library(saeHB.panel.beta)
data("dataPanelbeta")
<- dataPanelbeta[1:25,] #for the example only use part of the dataset
dataPanelbeta <- max(dataPanelbeta[,2])
area <- max(dataPanelbeta[,3])
period <-Panel.beta(ydi~xdi1+xdi2,area=area, period=period ,iter.mcmc = 10000,thin=5,burn.in = 1000,data=dataPanelbeta)
result#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 25
#> Unobserved stochastic nodes: 62
#> Total graph size: 359
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 25
#> Unobserved stochastic nodes: 62
#> Total graph size: 359
#>
#> Initializing model
#>
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 25
#> Unobserved stochastic nodes: 62
#> Total graph size: 359
#>
#> Initializing model
$Est
result#> MEAN SD 2.5% 25% 50% 75% 97.5%
#> mu[1,1] 0.9715606 0.02041852 0.9203568 0.9633999 0.9765683 0.9854062 0.9942387
#> mu[2,1] 0.9477231 0.03722948 0.8546639 0.9335519 0.9571519 0.9721773 0.9885852
#> mu[3,1] 0.9420694 0.04109096 0.8366193 0.9254650 0.9520202 0.9699483 0.9882071
#> mu[4,1] 0.9679009 0.02354598 0.9070196 0.9588508 0.9741587 0.9834968 0.9937798
#> mu[5,1] 0.9398689 0.05074443 0.8071438 0.9234227 0.9539235 0.9725740 0.9901445
#> mu[1,2] 0.9718030 0.02033796 0.9178540 0.9646181 0.9766786 0.9860063 0.9945791
#> mu[2,2] 0.9613276 0.02867886 0.8824150 0.9500238 0.9689116 0.9808281 0.9930026
#> mu[3,2] 0.9218819 0.05496428 0.7731063 0.9010465 0.9363732 0.9590512 0.9837168
#> mu[4,2] 0.9773340 0.01859778 0.9257727 0.9709759 0.9823204 0.9895456 0.9963013
#> mu[5,2] 0.9392130 0.04522412 0.8281190 0.9235998 0.9502550 0.9690026 0.9874561
#> mu[1,3] 0.9699925 0.02413013 0.9095392 0.9621010 0.9760820 0.9851613 0.9948403
#> mu[2,3] 0.8646523 0.07772166 0.6681956 0.8295668 0.8807569 0.9199075 0.9635835
#> mu[3,3] 0.9521936 0.03085478 0.8705490 0.9379794 0.9594410 0.9736315 0.9901888
#> mu[4,3] 0.9579856 0.02793382 0.8870496 0.9467738 0.9645635 0.9768359 0.9916759
#> mu[5,3] 0.9143644 0.05777379 0.7746396 0.8921799 0.9268380 0.9523405 0.9824364
#> mu[1,4] 0.9560309 0.03279288 0.8707281 0.9443073 0.9637896 0.9776447 0.9913856
#> mu[2,4] 0.9318552 0.04686944 0.8108655 0.9151794 0.9439828 0.9634688 0.9846294
#> mu[3,4] 0.9314057 0.04308526 0.8250752 0.9121812 0.9418000 0.9616466 0.9858158
#> mu[4,4] 0.9750315 0.01959234 0.9230244 0.9682083 0.9805433 0.9880159 0.9953955
#> mu[5,4] 0.8574879 0.09453895 0.5972792 0.8187320 0.8814479 0.9253846 0.9662069
#> mu[1,5] 0.9681461 0.02381155 0.9078094 0.9605515 0.9743709 0.9838181 0.9939303
#> mu[2,5] 0.8889299 0.07040826 0.7109140 0.8612449 0.9058258 0.9374863 0.9709366
#> mu[3,5] 0.9569093 0.03210086 0.8726688 0.9462314 0.9649670 0.9778204 0.9917101
#> mu[4,5] 0.9321876 0.04254882 0.8240138 0.9146160 0.9417190 0.9617918 0.9864306
#> mu[5,5] 0.8661576 0.08281186 0.6511093 0.8271177 0.8850069 0.9259076 0.9679304
$coefficient
result#> Mean SD 2.5% 25% 50% 75% 97.5%
#> b[0] 1.990836 0.3974607 1.21969892 1.7210717 1.982474 2.246929 2.754171
#> b[1] 1.072706 0.4971808 0.09933002 0.7384358 1.071070 1.403068 2.060664
#> b[2] 1.160849 0.4937285 0.21198137 0.8083115 1.156328 1.503292 2.115507
$refvar
result#> NULL
<-result$Est$SD^2
MSE_HBsummary(MSE_HB)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.0003459 0.0005823 0.0013860 0.0021854 0.0025750 0.0089376
<-sqrt(MSE_HB)/result$Est$MEAN*100
RSE_HBsummary(RSE_HB)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1.903 2.488 3.928 4.556 5.399 11.025
<-dataPanelbeta[,1]
y_dir<-result$Est$MEAN
y_HB<-as.data.frame(cbind(y_dir,y_HB))
ysummary(y)
#> y_dir y_HB
#> Min. :0.3836 Min. :0.8575
#> 1st Qu.:0.9702 1st Qu.:0.9314
#> Median :1.0000 Median :0.9477
#> Mean :0.9423 Mean :0.9386
#> 3rd Qu.:1.0000 3rd Qu.:0.9679
#> Max. :1.0000 Max. :0.9773
<-dataPanelbeta[,4]
MSE_dir<-as.data.frame(cbind(MSE_dir, MSE_HB))
MSEsummary(MSE)
#> MSE_dir MSE_HB
#> Min. :0.0004401 Min. :0.0003459
#> 1st Qu.:0.0036464 1st Qu.:0.0005823
#> Median :0.0228563 Median :0.0013860
#> Mean :0.0256965 Mean :0.0021854
#> 3rd Qu.:0.0428368 3rd Qu.:0.0025750
#> Max. :0.0887137 Max. :0.0089376
<-sqrt(MSE_dir)/y_dir*100
RSE_dir<-as.data.frame(cbind(RSE_dir, RSE_HB))
RSEsummary(RSE)
#> RSE_dir RSE_HB
#> Min. : 2.098 Min. : 1.903
#> 1st Qu.: 6.039 1st Qu.: 2.488
#> Median :15.118 Median : 3.928
#> Mean :16.266 Mean : 4.556
#> 3rd Qu.:21.629 3rd Qu.: 5.399
#> Max. :59.741 Max. :11.025