(iz.hdlpds, btr))

Object of class: InclusionZoneGrid

InclusionZone class: hybridDLPDSIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 270
Cell dimensions: (nrows=15, ncol=18)
Grid cell values*x*. ..
gridValues Freq
1 0 131
2 <NA> 139
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density Length surfaceArea coverageArea biomass carbon

Min. 100.0 279.0 1667 1451 462.0 2010 1005
1st Qu. 100.0 279.0 1667 1654 526.4 2010 1005
Median 104.8 279.0 1667 1833 583.3 2106 10563
Mean 117.8 302.2 2172 1741 554.1 2367 1184
3rd Qu. 135.1 329.6 2770 1833 583.3 2715 1357
Max. 167.8 329.6 2770 1874 596.6 3372 1686

Encapulating bounding box...
min max

x 74.0 83

y 35.5 43

R> plot (izgHDLPDS, estimate='surfaceArea', showPDSPart=TRUE)

Again, it may be difficult to tell from Figure 15, but the surface slopes downward from the butt of
the log to the transition point in the DLMCS section of the inclusion zone, and is constant in the
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Figure 15: An “InclusionZoneGrid” object based on a “hybridDLPDSIZ” object showing the com-
posite height sampling surface for surface area when sampling with PP volume.

PDS section.

16 Example: The “circularPlotlZ” Class

This example is for standing trees, and the example shows how the classic fixed-area circular plot
method works for the “InclusionZoneGrid” class.

R> sttr = standingTrees(1, btr, dbh = c¢(10,20))
R> cpiz = circularPlotIZ(sttr@trees$tree.1, plotRadius=4)
R> (cplZG = izGrid(cpiz, btr))
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Object of class: InclusionZoneGrid

InclusionZone class: circularPlotIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 324
Cell dimensions: (nrows=18, ncol=18)
Grid cell valuesx*x*...
gridValues Freq

1 0 200
2 <NA> 124
**Note: data

Per unit area estimates in the data slot (for cells inside IZ only)...

slot values get swapped with zero-valued grid cells as necessary.

volume Density basalArea surfaceArea

Min. 54.7 198.9 5.273 1358
1st Qu. 54.7 198.9 5.273 1358
Median 54.7 198.9 5.273 1358
Mean 54.7 198.9 5.273 1358
3rd Qu. 54.7 198.9 5.273 1358
Max. 54.7 198.9 5.273 1358
--Note:

either biomass or carbon (or both) had all NAs because no conversion

factor was suppled, these columns have been deleted above.

Encapulating bounding box...

min max
x 79 88
y 69 78

R> plot(cpIZG, estimate='surfaceArea')

17 Example: The “horizontalPointlZ” Class

This section presents an example based on horizontal point sampling for a standing tree. Note that
it is very similar to the previous example for sampling with fixed-area circular plots and indeed
uses the same methods thanks to class inheritance.
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Figure 16: An “InclusionZoneGrid” object based on a “circularPlotIZ” object.

R> aGauge = angleGauge(baf=3) #metric
R> hpiz = horizontalPointIZ(sttr@trees$tree.1, angleGauge=aGauge)
R> (hpsIZG = izGrid(cpiz, btr))

Object of class: InclusionZoneGrid

InclusionZone class: circularPlotIZ
units of measurement: metric

Grid class: RasterLayer
Number of grid cells = 324
Cell dimensions: (nrows=18, ncol=18)
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Grid cell valuesx*x*...
gridValues Freq
1 0 200
2 <NA> 124
**Note: data slot values get swapped with zero-valued grid cells as necessary.

Per unit area estimates in the data slot (for cells inside IZ only)...
volume Density basalArea surfaceArea

Min. 54.7 198.9 5.273 1358
1st Qu. 54.7 198.9 5.273 1358
Median 54.7 198.9 5.273 1358
Mean 54.7 198.9 5.273 1358
3rd Qu. 54.7 198.9 5.273 1358
Max. 54.7 198.9 5.273 1358

--Note: either biomass or carbon (or both) had all NAs because no conversion
factor was suppled, these columns have been deleted above.

Encapulating bounding box...

min max
x 79 88
y 69 78

R> plot (hpsIZG, estimate='basalArea')

18 Using plot3D

The plot3D generic was extended to handle objects of class “InclusionZoneGrid”. Its use is sim-
ple, just remember to use the estimate argument to specify the desired surface attribute to be
rendered. . .

R> plot3D(izgODLPDS, estimate='surfaceArea')
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Figure 17: An “InclusionZoneGrid” object based on a “horizontalPointIZ” object.
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