
“monte”: When is n Sufficiently Large?

Jeffrey H. Gove∗

Research Forester
USDA Forest Service

Northern Research Station
271 Mast Road

Durham, New Hampshire 03824 USA
e-mail: jgove@fs.fed.us or e-mail: jhgove@unh.edu

Friday 16th March, 2012
3:43pm

Contents

1 Introduction 1
2 “monte” Class Structure Overview 2
3 The “montePop” Class 2

3.1 Object creation 4

3.2 Plotting the object 6
4 The “monteSample” Class 6

4.1 The “monteNTSample” class 9
4.1.1 Object creation 9

4.2 The “monteBSSample” class 10
4.2.1 Object creation 11
4.2.2 Plotting the object 12

5 The “monte” Class 12
5.1 Object creation 13
5.2 Plotting the object 15

Bibliography 16

1 Introduction

In designing surveys or even the sampling methods themselves, one is often presented with the
question of how many samples should be taken? This is a function of the variability of the population
and the time it takes to execute the respective sampling technique on the population. Barrett and
Goldsmith (1976) addressed the question“When is n sufficiently large”in their Monte Carlo analysis,
based on the Central Limit Theorem (CLT). Given a population of individuals, drawing repeated
samples in the Monte Carlo sense and invoking the central limit theorem is certainly an instructive
way to address this question. In what follows, we use this concept to look at sample size issues for
populations of sample (grid) points in sampling surface “sampSurf” objects. More information on
this approach can be found, for example in Barrett and Nutt (1979).

∗Phone: (603) 868-7667; Fax: (603) 868-7604.

1

The “ArealSampling” Class. . . §3 The “montePop” Class Gove 2

The “monte” concept is really more of a subpackage within sampSurf and can be used in its current
form for more general populations than those from “sampSurf” objects. Therefore, eventually, the
classes detailed here will probably be separated from the sampSurf package and be located in a more
general package, with perhaps only “sampSurf” extensions residing in sampSurf. In other words,
support will always be available for “sampSurf” objects, but don’t count on the code residing within
the package name space (other than as an imported required package for sampSurf) in the future.

2 “monte” Class Structure Overview

There are several classes associated with the Monte Carlo CLT simulations implemented here.
These are. . .

� “montePop:” This stores the population that the MC samples will be drawn from for confi-
dence interval estimation.

� “monteSample:” This class holds the means, confidence intervals and other information from
the individual MC samples drawn from the population. There are subclasses for normal
theory (“monteNTSample”) and bootstrap (“monteBSSample”) methods.

� “monte:” The class the keeps tract of objects of the above classes for a give set of MC runs.
There can be normal theory or bootstrap components, or both.

In what follows, each class will be detailed, including the class structures and generics used to
create objects of the respective classes.

3 The “montePop” Class

Each object of class “monte” must have a population of values that form the basis for repeated
sampling in the MC sense. The “montePop” class holds the information necessary in the context of
“monte” objects.

R> showClass('montePop')

Class "montePop" [package "sampSurf"]

Slots:

Name: mean var stDev N total

The “ArealSampling” Class. . . §3 The “montePop” Class Gove 3

Class: numeric numeric numeric numeric numeric

Name: popVals zeroTruncated n fpc varMean
Class: numeric logical numeric numeric numeric

Name: stErr description
Class: numeric character

� mean: The population mean: µ = 1
N

∑N
i=1 yi.

� var : The population variance: σ2 = 1
N

∑N
i=1(yi − µ)2.

� stDev : The population standard deviation: σ =
√
σ2

� N : The number of observations in the population—the population size.

� total : The total for whatever attribute the population is concerned with: τx =
∑N

i=1 yi.

� popVals: A numeric vector containing the values, yi, i = 1, . . . , N , in the population.

� zeroTruncated : A logical scalar: TRUE if the population is zero-truncated (no zeros); FALSE
otherwise. This was added to deal with “sampSurf” objects, which can be largely zero-inflated
in all of the background grid cells where no inclusion zones exist, depending on how the tract
size, population size, sampling design, etc., are chosen.

Note: The following four slots can either contain the contents as described below, or be NA if
no sample size information was provided. . .

