
Using the rsm package

Russell V. Lenth
The University of Iowa

May 5, 2009

1 Overview

The rsm package provides several useful functions to facilitate response-surface analysis. The pri-
mary one is the rsm function itself, which is an extension of lm but with some enhancements. In
specifying a model in rsm, the model formula is just like in lm, but the response-surface portion
of the model is specified using one or more of the special functions FO (first-order), TWI (two-way
interactions), PQ (pure quadratic), or SO (second-order, an alias for all three of the previous func-
tions, combined). The summary method for rsm results includes the usual regression summary (but
with the coefficients compactly relabeled), an analysis of variance table with a lack-of-fit test, and
additional information depending on the order of the model.

An important aspect of response-surface analysis is using an appropriate coding transformation
of the data. The functions coded.data, as.coded.data, decode.data, code2val, and val2code
facilitate these transformations; we simply provide formulas for the desired transformations. If a
coded.data object is used in place of an ordinary data.frame in the call, to rsm, then appropriate
additional output is provided in the summary and steepest outputs.

Of course, before we get to analysis, we need a good design for collecting the required data.
The functions ccd and bbd are provided for generating two of the most popular classes of designs—
central-composite designs (CCDs) and Box-Behnken designs (BBDs). In addition, ccd.pick allows
one to take a quick look at various combinations of choices for CCDs and find the most suitable
ones.

Auxiliary functions include steepest for finding a path of steepest ascent (for second-order
models, this uses ridge analysis); and contour for obtaining a contour plot of the response surface.

2 Generating a design

Suppose that you want to experiment on a process with an aim to improving its yield. You have
already done a little bit of preliminary experimentation and have identified five variables that
you want to manipulate experimentally. Our plan is to develop a central-composite design, which
consists of some blocks of “cube” or factorial points plus center points, and other blocks with “star”
or axis points, plus center points. The cube points will be placed at positions ±1 in coded units,
and the axis points will be at ±α. Initially, we will only collect data on one or more of the cube
blocks; then, after analyzing these data with a first-order model, we can either proceed to collect
data on the other blocks and fit a second-order model, or if the fit is reasonably linear, we may
want to forego the extra blocks and instead follow a path of steepest ascent.

There are a lot of choices to be made—how many center points, whether we have replications,
whether the cube block(s) are fractional or full factorial, and what α to use. With response surfaces,

1

it is desirable to have a rotatable design (where the variance of the estimated response depends
only on the distance from zero). On the other hand, a CCD is built in blocks, and it is a good idea
to make the block effects independent of the effects needed to estimate the response surface. To
help make good choices, we can run the function ccd.pick to explore some possibilities. Suppose
that, for practical reasons, we want no more than 16 cube points in a block, but we’d also consider
ones with only 8 cube points (e.g., all 25 = 32 factor combinations dividing into 4 blocks of 8
each). Since there are 5 factors, there are 2× 5 = 10 axis-point positions, but it might be worth
considering replicating the axis points rather than having lots of center points. And we don’t want
the total number of runs in the design to be too excessive—say 65 at most.

2.1 Identifying a good design

Given these considerations we will run ccd.pick to obtain ideas for good designs. It will compute
the α values needed for rotatability and orthogonal blocking for various combinations of numbers
of cube points, center points, replications, etc., and show the best few after sorting in a specified
order (by default, a measure of how well the two αs agree). Here is a suitable call based on the
above discussion:

> library(rsm)

> ccd.pick(5, n.c = c(8, 16), blks.c = c(1, 2, 4), wbr.s = 1:2,

+ restrict = "N<=65")

n.c n0.c blks.c n.s n0.s bbr.c wbr.s bbr.s N alpha.rot alpha.orth
1 16 6 1 10 1 1 1 1 33 2.000000 2.000000
2 16 8 1 10 2 1 1 1 36 2.000000 2.000000
3 16 10 1 10 3 1 1 1 39 2.000000 2.000000
4 16 5 2 20 1 1 2 1 63 2.000000 2.000000
5 16 8 2 10 7 1 1 1 65 2.378414 2.380476
6 8 4 4 10 7 1 1 1 65 2.378414 2.380476
7 16 1 2 10 2 1 1 1 46 2.378414 2.376354
8 16 5 2 10 5 1 1 1 57 2.378414 2.390457
9 16 4 2 10 4 1 1 1 54 2.378414 2.366432
10 8 2 4 10 4 1 1 1 54 2.378414 2.366432

