
RStan: the R interface to Stan

The Stan Development Team
stan@mc-stan.org

July 17, 2015

Contents

1 Introduction 2
1.1 Prerequisites . 2
1.2 Typical workflow of using RStan 3

2 An example of using rstan 4
2.1 Express the model in Stan . 4
2.2 User-defined Stan functions . 7
2.3 Preparing the data . 7
2.4 Sample from the posterior distribution 8

3 Advanced features 9
3.1 Arguments to the stan function 9
3.2 Data preprocessing and passing 10
3.3 Methods for the stanfit class 11
3.4 Sampling difficulties . 15
3.5 The log posterior function and its gradient 17
3.6 Optimization in Stan . 18
3.7 Model compiling in rstan . 20
3.8 Run multiple chains in parallel 21

4 Working with CmdStan 22

1

5 Summary 22

Abstract

In this vignette we present the RStan package rstan for using Stan in
R. Stan is a package for making Bayesian inferences using the No-U-Turn
sampler (a variant of Hamiltonian Monte Carlo) or frequentist inference via
optimization. We illustrate the features of RStan through an example in
Gelman et al. (2003).

1 Introduction
Stan is a C++ library for Bayesian modeling and inference that primarily uses
the No-U-Turn sampler (NUTS) (Hoffman and Gelman 2012) to obtain posterior
simulation given user-specified model and data. Alternatively, Stan can utilize the
LBFGS optimization algorithm to maximize an objective function, such as a log-
likelihood. The R package, rstan allows one to conveniently use Stan from R (R
Core Team 2014) and to access Stan output, which includes posterior inferences
and also intermediate quantities such as evaluation of the log posterior density and
its gradients.

The website for Stan and RStan, http://mc-stan.org, provides up-to-
date information about how to operate Stan and RStan. For example, “RStan
Getting Started” (The Stan Development Team 2014a) has a couple of examples.
The present article provides a concise introduction to the functionality of package
rstan and provides pointers to many functions in rstan from the user’s perspec-
tive.

We start with the prerequisites for using rstan (section 1.1) and a typical work-
flow of using Stan and RStan (section 1.2). In section 2, we illustrate the process
of using rstan to estimate a Bayesian model. Section 3 presents further details on
rstan. In section 4, we discuss some functions that rstan provides to access the
results when Stan is used from the command line.

1.1 Prerequisites
Users need to know how to specify statistical models using the Stan modeling
language, which is detailed in the manual of Stan (The Stan Development Team
2014c). We give an example below. To do so, a C++ compiler is required, such

2

http://mc-stan.org

as g++1 or clang++2. There are instructions on how to install a C++ compiler at
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started#
prerequisites.

Package rstan depends on several other R packages:

• StanHeaders which provides the Stan C++ headers

• BH which provides Boost C++ headers

• RcppEigen which provides Eigen C++ headers

• Rcpp which facilitates using C++ from R

• inline which compiles C++ for use with R

These package dependencies should be automatically installed if you install
the rstan package via one of the conventional mechanisms.

1.2 Typical workflow of using RStan
Stan has a modeling language, which is similar to but not identical to that of the
Bayesian graphical modeling package BUGS (Lunn et al. 2000). A parser trans-
lates the model expressed in the Stan modeling language to C++ code, whereupon
it is compiled to an executable program and loaded as a Dynamic Shared Object
(DSO) in R and can be called by the user. In summary, the following are typical
steps of using Stan for Bayesian inference.

a. Represent a statistical model by writing its log posterior density (up to an arbi-
trary normalizing constant that does not depends on the unknown parameters
in the model) using the Stan modeling language. We recommend a separate
text file for this, although it can be done using a character string within R.

b. Translate the model coded in Stan modeling language to C++ code using the
stanc function (which is called by the stan function)

c. Compile the C++ code for the model using a C++ compiler to create a DSO
(also called a dynamic link library (DLL)) that can be loaded by R (which is
called by the stan).

d. Run the DSO to sample from the posterior distribution using the stan or
sampling functions.
1http://gcc.gnu.org
2http://clang.llvm.org

3

https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started#prerequisites
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started#prerequisites
http://cran.r-project.org/package=StanHeaders
http://cran.r-project.org/package=BH
http://cran.r-project.org/package=RcppEigen
http://cran.r-project.org/package=Rcpp
http://cran.r-project.org/package=inline
http://gcc.gnu.org
http://clang.llvm.org

e. Diagnose non-convergence of the MCMC chains
f. Conduct inference based on the samples from the posterior distribution

Steps c, d, and e above are all performed implicitly by a single call to stan.

