
package: s3x 0.1.0

Enhanced S3-Based Programming
(Draft)

Charlotte Maia

May 23, 2011

This vignette provides an overview of the s3x package, for enhanced S3-based object oriented pro-

gramming. A major goal of the package, is to support R programming that mixes object oriented

programming with mathematical programming. The package builds on S3’s system for class definition

and method despatch, however provides utilities to simplify construction; it provides enhanced primitives

(enhanced lists, environments and vectors), that further simplify construction and use an alternative

form of attributes; plus it provides utilities for object referencing.

Important Notes

� This package is a fork from the ofp package.

� This package is mildly unstable and contains several experimental features.

Introduction

Roughly speaking, S3 represents the third version of the R language, with S3 adding object oriented
capabilities to R. Unlike many object oriented programming languages, one can create an object, without
defining a class. However, consistent with strongly object oriented languages, everything, even a simple
number such as *1*, is an object. Hence, we can create a *1* object and assign attributes to it. S3 allows
a programmer to define a class attribute, which in turn, supports method despatch. As a consequence
of this, one can create an object of class X, then later change to same object to class Y.

One of the major strengths of R, is its support for mathematical programming, including strong
support for symbolic programming, functional programming and vectorised programming. The power
to combine object oriented programming (especially object oriented semantics) with mathematical pro-
gramming (especially mathematical semantics), is a major goal of this package. Whilst R (and it’s S3
system) support this goal, the author has three major concerns:

1. The source code required for a typical constructor is verbose, especially when one considers inher-
itance. This is common in class-based languages, however the view of the author is that verbose
constructors tend to obscure mathematical meaning. Hence, mathematical models and object
oriented implementations of those models, don’t resemble each other.

2. Often, if one creates a class-based model with attributes, one would implement an object (of that
class) as a list with it’s attributes implemented as list elements (rather than R attributes), hence
a class (or object) attribute has a different meaning in the context of a class-based model than it
does in the context of the R language. However, in contrast, if one used a vector (rather than a
list), a class attribute maps directly to an R attribute, further confusing the notion of an attribute.
In the case of a list, an attribute (an element, from R’s point of view) can be accessed, simply,

using the $ operator. However, in the case of a vector, an attribute is accessed in a somewhat
awkward way, using the attributes or attr functions.

3. In S3, there’s no direct support for object referencing, however it can be accomplished (indirectly)
by creating an environment object. For basic referencing this works relatively well, however for
more complex referencing, this becomes awkward, due to a lack of support features. e.g. Testing
for equality of two environments, produces an error.

Further concerns include:

1. A major application of R, is processing data in tabular form, however the author has the following
specific concerns:

(a) The standard object for representing tabular data is a data.frame, however many data.frame
features don’t support object oriented programming well. e.g. By default, appending object
to a data.frame (as a column), strips the attributes of that object. Also, data.frame(s) suffer
from the same problems as vectors, when it comes to accessing attributes, namely the need
for attributes or attr functions.

(b) The standard function for mapping a data file (in a package) to an object (namely a data.frame),
is the data function. However, the data function does not assign the object to a user-defined
identifier (which is what one would expect in object oriented programming), rather it assigns
it to a default identifier, and creates the object in the current environment.

(c) There’s a lack of (non-random) sampling functions, in the standard version of R. Nonrandom
sampling is very useful when working with moderate to large datasets, especially when one
wishes to reproduce data (or a sample of some data) in a report. i.e. If one has a table with
a thousand rows, typically one would not want to reproduce the entire table in a report.

2. Method despatch, is based on the idea of generic functions. One problem that arises (if one
uses a generic defined by someone else, including the generics from R’s base package), is that
a method’s argument names (and the order of those arguments) are constrained by the generic.
Whilst argument names may be meaningful in the context of the generic, they are not always
meaningful (and sometimes very confusing) in the context of it’s methods.

To address these concerns the s3x package implements:

1. Utility functions, extend and implant, that allow object construction (including element/attribute
assignment) potentially in one line.

2. Enhanced lists, enhanced environments and enhanced vectors, that also allow objection construc-
tion (including element/attribute assignment) potentially in one line, plus provide a unified and
simple attribute system (referred to as object attributes, in contrast to R attributes), whereby
all enhanced primitives, have a $ operator defined, to access those attributes. Note, that the
term “object attribute” is used in this package to describe any nested object accessible via the $
operator.

3. Enhanced environments, provide features to make them more suitable as object references.

4. In addition to enhanced environments, the package provides the functions, objref and deref, to
further simplify object referencing (mainly in prototypes and top-level algorithms).