� n: A numeric vector listing the different sample sizes that will be drawn from this object. If
we will be drawning samples of size n = 10, 20, 30, then this would hold c(10,20,30).

� fpc: The finite population correction factors for each sample size n. The correction is: fc =
(N − n)/N .

� varMean: The population variance of the mean, which is sample size dependent; viz., σ2
ȳ =

σ2

n × fc.

� stErr : The population standard error of the mean: σȳ =
√
σ2
ȳ .

� description: Some descriptive text about the object.

Note that each object of class “montePop” is designed to hold one, and only one population.

The “ArealSampling” Class. . . §3 The “montePop” Class Gove 4

3.1 Object creation

There is a constructor generic to create objects of class “montePop”. While it is simple enough
to create objects using new, it is recommended to use the constructor to minimize the chances of
creating an invalid object. The constructor has the same name as the class and can create an object
from an R numeric vector, or from a “sampSurf” object. . .

R> x = rnorm(100)

R> x.mp = montePop(x)

R> x.mp

Population...
Mean = 0.032465716
Variance = 1.298729
Standard Deviation = 1.1396179
Total = 3.2465716
Size (N) = 100
Zero-truncated = FALSE

The result of the above run is a “montePop” population object with the slots defined above assigned
when the signature object of the constructor is of class “numeric” (vector).

In the following, we generate a population object from a “sampSurf” object. . .

R> smTract = Tract(c(x=30,y=30), cellSize=0.5)

R> smbuffTr = bufferedTract(8,smTract)

R> agauge = angleGauge(6)

R> SS.hps = sampSurf(10, smbuffTr, 'horizontalPointIZ', angleGauge=agauge,

+ estimate='volume')

Number of trees in collection = 10
Heaping tree: 1,2,3,4,5,6,7,8,9,10,

R> (hps.pop = montePop(SS.hps, zeroTruncate = TRUE, n = c(10,20,30)))

Population...
Mean = 13.878831
Variance = 51.840625

The “ArealSampling” Class. . . §3 The “montePop” Class Gove 5

Standard Deviation = 7.2000434
Total = 19583.031
Size (N) = 1411
Zero-truncated = TRUE
Sample sizes (n) = 10, 20, 30
Finite population corrections = 0.9929, 0.9858, 0.9787
Variance of the mean = 5.1473222, 2.5552909, 1.6912805
Standard error of the mean = 2.2687711, 1.5985277, 1.3004924

In this example we have specified that samples of size n = (10, 20, 3) will eventually be drawn
from the population. This prompts the constructor to calculate the finite population correction,
population variance of the mean and standard error of the mean associated with these sample sizes
as is demonstrated in the summary of the object. This option is not one that would probably
be used on its own just to create a “montePop” object, as it would limit the eventual use of the
contents to these sample sizes. Where it becomes very useful is in the “monte” object construction,
where the sample sizes are an intrinsic component of a given Monte Carlo experiment.

One very important point to keep in mind when using the zero-truncated population and subsequent
MC sampling routine is the following. The sampling surface method takes the mean of the surface
estimates including the background cells, which have zero value, to compute the estimate. When
we truncate the zeros in the background, we now will have a population mean that will be larger—
perhaps substantially so, depending upon the inclusion zone coverage—than the unbiased estimate
we get from running the sampSurf method above. For example, the horizontal point sampling
population we just created has the following statistics (see also Figure 1). . .

R> summary(SS.hps)

Object of class: sampSurf
--
sampling surface object
--

Inclusion zone objects: horizontalPointIZ
Measurement units = metric
Number of trees = 10
True tree volume = 5.4377694 cubic meters
True tree basal area = 0.58541245 square meters
True tree surface area = 81.218394 square meters
True tree biomass = NA
True tree carbon = NA

Estimate attribute: volume

The “ArealSampling” Class. . . §4 The “monteSample” Class Gove 6

Surface statistics...
mean = 5.4397308
bias = 0.0019613078
bias percent = 0.036068242
sum = 19583.031
var = 66.229076
st. dev. = 8.1381248
cv % = 149.60529
surface max = 35.502872
total # grid cells = 3600
grid cell resolution (x & y) = 0.5 meters
of background cells (zero) = 2189
of inclusion zone cells = 1411

Note that the standing tree volume on the tract is 5.438 m3, and the unbiased estimate given by
the mean over all grid cells of the sampling surface is 5.44. However, we see in the “montePop”
object that the population mean is 13.88. The difference is obvious, and the source of the difference
should now be apparent—though it probably was initially without this lengthy example. Finally,
note that the size of the population in the “montePop” object is N = 1411, which is the number of
cells covered by inclusion zones in the above summary.