2 An example of using rstan
In section 5.5 of Gelman et al. (2003), a hierarchical model is used to model the
effect of coaching programs on college admissions tests. The data, shown in Ta-
ble 1, summarize the results of experiments conducted in eight high schools, with
an estimated standard error for each, and these data and model are of historical
interest as an example of full Bayesian inference (Rubin 1981). We use this ex-
ample here for its simplicity and because it represents a nontrivial Markov chain
simulation problem in that there is dependence between the parameters of origi-
nal interest in the study — the effects of coaching in each of the eight schools —
and the hyperparameter representing the variation of these effects in the modeled
population. Certain implementations of a Gibbs sampler or a Hamiltonian Monte
Carlo sampler can be slow to converge in this example. For short, we call this
example “eight schools.” The statistical model is specified as

yj ∼ normal(θj, σj), j = 1, . . . , 8 (1)
θ1, . . . , θ8 ∼ normal(µ, τ), (2)

in which each σj’s assumed known and a uniform prior density is used, p(µ, τ) ∝
1.

2.1 Express the model in Stan
We first need to express this model in the Stan modeling language. The rstan
package allows a model to be coded in a text file (typically with suffix .stan) or
in a R character vector (of length one). We put the following text into a file called
schools.stan:

data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates

}
parameters {

4

Estimated Standard error
treatment of effect

School effect, yj estimate, σj
A 28 15
B 8 10
C −3 16
D 7 11
E −1 9
F 1 11
G 18 10
H 12 18

Table 1: Observed effects of coaching on college admissions test scores in eight
schools. We fit these data using a hierarchical model allowing variation between
schools.

real mu;
real<lower=0> tau;
vector[J] eta;

}
transformed parameters {

vector[J] theta;
theta <- mu + tau * eta;

}
model {

eta ~ normal(0, 1);
y ~ normal(theta, sigma);

}

The first section of the above code specifies the data that is conditioned upon
by Bayes Rule: the number of schools, J ; the vector of estimates, y1, . . . , yJ ;
and the standard errors, σ1, . . . σJ . Data are labeled as integer or real and can be
vectors (or, more generally, arrays) if dimensions are specified. Data can also be
constrained; for example, in the above model J has been restricted to be nonneg-
ative and the components of σy must all be positive.

The next section of the code defines the parameters whose posterior distri-
bution is sought using Bayes Rule. These are the their mean, µ, and standard
deviation, τ , of the school effects, plus the standardized school-level effects η. In
this model, we let the undstandardized school-level effects, θ, be a transformed

5

parameter that uses µ and τ to shift and scale the standardized effects η instead
of directly declaring θ as a parameter. By parameterizing the model this way, the
sampler runs more efficiently because the resulting multivariate geometry is more
amendable to Hamiltonian Monte Carlo (Neal 2011).

Finally, the model block looks similar to standard statistical notation. (Just
be careful: the second argument to Stan’s normal(·, ·) distribution is the standard
deviation, not the variance as is usual in statistical notation.) We have written the
model in vector notation, which allows Stan to make use of more efficient algorith-
mic differentiation (AD). It would also be possible — but less efficient — to write
the model by replacing y ~ normal(theta,sigma);with a loop over the J
schools, for (j in 1:J) y[j] ~ normal(theta[j],sigma[j]); .

Stan has versions of many of the most useful R functions for statistical model-
ing, including probability distributions, matrix operations, and special functions.
However, the names of the Stan functions may differ from their R counterparts and
more subtly, the parameterizations of probability distributions in Stan may differ
from those in R for the same distribution. To mitigate this problem, the lookup
function can be passed a R function or character string naming an R function, and
rstan will attempt to look up the corresponding Stan function, display its argu-
ments, and give the page number in The Stan Development Team (2014c) where
the Stan function is discussed.

> lookup("dnorm")

StanFunction Arguments ReturnType Page
328 normal_log (reals y, reals mu, reals sigma) real 352
329 normal ~ real 352

> tail(lookup("~")) # looks up all Stan sampling statements

FirstArgument StanStatement Arguments Page
515 reals y ~ skew_normal (reals mu, reals sigma, reals alpha) 354
546 reals y ~ student_t (reals nu, reals mu, reals sigma) 355
592 reals y ~ uniform (reals alpha, reals beta) 375
599 reals y ~ von_mises (reals mu, reals kappa) 373
605 reals y ~ weibull (reals alpha, reals sigma) 366
608 matrix W ~ wishart (real nu, matrix Sigma) 387

> lookup(dwilcox) # no corresponding Stan function

[1] "no matching Stan functions"

If the lookup function fails to find an R function that corresponds to a Stan
function, it will treat its argument as a regular expression and attempt to find
matches with the names of Stan functions.

6

2.2 User-defined Stan functions
Stan permits users to define their own functions in a functions block of a Stan
program. The functions block is optional but if it exists, it must come before any
other block. This mechanism allows users to implement statistical distributions
or other functionality that is not currently available in Stan. However, even if the
user’s function merely wraps calls to existing Stan functions, the code in the model
block can be much more readible if several lines of Stan code that accomplish one
(or perhaps two) task(s) are replaced by a call to a user-defined function.