5. A temporary function (maybe changed in near future) datafile, for loading datasets to an object.
Not discussed here, refer to man page, for datafile, for information.

6. A generic function samp, and several methods, for non-random sampling.

s3x 0.1.0 Charlotte Maia 2

7. Temporary mask functions (may also be changed in near future) for handling some of the problems
with generics arguments.

Enhanced table objects (to supersede data.frame(s)) are being considered for the near future.

Constructor Utilities

A typical design pattern for an S3 constructor, is a function that:

1. Creates an instance of the class, possibly by calling a superclass constructor.

2. Sets or concatenates the class attribute.

3. Assigns any elements/attributes, along with any associated computation.

4. Returns the object.

So a superclass/subclass example might be:

> point = function (x=0, y=0)

{ obj = list (x=x, y=y)

class (obj) = c ("point", class (obj))

obj

}

> circle = function (x=0, y=0, r=1)

{ obj = point (x, y)

class (obj) = c ("circle", class (obj))

obj$r = r

obj

}

That’s ok. One possible simplification, is to use the structure function. However, there are still two
problems, firstly, naming each argument in the list is verbose, secondly, setting the class attribute is
also verbose. Using the extend function, instead, we can write:

> point = function (x=0, y=0) extend (list (), "point", x, y)

> circle = function (x=0, y=0, r=1) extend (point (x, y), "circle", r)

> circle (10, 10, 2.5)

$x

[1] 10

$y

[1] 10

$r

[1] 2.5

attr(,"class")

[1] "circle" "point" "list"

s3x 0.1.0 Charlotte Maia 3

The extend function takes two or more arguments. The first argument is a seed object (to be extended),
the second is the name of the subclass. The remaining arguments are the object attributes (re-iterating
that the term object attribute has a special meaning the s3x package). By default, the extend function
produces an error, if “...” is included in the call. The arguments can be named or unnamed. If unnamed,
they default to the corresponding identifier (i.e. in the example above, an object attribute named “x” is
created and assigned the value of x).

In addition to the extend function, is the implant function, which is the same, except that there’s
no subclass argument. A point object (without setting the class) could be created as follows:

> point = function (x=0, y=0) implant (list (), x, y)

Note that both the extend and implant function, return the object.

Enhanced Primitives

Enhanced primitives are primitives with an extended class attribute (and support methods), enhanced
constructors reflecting the approach in the previous section, and an alternative form of attributes. A
common feature of all enhanced primitives is that the term “attribute” refers to an object attribute (i.e.
an attribute defined in the context of a class or object model) rather than an actual R attribute (i.e. an
attribute set using the attr function). Such attributes, are accessed via the $ operator, even for vectors.
Currently, enhanced primitives include:

� Enhanced lists (LIST objects).

� Enhanced environments (ENVIRONMENT objects).

� Enhanced functions (FUNCTION objects), are implemented via the ofp package.

� Enhanced vectors (VECTOR objects), which include INTEGER, REAL, COMPLEX, TEXT and
LOGICAL objects.

Each of these (except for functions), is discussed separately in the following sections. Note that the
following are being considered for future versions of the s3x package:

� Enhanced matrix objects.

� Enhanced table objects.

� Enhanced call or expression objects.

� Enhanced exception objects.

� For enhanced vectors, rational and enumeration subtypes.

Enhanced Lists

The main purpose of LIST objects is to remove the need to explicitly name each argument in the list
constructor. Given the following:

> x = 1

> y = 2

We can simply:

> obj = list (x=x, y=y, z=3)

To:

> obj = LIST (x, y, z=3)

Note that LISTs extend lists, and object attributes, correspond to it’s elements.

s3x 0.1.0 Charlotte Maia 4

Enhanced Environments

ENVIRONMNENT constructors follow the same convention as LIST constructors, plus provide a print
method (non-recursive for environments). So we can write (using x and y, from the previous section):

> e = ENVIRONMENT (x, y, z=3)

> e

$z

[1] 3

$y

[1] 2

$x

[1] 1

Note that ENVIRONMENTSs extend environments, and environment attributes, correspond to it’s
elements.

We can also compare two ENVIRONMENT objects for equality:

> e = f = ENVIRONMENT ()

> g = ENVIRONMENT ()

> e == f

[1] TRUE

> e == g

[1] FALSE

Enhanced Vectors

The main purpose of enhanced vectors is to support the use of vectors with attributes. In contrast to
enhanced lists and enhanced environments, enhanced vectors implement object attributes as R attributes
(more precisely as elements of an R attribute named “.”). In contrast to typical R vectors, enhanced
vectors have a $ operator defined, to access their object attributes, removing the need to call the
attributes and attr functions.