3.2 Plotting the object

Currently only histograms are supported for “montePop” objects. The command is. . .

R> hist(hps.pop)

4 The “monteSample” Class

This is a general class for holding information on the MC samples drawn from a “montePop”
population object. It is a virtual class; therefore, you must use one of the subclasses that have been
tailored to normal theory or bootstrap resampling described below—or create your own subclass
for a new application.

R> showClass('monteSample')

Virtual Class "monteSample" [package "sampSurf"]

The “ArealSampling” Class. . . §4 The “monteSample” Class Gove 7

0 5 10 15 20 25 30

0
5

10
15

20
25

30

x

y

Figure 1: The horizontal point sampling “sampSurf” representation.

Slots:

Name: mcSamples n alpha replace ranSeed fpc
Class: numeric numeric numeric logical numeric numeric

Name: means vars stDevs varMeans stErrs lowerCIs
Class: data.frame data.frame data.frame data.frame data.frame data.frame

Name: upperCIs caught caughtPct stats
Class: data.frame data.frame numeric data.frame

Known Subclasses: "monteNTSample", "monteBSSample"

� mcSamples: A scalar numeric specifying the number of Monte Carlo samples drawn from the
population.

The “ArealSampling” Class. . . §4 The “monteSample” Class Gove 8

� n: A numeric vector listing the different sample sizes recorded in the object that have been
drawn from a “montePop” population object. So, if we have drawn samples of size n =
10, 20, 30, then this would hold c(10,20,30). The associated names should always be of the
form c(’n.10’,’n.20’,’n.30’).

� alpha: The two-tailed alpha level for which confidence intervals have been calculated. I.e.,
for the 95% confidence level (α = 0.05) alpha = 0.05.

� replace: TRUE if the samples have been drawn from the population with replacement, FALSE
otherwise.

� ranSeed : The random number seed as a numeric vector. Please see the R documentation on
.Random.seed for information on the format of this slot. Note that it is not a simple scalar
integer “seed”, but a vector of integers containing the state of the random number generator
at the beginning of the simulations.

� fpc: The finite population correction factors for each sample size n. The correction is: fc =
(N − n)/N .

� means: A data frame with mcSamples rows, and one column for each of the sample sizes in
the n slot of the object. What is stored here depends on the subclass object type, so please
see the definitions below for these slots.

Note: The next six slots have the same dimensions as the means slot.

� vars: Contains the individual sample variances for each sample for both “monteNTSample”
and “monteBSSample” subclasses: s2 = 1

n−1

∑n
i=1(yi − ȳ)2.

� stDevs: Contains the individual sample standard deviations for each sample for both “mon-
teNTSample” and “monteBSSample” subclasses: s =

√
s2.

� varMeans: Contains the individual sample variance of the mean for each sample for both
“monteNTSample” and “monteBSSample” subclasses: s2

ȳ = s2

n × fc.

� stErrs: Contains the individual standard errors for each sample for both “monteNTSample”
and “monteBSSample” subclasses: sȳ =

√
s2
ȳ.

� lowerCIs: Contains the individual lower limit for the confidence intervals. This is defined
differently for the “monteNTSample” and “monteBSSample” subclasses.

� upperCIs: Contains the individual upper limit for the confidence intervals. This is defined
differently for the “monteNTSample” and “monteBSSample” subclasses.

� caught : Contains a flag where TRUE means the confidence interval caught the population mean
and FALSE means it failed to catch the population mean. Taking column sums, therefore (since
TRUE == 1 and FALSE == 0) will give the number of intervals that caught the population
mean for each sample size. This is used to calculate the next slot below.

� caughtPct : The percentage of times the confidence intervals caught the population mean as
calculated from the data frame in the caught slot of the object.