The first one listed has a total of N=33 runs; it has blks.c=1 cube block with n.c=16 cube points
and n0.c=6 center points; and star block with n.s=10 axis points (wbr.s=1 at each position) and
n0.s=1 center point; with these settings, the design is both rotatable and orthogonal if we use
α = 2 for the axis-point positions. The 63-run design 4 is the only one shown where the axis points
are replicated; it has two 16-point cube blocks with 5 center points each, and only one center point,
but replicated axis points, in the star block. This design has the pleasing feature of requiring 21
runs in each block, ad it is both rotatable and orthogonal using α = 2. In the remaining designs,
there is a slight discrepancy between the αs required for rotatability and orthogonality. Designs 5
and 6 have exactly the same number of runs, and differ only in where there are 2 blocks with 16
cube points or 4 blocks of 8 cube points. Design 10 has a slightly greater discrepancy between the
αs than design 6, but fewer total runs.

2.2 Generating a CCD

Suppose that we decide to go with Design 1. To generate this design, the 16-run cube block is a
half-fraction of the full 32-run design in 5 factors. This can be generated by confounding the main

2

effect of one factor with the 4-way interaction of the others. I flipped a coin and decided to use the
negative of this interaction. The ccd function can generate and randomize the design:

> ccd(~x1 + x2 + x3 + x4, x5 ~ -x1 * x2 * x3 * x4, n0 = c(6, 1))

Block x1 x2 x3 x4 x5
C1.22 1 0 0 0 0 0
C1.6 1 1 -1 1 -1 -1
C1.2 1 1 -1 -1 -1 1
C1.1 1 -1 -1 -1 -1 -1
C1.9 1 -1 -1 -1 1 1
C1.16 1 1 1 1 1 -1
C1.15 1 -1 1 1 1 1
C1.7 1 -1 1 1 -1 -1
C1.21 1 0 0 0 0 0
C1.4 1 1 1 -1 -1 -1
C1.8 1 1 1 1 -1 1
C1.12 1 1 1 -1 1 1
C1.5 1 -1 -1 1 -1 1
C1.20 1 0 0 0 0 0
C1.14 1 1 -1 1 1 1
C1.3 1 -1 1 -1 -1 1
C1.17 1 0 0 0 0 0
C1.19 1 0 0 0 0 0
C1.13 1 -1 -1 1 1 -1
C1.18 1 0 0 0 0 0
C1.10 1 1 -1 -1 1 -1
C1.11 1 -1 1 -1 1 -1
S2.1 2 -2 0 0 0 0
S2.5 2 0 0 -2 0 0
S2.7 2 0 0 0 -2 0
S2.2 2 2 0 0 0 0
S2.11 2 0 0 0 0 0
S2.8 2 0 0 0 2 0
S2.9 2 0 0 0 0 -2
S2.4 2 0 2 0 0 0
S2.6 2 0 0 2 0 0
S2.10 2 0 0 0 0 2
S2.3 2 0 -2 0 0 0

By default, ccd chooses α for orthogonality. If we want to name the variables x1,x2,..., we can
just give the number of variables instead of a formula in the first argument:

> ccd(4, x5 ~ -x1 * x2 * x3 * x4, n0 = c(6, 1))

To generate design 4, we use the full 32-run design, but divided into blocks two blocks of 16
runs by confounding the 5-way interaction:

> des4 = ccd(5, , Block ~ x1 * x2 * x3 * x4 * x5, wbr = c(1, 2),

+ n0 = c(5, 1))

3

The wbr argument specifies within-block replications for cube blocks and star blocks, respectively.
There is also a bbr argument for between-block replications (i.e. additional blocks with the same
factor combinations).