The VECTOR class is abstract and has five subclasses INTEGER, REAL, COMPLEX, TEXT and
LOGICAL. Each class extends VECTOR. Each class also extends integer, numeric, complex, character
and logical, respectively.

Each class, has two constructors, a standard constructor (with the same name as the class) that
requires the length of the vector as it’s first argument and a seed (or coercion) constructor (with the
letter v appended) that takes an existing vector as it’s first argument.

We can create enhanced integers as follows:

> x = INTEGER (10, some.attribute=TRUE, some.other.attribute=2011)

> y = INTEGERv (1:10, some.attribute=FALSE, some.other.attribute="abcdef")

> x

[1] 0 0 0 0 0 0 0 0 0 0

INTEGER

object_attributes: some.attribute some.other.attribute

> y

[1] 1 2 3 4 5 6 7 8 9 10

INTEGER

object_attributes: some.attribute some.other.attribute

s3x 0.1.0 Charlotte Maia 5

We can access their attributes:

> x

[1] 0 0 0 0 0 0 0 0 0 0

INTEGER

object_attributes: some.attribute some.other.attribute

> x$someattribute = FALSE

> x$someattribute

[1] FALSE

We can access and modify their elements in the normal way:

> x [1:5] = 2

> x

[1] 2 2 2 2 2 0 0 0 0 0

INTEGER

object_attributes: some.attribute some.other.attribute someattribute

> x [4:7]

[1] 2 2 0 0

INTEGER

object_attributes: some.attribute some.other.attribute someattribute

Object References

Indirect References via Environments

Environments (both standard and enhanced) can be used for object referencing:

> e = ENVIRONMENT (x=0)

> pass.by.ref = function (ref) ref$x = 1

> pass.by.ref (e)

> e$x

[1] 1

Indirect References via The “objref” Function

The package implements the objref function (and deref function) to simplify object referencing, in
prototypes and top-level algorithms. The functions simplifies syntax, however increase computational
cost, hence should be avoided in high(er) performance code.

An object reference is created via the objref function. This function returns an extended environment.
However, operators such as $ and bracket operators, apply to the referenced object. We can write:

> obj1 = obj2 = objref (1:3)

> obj1

objref -> integer

> obj2

objref -> integer

Intuitively:

s3x 0.1.0 Charlotte Maia 6

> deref (obj1)

[1] 1 2 3

> obj1 [4] = 4

> deref (obj1)

[1] 1 2 3 4

> deref (obj2)

[1] 1 2 3 4

Nonrandom Sampling

The samp function produces non-random samples for table-based objects and vectors. For table-based
objects it returns the first n and last m rows, for vectors, the first n elements and last m elements. By
default, n=3 and m=n. Using the cars dataset (comes with R).

> samp (cars)

speed dist

1 4 2

2 4 10

3 7 4

48 24 93

49 24 120

50 25 85

> samp (cars, 3, 1)

speed dist

1 4 2

2 4 10

3 7 4

50 25 85

> samp (cars, 1)

speed dist

1 4 2

50 25 85

Mask Generics

In the earlier section on constructors, we created a point class, now let’s create a method, an intuitive
one...

> #a possible print method

> print.point = function (p, ...) cat ("x:", p$x, "\ny:", p$y, "\n")

> p = point (0, 0)

> p

x: 0

y: 0

s3x 0.1.0 Charlotte Maia 7

At face value, if works fine. However, let’s try and make a package...

> R CMD check My1stRPackage

* checking S3 generic/method consistency ... WARNING

print:

function(x, ...)

print.point:

function(p)

After a few changes...

> #another possible print method

> print.point = function (x, ...) cat ("x:", x$x, "\ny:", x$y, "\n")

Now, R Check is content, however I don’t want to call my object x, I want to call p. So the s3x package
implements mask functions, that “mask” a subset of the standard generics. In principle, we should still
include the dots argument, however otherwise we can use what ever arguments we want. Currently
(these may change) the s3x package masks print, summary, format, plot, lines and points. Now, if we
load s3x, we can use p instead of x, and R Check is still content.

One can mask other generics, say mean, using a declaration such as:

> mean = function (...) base::mean (...)

Note that this approach may be changed in the near future version (due to some undesirable side effects).

s3x 0.1.0 Charlotte Maia 8