The “ArealSampling” Class. . . §4 The “monteSample” Class Gove 9

� stats: A summary data frame with rows as the average of each column (i.e., over all MC
samples) from the information in the data frames above (means, vars, stDevs, varMeans,
stErrs, lowerCIs, and upperCIs). The interpretation of some of the rows depends on the
subclass object as has been mentioned above.

4.1 The “monteNTSample” class

This class holds information for classic normal theory confidence intervals under simple random
sampling. It adds only one slot to the “monteSample” superclass, t.values. Some of the other slot
definitions that depend on the type of intervals are also defined below for this class.

� t.values: The t1−α/2n−1 Student’s t values for each sample size n with two-tailed α-level alpha.

� means: The data frame contains the individual means for all mcSamples by length(n) sam-
ples drawn from the population. Taking column means gives the overall mean for each of the
sample sizes. The sample mean is: ȳ = 1

n

∑n
i=1 yi.

� lowerCIs: This is the usual normal theory lower limit for each sample: ȳ − t1−α/2n−1 sȳ, where t
is Student’s t-value and sȳ is the standard error of the mean for the sample.

� upperCIs: This is the usual normal theory upper limit for each sample: ȳ + t
1−α/2
n−1 sȳ, where

t is Student’s t-value and sȳ is the standard error of the mean for the sample.

The stats slot averages over all Monte Carlo samples and therefore has the usual interpretation
for each row in the data frame.

4.1.1 Object creation

The constructor for objects of this class has the same name as the class. Below we create an
object from a sampling surface for several sample sizes, n, and a small number of MC samples for
illustration.

Please note that while we can create objects in the following manner, it is preferable to use the
method monte to do so as discussed later. The reason for this is that objects of class “monte” store
everything needed to reconstruct the samples, including the population they came from, which is
not present in this class of MC results.

R> hps.nts = monteNTSample(hps.pop, n = c(10,20,30), mcSamples=100)

R> hps.nts

The “ArealSampling” Class. . . §4 The “monteSample” Class Gove 10

Number of Monte Carlo samples = 100
Sample sizes: n = 10, 20, 30
Sample summary statistics (mean values)...

n.10 n.20 n.30
mean 13.6193251 13.7816539 13.8006514
var 51.9325699 52.3250914 51.3714150
stDev 7.0122578 7.1518746 7.1113143
VarMean 5.1564515 2.5791709 1.6759727
stErr 2.2095988 1.5878335 1.2844659
lowerCI 8.6208653 10.4582803 11.1736236
upperCI 18.6177850 17.1050276 16.4276791

Percentage of confidence intervals (95%) that caught the population mean...
n.10 n.20 n.30
93 94 93

4.2 The “monteBSSample” class

This subclass of “monteSample” handles bootstrap confidence intervals in the MC setting. At
present, only bootstrap “BCa” confidence intervals are calculated. The general idea is as follows.
First, draw a sample from the population of interest, just like in the normal theory case. Then
run R bootstrap resample replicates and calculate the mean and confidence interval endpoints from
the distribution of bootstrap means of the replicates. This is repeated for each MC sample and for
each sample size. The bootstrap intervals provide a nonparametric alternative to the normal theory
intervals and may be more valid when the distribution of sample means is non-Gaussian. Thus,
the bootstrap is really a nested—or second-stage—set of Monte Carlo iterations for each first-stage
MC iteration and sample size.

The class adds two new slots to the “monteSample” superclass as shown below. In addition, a few
of the other slot definitions that depend on the type of intervals are also defined below for this
class.

� degenerate: It may happen that, especially for small n, some of the samples drawn from the
population can be degenerate (all the same value). When this happens, all of the bootstrap
resamples will also be degenerate, and confidence interval estimation is impossible since it is
based on the distribution of the bootstrap sample means. This slot is a numeric vector with
the number of degenerate samples for each sample size in the n slot of the object.

� R: The number of bootstrap sample replications.

� means: The data frame contains the overall bootstrap sample means for each of the mcSamples
by length(n) samples drawn from the population. The overall bootstrap sample mean is

The “ArealSampling” Class. . . §4 The “monteSample” Class Gove 11

defined here as the mean of the R individual (second-stage) bootstrap sample means for each
case. Taking column means gives the overall mean for each of the sample sizes. Note: formula.