Another reason to utilize user-defined functions is that rstan provides an
expose_stan_functions function that exports such functions to the R global
environment so that they can be tested in R to ensure that they are working prop-
erly. For example,

> model_code <-
+ '
+ functions {
+ real standard_normal_rng() {
+ return normal_rng(0,1);
+ }
+ }
+ model {}
+ '
> expose_stan_functions(stanc(model_code = model_code))
> standard_normal_rng(seed = 1)

[1] -0.9529876

2.3 Preparing the data
The stan function in rstan accepts data as a list or an environment. Al-
ternatively the data argument can be omitted and R will search for objects that
have the same names as in the data block of a Stan program. To prepare the data
in R, we create a list as follows.

> schools_data <-
+ list(J=8,
+ y=c(28, 8, -3, 7, -1, 1, 18, 12),
+ sigma=c(15, 10, 16, 11, 9, 11, 10, 18))

It would also be possible (indeed, encouraged) to read in the data from a file
rather than to directly enter the numbers in the R script.

7

2.4 Sample from the posterior distribution
Next, we can call the stan function to draw posterior samples:

> J <- 8
> y <- c(28, 8, -3, 7, -1, 1, 18, 12)
> sigma <- c(15, 10, 16, 11, 9, 11, 10, 18)
> fit1 <- stan(file="schools.stan",
+ # better to add explicitly include: data=schools_data,
+ iter=2000, chains=4, cores=2)

Function stan wraps the following three steps:

a. Translate a model in Stan code to C++ code
b. Compile the C++ code to a dynamic shared object (DSO) and load the DSO
c. Sample given some user-specified data and other settings

A single call to stan performs all three steps, but they can also be executed
one by one, which can be useful for debugging. In addition, Stan saves the DSO
so that when the same model is fit again (possibly with new data), function stan
can be called so that only the third step is performed, thus saving compile time.

Function stan returns an object of S43 class stanfit. If no error occurs,
the returned stanfit object includes the samples drawn from the posterior dis-
tribution for the model parameters and other quantities defined in the model. If
there is an error (for example, when we have syntax error in our Stan code), stan
will either quit or return a stanfit object that contains no samples. Including
the DSO as part of a stanfit object allows it to be reused so that compiling the
same model could be avoided when we want to sample again with the same or dif-
ferent input of data and other settings. Also if an error happens after the model is
compiled but before sampling (for example, problems with input such as data and
initial values), we can reuse the previous compiled model. For class stanfit,
many methods such as print and plot are defined to work with the samples
and conduct model inference. For example, the following shows a summary of
the parameters for our example using function print.

> print(fit1, pars=c("theta", "mu", "tau", "lp__"),
+ probs=c(.1,.5,.9))

3For those who are not familiar with the concept of class and S4 class in R, refer to Chambers
(2008). A S4 class consists of some attributes (data) to model an object and some methods to
model the behavior of the object. From a user’s perspective, once a stanfit object is created,
we are mainly concerned about what methods are defined for the stanfit.

8

Inference for Stan model: schools.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 10% 50% 90% n_eff Rhat
theta[1] 11.37 0.21 8.47 2.24 10.14 22.55 1577 1
theta[2] 7.90 0.12 6.30 0.33 7.83 15.67 2717 1
theta[3] 6.19 0.17 7.85 -3.05 6.57 15.05 2150 1
theta[4] 7.63 0.12 6.60 -0.70 7.67 15.65 2972 1
theta[5] 4.94 0.12 6.30 -3.16 5.45 12.46 2806 1
theta[6] 6.08 0.12 6.63 -2.50 6.50 14.07 2958 1
theta[7] 10.99 0.15 7.22 2.80 10.13 20.47 2176 1
theta[8] 8.03 0.18 7.71 -0.83 7.79 17.34 1922 1
mu 8.06 0.15 5.14 1.73 7.91 14.67 1205 1
tau 6.57 0.18 5.46 0.92 5.28 14.06 951 1
lp__ -4.94 0.09 2.76 -8.56 -4.65 -1.62 1042 1

Samples were drawn using NUTS(diag_e) at Fri Jul 17 14:11:21 2015.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

The last line of this output, lp__, is the logarithm of the (unnormalized)
posterior density as calculated by Stan. This log density can be used in various
ways for model evaluation and comparison (see, e.g., Vehtari and Ojanen 2012).

3 Advanced features
In this section, we discuss more details and other advanced features of rstan. The
details pertain to the optional arguments of the stan function, data preprocessing,
and methods for the S4 class stanfit. In addition, we discuss optimization,
which can be used to obtain a point estimates via Stan.

3.1 Arguments to the stan function
The primary arguments for sampling (in function stan and sampling) include
data, initial values, and the options of the sampler such as chains, iter, and
warmup. In particular, warmup specifies the number of iterations that are used
by NUTS sampler for the adaptation phase before sampling begins. After the
warmup, the sampler turns off adaptation and continues until a total of iter
iterations have been completed. There is no theoretical guarantee that the samples

9

are drawn from the posterior distribution during warmup, so the warmup samples
should only be used for diagnosis and not for inference. The summaries for the
parameters shown by the print method are calculated using only the samples
after warmup.