The ccd call for generating design 5 would be similar to the one above, but no wbr argument
is needed. For design 10 (or design 6), we need to block the 32 cube points into four sets of 8, by
confounding two effects with blocks:

> des10 = ccd(5, , Block ~ c(x1 * x2 * x3, x3 * x4 * x5), n0 = c(2,

+ 4))

These designs, while having more total runs, may be preferred over design 1 because it is possible
to run only one block (10 runs, compared with 22 runs with design 1) and still be able to estimate
some first-order effects.

Because experimentation can be very expensive, it would be terrible to run the design only to
find out you can’t estimate all the effects. For that reason, ccd does a check to make sure we can
do an analysis:

> bad.des = ccd(5, , Block ~ c(x1 * x2 * x3 * x4, x2 * x3 * x4 *

+ x5), n0 = c(2, 4))

Warning in ccd(~x1 + x2 + x3 + x4 + x5, , Block ~ c(x1 * x2 * x3 * x4, x2 * :
Some 1st or 2nd-order terms are aliased in the cube portion of this design

The problem here is that the generalized interaction between the two effects, x1x2x3x4 · x2x3x4x4 =
x1x5, is also confounded with blocks. Actually, by the time center points and axis points are added,
x1x5 is only partially confounded; but this is still not a desirable design.

2.3 Box-Behnken designs

The bbd function is provided to generate Box-Behnken designs. These are fractional 3k designs
capable of fitting second-order models. Advantages are that they sometimes require fewer runs
than a CCD, and each factor has only 3 levels instead of 5. Disadvantages are that they cannot be
built-up in blocks like a CCD, and they are not rotatable. BBDs are available only for 3, 4, 5, 6,
and 7 factors; and only 4- and 5-factor designs can be blocked orthogonally. Here is a BBD for 5
factors (by default, in two blocks)

> bbd5 = bbd(5, n0 = 1)

> nrow(bbd5)

[1] 42

In this case, some CCDs have fewer runs. However, the size of one block is comparable to that of
the first design, and we could use it for first-order analysis.

4

3 Chemical reactor example

The provided dataset ChemReact comes from Table 7.7 of Myers and Montgomery (2002).

> ChemReact

Time Temp Block Yield
1 80.00 170.00 B1 80.5
2 80.00 180.00 B1 81.5
3 90.00 170.00 B1 82.0
4 90.00 180.00 B1 83.5
5 85.00 175.00 B1 83.9
6 85.00 175.00 B1 84.3
7 85.00 175.00 B1 84.0
8 85.00 175.00 B2 79.7
9 85.00 175.00 B2 79.8
10 85.00 175.00 B2 79.5
11 92.07 175.00 B2 78.4
12 77.93 175.00 B2 75.6
13 85.00 182.07 B2 78.5
14 85.00 167.93 B2 77.0

The context is that block B1 of this data were collected first and analyzed, after which block B2
was added and a new analysis was done. Accordingly, we will illustrate the analysis in two stages.

3.1 Coding of predictors

First, though, we need to take care of coding issues. The data are provided in their original units,
and the original experiment (block B1) used factor settings of Time = 85± 5 and Temp = 175± 5,
with three center points. Thus, the coded variables are x1 = (Time− 85)/5 and x1 = (Temp−
175)/5. Let’s create a coded dataset with the appropriate codings. We do this via formulas:

> CR = coded.data(ChemReact, x1 ~ (Time - 85)/5, x2 ~ (Temp - 175)/5)

> CR[1:7,]

x1 x2 Block Yield
1 -1 -1 B1 80.5
2 -1 1 B1 81.5
3 1 -1 B1 82.0
4 1 1 B1 83.5
5 0 0 B1 83.9
6 0 0 B1 84.3
7 0 0 B1 84.0

Variable codings ...
x1 ~ (Time - 85)/5
x2 ~ (Temp - 175)/5

5

3.2 Analysis of initial block

The initial 7 runs are only good enough to estimate a first-order model. We will fit this by calling
rsm just like we would lm, but use the special function FO (first-order response surface) in the model
formula:

> CR.rsm1 = rsm(Yield ~ FO(x1, x2), data = CR, subset = 1:7)

> summary(CR.rsm1)

Call:
rsm(formula = Yield ~ FO(x1, x2), data = CR, subset = 1:7)

Residuals:
1 2 3 4 5 6 7

-0.8143 -1.0643 -1.0643 -0.8143 1.0857 1.4857 1.1857

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.8143 0.5472 151.346 1.14e-08 ***
x1 0.8750 0.7239 1.209 0.293
x2 0.6250 0.7239 0.863 0.437

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.448 on 4 degrees of freedom
Multiple R-squared: 0.3555, Adjusted R-squared: 0.0333
F-statistic: 1.103 on 2 and 4 DF, p-value: 0.4153

Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2) 2 4.6250 2.3125 1.1033 0.41534
Residuals 4 8.3836 2.0959
Lack of fit 2 8.2969 4.1485 95.7335 0.01034
Pure error 2 0.0867 0.0433

Direction of steepest ascent (at radius 1):
x1 x2

0.8137335 0.5812382

Corresponding increment in original units:
Time Temp

4.068667 2.906191

Note that the summary includes a lack-of-fit test, and it is significant. We can try adding two-way
interactions to see if it helps:

> CR.rsm1.5 = update(CR.rsm1, . ~ . + TWI(x1, x2))

> summary(CR.rsm1.5)

6

Call:
rsm(formula = Yield ~ FO(x1, x2) + TWI(x1, x2), data = CR, subset = 1:7)

Residuals:
1 2 3 4 5 6 7

-0.9393 -0.9393 -0.9393 -0.9393 1.0857 1.4857 1.1857

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.8143 0.6295 131.560 9.68e-07 ***
x1 0.8750 0.8327 1.051 0.371
x2 0.6250 0.8327 0.751 0.507
x1:x2 0.1250 0.8327 0.150 0.890

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.665 on 3 degrees of freedom
Multiple R-squared: 0.3603, Adjusted R-squared: -0.2793
F-statistic: 0.5633 on 3 and 3 DF, p-value: 0.6755

Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

FO(x1, x2) 2 4.6250 2.3125 0.8337 0.515302
TWI(x1, x2) 1 0.0625 0.0625 0.0225 0.890202
Residuals 3 8.3211 2.7737
Lack of fit 1 8.2344 8.2344 190.0247 0.005221
Pure error 2 0.0867 0.0433

Stationary point of response surface:
x1 x2
-5 -7

Stationary point in original units:
Time Temp
60 140

Eigenanalysis:
$values
[1] 0.0625 -0.0625

$vectors
[,1] [,2]

[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068

7

The lack of fit is still significant. Note that the summary output now shows a canonical analysis
rather than the direction of steepest ascent, as the response surface now has second-order terms.

3.3 Analysis of combined blocks

The lack-of-fit results motivate us to collect additional runs at “star” points, plus some additional
center points; these are the second block. In coded units, the data are

> CR[8:14,]

x1 x2 Block Yield
8 0.000 0.000 B2 79.7
9 0.000 0.000 B2 79.8
10 0.000 0.000 B2 79.5
11 1.414 0.000 B2 78.4
12 -1.414 0.000 B2 75.6
13 0.000 1.414 B2 78.5
14 0.000 -1.414 B2 77.0

Variable codings ...
x1 ~ (Time - 85)/5
x2 ~ (Temp - 175)/5

The choice of α =
√

2 provides for rotatability, and the blocks are orthogonal as well. To do
the analysis of the combined data, we should account for the block effect. We could fit a full
second-order model by including FO, TWI, and PQ terms, but this is more easily done using SO which
generates all three sets of variables:

> CR.rsm2 = rsm(Yield ~ Block + SO(x1, x2), data = CR)

> summary(CR.rsm2)

Call:
rsm(formula = Yield ~ Block + SO(x1, x2), data = CR)