� lowerCIs: This is the lower “BCa” confidence interval endpoint for the 1 − α/2 confidence
level. It is calculated from the distribution of bootstrap sample means that is created in
bootstrap sampling for each MC sample and sample size, n.

� upperCIs: This is the upper “BCa” confidence interval endpoint for the 1 − α/2 confidence
level. It is calculated from the distribution of bootstrap sample means that is created in
bootstrap sampling for each MC sample and sample size, n.

The stats slot again averages over all Monte Carlo samples in each column of the data frames as
defined above. Note, however, that only the means, lowerCIs and upperCIs have a meaning that
differs from those of class “monteNTSample”. Therefore, the other rows in stats contain the usual
Monte Carlo averages, not Monte Carlo averages based on bootstrapping results.

4.2.1 Object creation

As with the normal theory subclass, objects can be generated with a constructor of the same name.
It is, however, preferable to use the monte constructor in general.

R> hps.bss = monteBSSample(hps.pop, n = c(10,20,30), mcSamples=100, R=50)

R> hps.bss

Number of bootstrap samples = 50
Number of Monte Carlo samples = 100
Sample sizes: n = 10, 20, 30
Sample summary statistics (mean values)...

n.10 n.20 n.30
mean 13.6373037 13.8521311 14.0440540
var 51.9438373 52.1066343 54.0596715
stDev 6.9716304 7.1218430 7.2921056
varMean 5.1575702 2.5684028 1.7636760
stErr 2.1967970 1.5811659 1.3171209
lowerCI 9.9890499 11.0119686 11.6412114
upperCI 18.5040527 17.3315162 16.8828345

Percentage of confidence intervals (95%) that caught the population mean...
n.10 n.20 n.30
88 94 93

The “ArealSampling” Class. . . §5 The “monte” Class Gove 12

The example uses a much smaller number of bootstrap iterations than is normally recommended
in practice, just for illustration here.

4.2.2 Plotting the object

Currently only histograms are supported for “monteSample” subclass objects. The command is,
e.g.,. . .

R> hist(hps.bss)

The histograms will be illustrated in the next section using objects of class “monte”.

5 The “monte” Class

We have described all of the component classes that go into a possible set of Monte Carlo samples
from a population of interest. The “monte” class combines the above class structures into slots in
its structure. The constructor for class “monte” constructs the individual objects for the classes
discussed above and then constructs the “monte” object.

The class structure is shown as follows. . .

R> showClass('monte')

Class "monte" [package "sampSurf"]

Slots:

Name: pop estimate NTsamples
Class: montePop character monteNTSampleOrNULL

Name: BSsamples description
Class: monteBSSampleOrNULL character

By now, most of what follows should be self-explanatory.

� pop: An object of class “montePop”.

The “ArealSampling” Class. . . §5 The “monte” Class Gove 13

� estimate: In the case of “sampSurf” objects, this is the attribute for which the surface has
been estimated.

� NTsamples: An object of class “monteNTSample”, or NULL if non-existent.

� BSsamples: An object of class “monteBSSample”, or NULL if non-existent.

� description: Some descriptive text about the object.

One thing to note is that the object can contain either normal theory or bootstrap information or
both. This will be illustrated below in the constructor method.

5.1 Object creation

Currently there are three methods for constructing objects of class “monte”. The signature argu-
ment in each case wants a “population” specification from which to draw the repeated samples.
The signature argument can be either a “numeric” vector, a “montePop” population object, or a
“sampSurf” object. In all cases, the method for the “montePop” object is ultimately called to do
the work, the other two are just wrappers to generate “montePop” objects from the population
that was specified in the signature argument. Here we demonstrate the method that takes a signa-
ture argument of class “sampSurf”. Information on other arguments shown below and available in
general in the monte generic is found in the help pages (methods?monte).

R> mo = monte(SS.hps, zeroTruncate = TRUE, n = c(10, 20, 30, 50), mcSamples=200,

+ R=120)

R> mo

Estimate attribute = volume

Population...
Mean = 13.878831
Variance = 51.840625
Standard Deviation = 7.2000434
Total = 19583.031
Size (N) = 1411
Zero-truncated = TRUE
Sample sizes (n) = 10, 20, 30, 50
Finite population corrections = 0.9929, 0.9858, 0.9787, 0.9646
Variance of the mean = 5.1473222, 2.5552909, 1.6912805, 1.0000722
Standard error of the mean = 2.2687711, 1.5985277, 1.3004924, 1.0000361

Normal theory results...