For function stan, argument init is used for specifying the initial values.
There are several options for init and the details can be found in the documen-
tation of the stan function. The vast majority of the time, it is adequate to allow
Stan to generate its own initial values randomly. However, sometimes it is bet-
ter to specify the initial values for at least a subset of the objects declared in the
parameters block of a Stan program.

Stan uses a random number generator (RNG) that supports parallelism. The
initialization of the RNG is determined by arguments seed and chain_id.
Even if we are running multiple chains from one call to the stan, function we
only need to specify one seed, which is randomly generated by R if not specified.

3.2 Data preprocessing and passing
The data passed to stan will go through a preprocessing procedure. The details
of this preprocessing are documented in the help for function stan. Here we
stress a few important steps. First, rstan allows the user to specify more than
what is declared in the data block and anything beyond that is silently omitted.
In general, an element in the input R list should be numeric data and its dimen-
sion should match the declaration in the data block of the model. So for example,
factor type in R is not supported as data element for RStan and must be con-
verted to integer codes via as.integer(). The Stan modeling language dis-
tinguishes between integers and doubles (type int and real in Stan modeling
language, respectively). The stan function will convert some R data (which is
double-precision usually) to integers if possible.

In Stan, we have scalars and other types that are a set of scalars, such as
vectors and matrices. As R does not have scalars, rstan treats vectors of length
one as scalars. However, we might have a model with data block defined as in
Figure 1, in which N can be 1 as a special case. So if we know that N is always
larger than 1, we can use a vector of length N in R as the data input for y (for
example, a vector created by “y <- rnorm(N)”). If we want to prevent rstan
from treating the input data for y as a scalar when N = 1, we need to explicitly
make it an array as the following R code shows.

> y <- as.array(y)

10

As Stan cannot handle missing values in data automatically, so no element of
the data can contain NA in R. An important step in rstan’s data preprocessing is
to check missing values and issue an error if any. To model missing values using
Stan, you should create binary indicators of whether a data point is observed or
missing and then change the NA values in R to valid numbers before calling stan.

3.3 Methods for the stanfit class
For the fitted object that is an instance of the S4 class stanfit, we have defined
methods such as print, summary, plot, pairs, and traceplot. We can
use these methods to assess the convergence of the Markov chains by looking at
the trace plots and calculating the split R̂.4 The print method outputs the mean,
standard deviation, quantiles of interest, split R̂, and effective sample size for each
unknown quantity over all the chains combined.

The plot method provides an overview of the output, while the pairs
method shows two-dimensional density plots for each pair of unknown quanti-
ties that are stratified according to the condition argument. The traceplot
method plots the traces of all chains for the specified parameters. If we include
the warmup draws by setting inc_warmup=TRUE (the default), the background
color of the warmup area is different from the post-warmup phase.

Figure 2 presents the plot of the eight schools example. In this plot, credible
intervals (by default 80%) for all the parameters as well as lp__ (the log of poste-
rior density function up to an additive constant), and the median of each chain are
displayed. In addition, under the lines representing intervals, small colored areas
are used to indicate which range the value of the split R̂ statistic is in. Figure 3
shows the traceplot for the τ parameter.

The stanfit class has a set of methods to work with the samples drawn from
the posterior distribution. First, the extract method provides different ways to

4Split R̂ is an updated version of R̂ statistic proposed in Gelman and Rubin (1992) that is based
on splitting each chain into two halves. See the Stan manual for more details.

data {
int<lower=0> N;
real y[N];

}

Figure 1: Data block of an example model in Stan code

11

Stan model 'schools' (4 chains: iter=2000; warmup=1000; thin=1) fitted at Fri Jul 17 14:11:21 2015

medians and 80% intervals

mu

0

5

10

15

●
●●
●

tau

0

5

10

15

●●●
●

eta

−2

0

2

●
●●●

111111111

●●●●

222222222

●
●
●●

333333333

●●
●●

444444444

●●●
●

555555555

●●●●

666666666

●●●●

777777777

●●
●
●

888888888

theta

−10

0

10

20

30

●●●●

111111111

●●●●

222222222

●●●●

333333333

●●●●

444444444

●●●●

555555555

●●●●

666666666

●●●●

777777777

●●●●

888888888

lp__

−10

−5

0

●
●●●

Rhat: < 1.1 < 1.2 < 1.5 < 2 >= 2 NaN/Inf

Figure 2: An overview plot for eight schools example

access the samples. If the argument permuted is TRUE, then the samples after
warmup are returned in an permuted order as a list, each element of which are the
samples for a parameter. Here by “one parameter”, we mean a scalar/vector/array
parameter as a whole defined in the parameters block, transformed parameters
block, or generated quantities block of our Stan program. In the eight schools
example, θ is one parameter though it is an array of length J .

If permuted=FALSE, the result depends on the inc_warmup argument.
In either case, the returned object is an array with the first dimension indicating
iterations, the second indicating chains, and the third indicating parameters. If
inc_warmup=TRUE, all iterations are included and if inc_warmup=FALSE,
only the post-warmup iterations are included. The latter is appropriate for infer-
ence, while the former may be useful for diagnosis. In the returned array, each
vector/array parameter is “flattened” and are included as the third dimension of

12

0 500 1000 1500 2000

0
10

20
30

Trace of tau

Iterations

Figure 3: Trace plots of τ in the eight schools model

the array. In our eight schools examples, the third dimension is theta[1], . . . ,
theta[8].

> s <- extract(fit1, pars = c("theta", "mu"), permuted = TRUE)
> names(s)

[1] "theta" "mu"

> dim(s$theta)

[1] 4000 8

> dim(s$mu)

[1] 4000

> s2 <- extract(fit1, pars = "theta", permuted = FALSE)
> dim(s2)

[1] 1000 4 8

> dimnames(s2)

13

$iterations
NULL

$chains
[1] "chain:1" "chain:2" "chain:3" "chain:4"

$parameters
[1] "theta[1]" "theta[2]" "theta[3]" "theta[4]" "theta[5]" "theta[6]" "theta[7]"
[8] "theta[8]"

In addition, the as.array, as.matrix, and as.data.frame methods
are defined for stanfit object. These method return the draws of samples in
forms of a 3-dimension array, matrix (rbinding the chains), or data.frame
(that is coerced from a matrix). There are also dimnames and names methods
for stanfit objects.

A stanfit object keeps all the information regarding the sampling proce-
dure, for example, the model in Stan code, the initial values for all parameters, the
seed for the RNG, and parameters used for the sampler (for example, the step size
for NUTS) The following methods

1. get_seed

2. get_inits

3. get_adaptation_info

4. get_sampler_params

for shown in Table 2 along with other methods defined for the stanfit class.
Last, a common feature for many methods that are defined for the stanfit

class is that the pars argument can be specified to indicate a subset of the pa-
rameters. This feature is helpful when there are too many parameters in the model
or when we need to reduce memory usage. For instance, in the eight schools
example, we have parameter θ defined as “real theta[J]”. So we can spec-
ify pars="theta" or pars="theta[1]". However, specifying part of θ
(i.e., pars="theta[1:2]") as in R is not allowed — a workaround for this is
to specify pars=c("theta[1]","theta[2]"). The stan function allows
the user to specify pars so that only part of the samples are returned, which might
be problematic from the perspective of diagnosing MCMC convergence since we
would apply our diagnostic criterion to a subset of our parameters. To mitigate
this loss of diagnostics information, we can use the get_posterior_mean

14

function, which returns the posterior mean of all parameters for each chain and
all chains combined (excluding warmup samples). Another alternative is to write
the samples to external files using the sample_file argument of the stan
function and then conduct diagnostics with the external files.

3.4 Sampling difficulties
The best way to visualize the output of a model is through the shinyStan package,
which is currently only available from https://github.com/stan-dev/
shinystan. The shinyStan package facilitates both the visualization of param-
eter distributions and diagnosing problems with a sampler.

However, it is also possible to diagnose problems with a sampler directly via
the get_sampler_params function.

> # all chains combined
> summary(do.call(rbind, args = get_sampler_params(fit1, inc_warmup = TRUE)),
+ digits = 2)

accept_stat__ stepsize__ treedepth__ n_leapfrog__ n_divergent__
Min. :0.00 Min. : 0.025 Min. :1.0 Min. : 1.0 Min. :0.0000
1st Qu.:0.74 1st Qu.: 0.328 1st Qu.:3.0 1st Qu.: 7.0 1st Qu.:0.0000
Median :0.94 Median : 0.387 Median :3.0 Median : 7.0 Median :0.0000
Mean :0.81 Mean : 0.433 Mean :3.1 Mean : 9.4 Mean :0.0096
3rd Qu.:0.99 3rd Qu.: 0.473 3rd Qu.:4.0 3rd Qu.: 15.0 3rd Qu.:0.0000
Max. :1.00 Max. :14.386 Max. :7.0 Max. :127.0 Max. :1.0000

> # each chain separately
> lapply(get_sampler_params(fit1, inc_warmup = TRUE), summary, digits = 2)

[[1]]
accept_stat__ stepsize__ treedepth__ n_leapfrog__ n_divergent__
Min. :0.00 Min. : 0.048 Min. :1.0 Min. : 1 Min. :0.0000
1st Qu.:0.68 1st Qu.: 0.440 1st Qu.:3.0 1st Qu.: 7 1st Qu.:0.0000
Median :0.91 Median : 0.473 Median :3.0 Median : 7 Median :0.0000
Mean :0.77 Mean : 0.490 Mean :2.9 Mean : 8 Mean :0.0075
3rd Qu.:0.98 3rd Qu.: 0.473 3rd Qu.:3.0 3rd Qu.: 7 3rd Qu.:0.0000
Max. :1.00 Max. :14.386 Max. :7.0 Max. :127 Max. :1.0000