The “ArealSampling” Class. . . §5 The “monte” Class Gove 14

Number of Monte Carlo samples = 200
Sample sizes: n = 10, 20, 30, 50
Sample summary statistics (mean values)...

n.10 n.20 n.30 n.50
mean 14.0033580 13.8703030 13.7394658 13.9433716
var 53.8024032 50.3734979 50.1580482 53.0612797
stDev 7.1188799 7.0060921 7.0200081 7.2468975
VarMean 5.3421096 2.4829743 1.6363871 1.0236202
stErr 2.2431960 1.5554674 1.2679739 1.0065438
lowerCI 8.9288961 10.6146724 11.1461680 11.9206461
upperCI 19.0778200 17.1259336 16.3327637 15.9660971

Percentage of confidence intervals (95%) that caught the population mean...
n.10 n.20 n.30 n.50
94.0 93.0 92.5 94.5

Bootstrap results...
Number of bootstrap samples = 120
Number of Monte Carlo samples = 200
Sample sizes: n = 10, 20, 30, 50
Sample summary statistics (mean values)...

n.10 n.20 n.30 n.50
mean 13.7711868 13.9322734 13.5942826 13.84910593
var 51.9840520 51.6668689 49.4517588 52.14454489
stDev 6.9966650 7.0845314 6.9625577 7.17650637
varMean 5.1615632 2.5467262 1.6133446 1.00593516
stErr 2.2046855 1.5728822 1.2575971 0.99676695
lowerCI 10.1002541 11.0950624 11.3059091 11.99951953
upperCI 18.6909923 17.4476325 16.4363188 16.07485653

Percentage of confidence intervals (95%) that caught the population mean...
n.10 n.20 n.30 n.50
90.0 92.5 93.5 96.0

The output from the above summary is fairly lengthy, as it includes the summaries from the
individual objects and both normal theory and bootstrap intervals were calculated (type = ’both’
by default). Note that the sample size fields in the “montePop” object are present because n is an
argument to monte. Please note that only a few bootstrap (R = 120) and Monte Carlo samples
(200) have been used here for illustration, more are often recommended in practice.

The “ArealSampling” Class. . . §5 The “monte” Class Gove 15

5.2 Plotting the object

We can plot histograms of the different results from a “monte” object. Since it is possible to create
histograms of several of the component slots, you must specify which one you want to display. The
options are type = c(’normal’, ’bootstrap’, ’population’). . .

R> hist(mo, type='boot')

n.10

volume

F
re

qu
en

cy

10 12 14 16 18 20

0
20

40
60

80

n.20

volume

F
re

qu
en

cy

10 12 14 16 18 20

0
20

40
60

80

n.30

volume

F
re

qu
en

cy

10 12 14 16 18 20

0
20

40
60

80

n.50

volume

F
re

qu
en

cy

10 12 14 16 18 20

0
20

40
60

80

Figure 2: Histogram of a “monte” object showing the bootstrap results for each sample size.

In Figure 2 all sample sizes, n, that were requested are displayed. In general, the formal argument
(n) to the function accepts a subset or all (the default) of the sample sizes present in the “monte”
object. This will work for both the normal theory and bootstrap histograms, and is, of course, not
applicable to the population histogram.

The histograms can also be plotted independently by simply referring to the individual slot objects
in the “monte” object. For example, the above histogram could also have been created using. . .

The “ArealSampling” Class. . . §REFERENCES Gove 16

R> hist(mo@BSsamples)

References

J. P. Barrett and L. Goldsmith. When is n sufficiently large? The American Statistician, 30:67–70,
1976. 1

J. P. Barrett and M. E. Nutt. Survey sampling in the environmental sciences: A computer approach.
COMPress, Inc., 1979. 1

	Introduction
	``monte'' Class Structure Overview
	The ``montePop'' Class
	Object creation
	Plotting the object

	The ``monteSample'' Class
	The ``monteNTSample'' class
	Object creation

	The ``monteBSSample'' class
	Object creation
	Plotting the object

	The ``monte'' Class
	Object creation
	Plotting the object

	Bibliography