[[2]]
accept_stat__ stepsize__ treedepth__ n_leapfrog__ n_divergent__
Min. :0.00 Min. :0.03 Min. :1.0 Min. : 1 Min. :0.0000
1st Qu.:0.74 1st Qu.:0.33 1st Qu.:3.0 1st Qu.: 7 1st Qu.:0.0000
Median :0.94 Median :0.33 Median :3.0 Median : 7 Median :0.0000

15

https://github.com/stan-dev/shinystan
https://github.com/stan-dev/shinystan

Mean :0.81 Mean :0.38 Mean :3.3 Mean : 11 Mean :0.0085
3rd Qu.:0.99 3rd Qu.:0.35 3rd Qu.:4.0 3rd Qu.: 15 3rd Qu.:0.0000
Max. :1.00 Max. :7.35 Max. :7.0 Max. :127 Max. :1.0000

[[3]]
accept_stat__ stepsize__ treedepth__ n_leapfrog__ n_divergent__
Min. :0.00 Min. :0.033 Min. :1.0 Min. : 1.0 Min. :0.0000
1st Qu.:0.75 1st Qu.:0.387 1st Qu.:3.0 1st Qu.: 7.0 1st Qu.:0.0000
Median :0.94 Median :0.387 Median :3.0 Median : 7.0 Median :0.0000
Mean :0.81 Mean :0.442 Mean :3.1 Mean : 8.7 Mean :0.0095
3rd Qu.:0.99 3rd Qu.:0.448 3rd Qu.:3.0 3rd Qu.: 7.0 3rd Qu.:0.0000
Max. :1.00 Max. :6.837 Max. :7.0 Max. :95.0 Max. :1.0000

[[4]]
accept_stat__ stepsize__ treedepth__ n_leapfrog__ n_divergent__
Min. :0.00 Min. :0.025 Min. :1.0 Min. : 1 Min. :0.000
1st Qu.:0.80 1st Qu.:0.328 1st Qu.:3.0 1st Qu.: 7 1st Qu.:0.000
Median :0.96 Median :0.328 Median :3.0 Median : 7 Median :0.000
Mean :0.84 Mean :0.420 Mean :3.2 Mean : 10 Mean :0.013
3rd Qu.:0.99 3rd Qu.:0.451 3rd Qu.:4.0 3rd Qu.: 15 3rd Qu.:0.000
Max. :1.00 Max. :7.616 Max. :7.0 Max. :127 Max. :1.000

Here we see that there are a small number of divergent transitions, which are
identified by n_divergent__ being 1. Ideally, there should be no divergent
transitions after the warmup phase. The best way to try to eliminate divergent
transitions is by increasing the target acceptance probability, which by default
is 0.8. Here we see that the mean of accept_stat__ is close to 0.8 for all
chains, but has a very skewed distribution because the median is near 0.95. We
could go back and call stan again and specify the optional argument control
= list(adapt_delta = 0.9) to eliminate the divergent transitions. How-
ever, sometimes when the target acceptance rate is high, the stepsize is very small
and the sampler hits its limit on the number of leapfrog steps it can take per iter-
ation. In this case, it is a non-issue because each chain has a treedepth__ of
at most 7 and the default is 10. But if any treedepth__ were 11, then it would
be wise to increase the limit by passing control = list(max_treedepth
= 12) (for example) to stan.

Figure 4 gives a graphical representation of the same information. The marginal
distribution of each indicated parameter is included as a histogram. By default,
draws with below-median accept_stat__ are plotted below the diagonal and
those with above-median accept_stat__ are plotted above the diagonal. Each
off-diagonal square represents a bivariate distribution of the draws for the inter-
section of the row-variable and the column-variable. Ideally, the below-diagonal

16

mu

0 10 20 30

−5
0
5
10
15
20
25

0

10

20

30 tau

−5 0 5 10 20 −15 −10 −5 0

−15

−10

−5

0lp__

Figure 4: Pairs plots of the common parameters in the eight schools model

intersection and the above-diagonal intersection of the same two variables should
have distributions that are mirror images of each other. Any yellow points would
indicate transitions where the maximum treedepth__ was hit, and the red
points indicate a transition where n_divergent__ = 1. Thus, the pairs plot
should be used to get a sense of whether any sampling difficulties are occurring in
the tails or near the mode.

3.5 The log posterior function and its gradient
Essentially, we define the log of the probability density function of a posterior dis-
tribution up to an unknown additive constant. In Stan, we use lp__ to represent
the realizations of this log kernel at each iteration. In rstan, lp__ is treated as an
unknown in the summary and the calculation of split R̂ and effective sample size.

A nice feature of rstan is that functions for calculating lp__ and its gradients
for a stanfit object are exposed. They are defined for a stanfit object, since
we need data to create a model instance. These two functions are log_prob
and grad_log_prob respectively. Both take parameters on the unconstrained
space, even if the support of a parameter is not the whole real line. See The Stan
Development Team (2014c) for more details about transformations from the en-
tire real line to some subspace of it. Also the number of unconstrained parameters

17

might be less than the number of parameters. For example, when a parameter is a
simplex of lengthK, the number of unconstrained parameters areK−1 due to the
constraint that all elements of a simplex must be nonnegative and sum to one. The
get_num_uparsmethod is provided to get the number of unconstrained param-
eters, while the unconstrained_pars and constrained_pars methods
can be used to unconstrain or constrain parameters respectively. The former takes
a list of parameters as input and transforms it to an unconstrained vector, and the
latter does the opposite. Using these functions, we can implement other algo-
rithms such as maximum a posteriori estimation of Bayesian models.

3.6 Optimization in Stan
RStan also provides an interface to Stan’s optimizers, which can be used to ob-
tain a point estimate by maximizing the (perhaps penalized) likelihood function
defined by a Stan program. We illustrate the feature using a very simple example,
estimating the mean from samples assumed to be drawn from normal distribution
with known standard deviation. That is, we assume

y1, . . . , yn ∼ normal(µ, 1).

By specifying prior of µ with p(µ) ∝ 1, the maximum a posteriori estimator
for µ is just the sample mean. The following R code shows how to use Stan’s
optimizers in rstan; we first create a stanmodel object of rstan and then use
its optimizing method, to which data and other arguments can be fed.

> ocode <- "
+ data {
+ int<lower=1> N;
+ real y[N];
+ }
+ parameters {
+ real mu;
+ }
+ model {
+ y ~ normal(mu, 1);
+ }
+ "
> sm <- stan_model(model_code = ocode)

COMPILING THE C++ CODE FOR MODEL 'cbb983a8bceb8d5cd322bb55ab91f533' NOW.

18

Name Function

print print the summary for parameters obtained using
all chains

summary summarize the sample from all chains and indi-
vidual chains for parameters

plot plot the inferences (intervals, medians, split R̂)
for parameters

traceplot plot the traces of chains
pairs make a matrix of scatter plots for the samples of

parameters
extract extract samples of parameters
get_stancode extract the model code in Stan modeling lan-

guage
get_stanmodel extract the stanmodel object
get_seed get the seed used for sampling
get_inits get the initial values used for sampling
get_posterior_mean get the posterior mean for all parameters
get_logposterior get the log posterior (that is, lp__)
get_sampler_params get parameters used by the sampler such as

treedepth of NUTS
get_adaptation_info get adaptation information of the sampler
get_num_upars get the number of parameters on unconstrained

space
unconstrain_pars transform parameter to unconstrained space
constrain_pars transform parameter from unconstrained space to

its defined space
log_prob evaluate the log posterior for parameter on un-

constrained space
grad_log_prob evaluate the gradient of the log posterior for pa-

rameter on unconstrained space
as.array

extract the samples excluding warmup to a three
dimension array, matrix, data.frame

as.matrix
as.data.frame
dimnames obtain the dimension names of the object in its

array representation
names obtain the “flattened” parameter names

Table 2: Methods for the S4 class stanfit

19

> y2 <- rnorm(20)
> mean(y2)

[1] -0.06167662

> op <- optimizing(sm, data = list(y = y2, N = length(y2)), hessian = TRUE)

STAN OPTIMIZATION COMMAND (LBFGS)
init = random
save_iterations = 1
init_alpha = 0.001
tol_obj = 1e-12
tol_grad = 1e-08
tol_param = 1e-08
tol_rel_obj = 10000
tol_rel_grad = 1e+07
history_size = 5
seed = 1136350353
initial log joint probability = -20.1225

Iter log prob ||dx|| ||grad|| alpha alpha0 # evals Notes
2 -9.88909 0.809283 1.13243e-14 1 1 4

Optimization terminated normally:
Convergence detected: gradient norm is below tolerance

> print(op)

$par
mu

-0.06167662

$value
[1] -9.889095

$hessian
mu

mu -20

3.7 Model compiling in rstan
In RStan, for every model, we use function stanc to translate the model from
Stan modeling language code to C++ code and then compile the C++ code to dy-
namic shared object (DSO), which is loaded by R and executed to draw sample.
The process of compiling C++ code to DSO, sometimes, takes a while. When the
model is the same, we could reuse the DSO from previous run. In function stan,

20

if parameter fit is specified with a previous fitted object, the compiled model is
reused. When reusing a previous fitted model, we can specify different data and
other parameters for function stan.

In addition, if fitted models (objects in our working space of R) are saved,
for example, by R function save and save.image, rstan is able to save the
DSO for models, so that they can be used across R sessions. To (not) save the
DSO, specify the save_dso argument, which is TRUE by default, in the stan
function.

If the user executes rstan_options(auto_write = TRUE), then a
serialized version of the compiled model will be automatically saved to the hard
disk in the same directory as the .stan file or in R’s temporary directory if the Stan
program is expressed as a character string. Although this option is not enabled by
default due to CRAN policy, it should ordinarily be specified by users in order to
eliminate redundant compilation.

Stan runs much faster when the code is compiled at the maximum level of opti-
mization, which is -O3 on most C++ compilers. However, the default value is -O2
in R, which is appropriate for most R packages but entails a slight slowdown for
Stan. You can change this default locally by following the instructions at http:
//cran.r-project.org/doc/manuals/r-release/R-admin.html#
Customizing-package-compilation. However, you should be advised
that setting CXXFLAGS = -O3 may cause adverse side effects for other R pack-
ages.

3.8 Run multiple chains in parallel
For function stan, we can specify the number of chains using the chains ar-
gument. By default, the chains are executed serially (i.e., one at a time) using
the parent R process. There is a cores argument to stan and sampling that
can be set to the number of chains (if the hardware has sufficient processors and
RAM), which is appropriate on most laptops. We ordinarily recommend first call-
ing options(mc.cores = parallel::detectCores()) once per R
session so that stan and sampling can utilize all available cores.

If you are using another parallelization scheme (perhaps with a remote cluster)
rstan provides a function called sflist2stanfit that consolidates a list of
multiple stanfit objects (sampled from one model with the same number of
warmup and iteration) into one stanfit object. It is important to specify the
same seed for all the chains and equally important to use a different chain ID
(argument chain_id). This ensures that the random numbers generated in Stan

21

http://cran.r-project.org/doc/manuals/r-release/R-admin.html#Customizing-package-compilation
http://cran.r-project.org/doc/manuals/r-release/R-admin.html#Customizing-package-compilation
http://cran.r-project.org/doc/manuals/r-release/R-admin.html#Customizing-package-compilation

for all chains are essentially independent. This part is handled automatically by
rstan if cores > 1.

4 Working with CmdStan
RStan provides some functions to help use Stan from the command line, CmdStan.
First, when Stan reads data or initial values, it supports a subset of the syntax of R
dump data formats. So if we use dump function in R to prepare data, Stan might
not be able to read the data. The stan_rdump function in rstan dumps the data
from R to a format that is supported by Stan with symantics that are very similar
to the dump function in R.

Second, the read_stan_csv function in rstan creates a stanfit object
from reading the comma separated files (CSV) generated by CmdStan. As a result,
we can use any methods defined for the stanfit class to diagnose and analyze
the samples.

5 Summary
In this vignette, we have described the main functionality of RStan from a user’s
perspective. The help pages with the rstan package provide more details for all
exposed rstan functions. The Stan manual (The Stan Development Team 2014c)
provides many details and includes a variety of model examples, many of which
are can be executed via function stan_demo in the rstan package. Finally,
the loo package, which is on CRAN, is very useful for model comparison using
stanfit objects.

References
Chambers, J. M. (2008). Software for Data Analysis : Programming with R.

Springer, New York.

Eddelbuettel, D. and François, R. (2011). Rcpp: Seamless R and C++ integration.
Journal of Statistical Software, 40(8):1–18.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian Data
Analysis. CRC Press, London, 2nd edition.

22

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using
multiple sequences. Statistical Science, 7(4):457–472.

Hoffman, M. D. and Gelman, A. (2012). The no-U-turn sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning
Research. In press.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS — a
Bayesian modelling framework: Concepts, structure, and extensibility. Statis-
tics and Computing, pages 325–337.

Neal, R. (2011). MCMC using Hamiltonian dynamics. In Brooks, S., Gelman,
A., Jones, G. L., and Meng, X.-L., editors, Handbook of Markov Chain Monte
Carlo, pages 116–162. Chapman and Hall/CRC.

Plummer, M. (2011). JAGS Version 3.1.0 User Manual.

R Core Team (2014). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Rubin, D. B. (1981). Estimation in parallel randomized experiments. Journal of
educational and behavioral statistics, 6(4):377–401.

The Stan Development Team (2014a). RStan getting started.
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started.

The Stan Development Team (2014b). Stan: A C++ Library for Probability and
Sampling, version 2.6.1. http://mc-stan.org/.

The Stan Development Team (2014c). Stan Modeling Language: User’s Guide
and Reference Manual. Stan Version 2.6.1 (http://mc-stan.org).

Vehtari, A. and Ojanen, J. (2012). A survey of Bayesian predictive methods for
model assessment, selection and comparison. Statistics Surveys, 6:142–228.

23

Index

rstan functions
as.array, 14
as.data.frame, 14
as.matrix, 14
constrained_pars, 18
dimnames, 14
extract, 11
get_adaptation_info, 14
get_inits, 14
get_num_upars, 18
get_posterior_mean, 14
get_sampler_params, 14
get_seed, 14
grad_log_prob, 17
log_prob, 17
names, 14
plot, 11
read_stan_csv, 22
sflist2stanfit, 21
traceplot, 11
unconstrained_pars, 18

24

	Introduction
	Prerequisites
	Typical workflow of using RStan

	An example of using rstan
	Express the model in Stan
	User-defined Stan functions
	Preparing the data
	Sample from the posterior distribution

	Advanced features
	Arguments to the stan function
	Data preprocessing and passing
	Methods for the stanfit class
	Sampling difficulties
	The log posterior function and its gradient
	Optimization in Stan
	Model compiling in rstan
	Run multiple chains in parallel

	Working with CmdStan
	Summary