Residuals:
Min 1Q Median 3Q Max

-0.19543 -0.09369 0.02157 0.06153 0.20457

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.09543 0.07963 1056.067 < 2e-16 ***
BlockB2 -4.45753 0.08723 -51.103 2.88e-10 ***
x1 0.93254 0.05770 16.162 8.44e-07 ***
x2 0.57771 0.05770 10.013 2.12e-05 ***
x1:x2 0.12500 0.08159 1.532 0.169
x1^2 -1.30856 0.06006 -21.786 1.08e-07 ***
x2^2 -0.93344 0.06006 -15.541 1.10e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8

Residual standard error: 0.1632 on 7 degrees of freedom
Multiple R-squared: 0.9981, Adjusted R-squared: 0.9964
F-statistic: 607.2 on 6 and 7 DF, p-value: 3.811e-09

Analysis of Variance Table

Response: Yield
Df Sum Sq Mean Sq F value Pr(>F)

Block 1 69.531 69.531 2611.0950 2.879e-10
FO(x1, x2) 2 9.626 4.813 180.7341 9.450e-07
TWI(x1, x2) 1 0.063 0.063 2.3470 0.1694
PQ(x1, x2) 2 17.791 8.896 334.0539 1.135e-07
Residuals 7 0.186 0.027
Lack of fit 3 0.053 0.018 0.5307 0.6851
Pure error 4 0.133 0.033

Stationary point of response surface:
x1 x2

0.3722954 0.3343802

Stationary point in original units:
Time Temp

86.86148 176.67190

Eigenanalysis:
$values
[1] -0.9233027 -1.3186949

$vectors
[,1] [,2]

[1,] -0.1601375 -0.9870947
[2,] -0.9870947 0.1601375

This model fits well. The canonical analysis reveals that the stationary point is near the center of
the experiment and that both eigenvalues are negative. This indicates that the fitted surface has
a maximum at Time ≈ 86.9, Temp ≈ 176.7. We may visualize the response surface using the lm
method for contour, provided with this package:

> contour(CR.rsm2, x2 ~ x1)

> points(0.372, 0.334, pch = 2)

9

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

 78.5

 79

 79.5

 7
9.

5

 80

 8
0

 80.5 80.5 81 81 81.5 81.5

 8
2

 82.5

 82.5

 83

 83.5

 84

4 Helicopter example

The provided dataset heli is presented in Table 12.5 of Box, Hunter, and Hunter (2005). It is also
a central composite design in two blocks. There are four variables and 30 observations altogether.
This is a coded.data object already; here are a few observations:

> heli[1:4,]

block x1 x2 x3 x4 ave logSD
1 1 -1 -1 -1 -1 367 72
2 1 1 -1 -1 -1 369 72
3 1 -1 1 -1 -1 374 74
4 1 1 1 -1 -1 370 79

Variable codings ...
x1 ~ (A - 12.4)/0.6
x2 ~ (R - 2.52)/0.26
x3 ~ (W - 1.25)/0.25
x4 ~ (L - 2)/0.5

The response variable ave is the average flight time (in csec.) of four test runs each of paper
helicopters made with different wing areas W, wing-length ratios R, body widths W, and body
lengths L. The goal is to maximize flight time.

Like the Chemical Reaction data, the first block was analyzed first and then the star points
were added. We’ll skip the first part and go straight to the second-order analysis.

> heli.rsm = rsm(ave ~ block + SO(x1, x2, x3, x4), data = heli)

> summary(heli.rsm)

Call:
rsm(formula = ave ~ block + SO(x1, x2, x3, x4), data = heli)

10

Residuals:
Min 1Q Median 3Q Max

-3.850 -1.579 -0.175 1.925 4.200

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 372.80000 1.50638 247.481 < 2e-16 ***
block2 -2.95000 1.20779 -2.442 0.028452 *
x1 -0.08333 0.63656 -0.131 0.897707
x2 5.08333 0.63656 7.986 1.40e-06 ***
x3 0.25000 0.63656 0.393 0.700429
x4 -6.08333 0.63656 -9.557 1.63e-07 ***
x1:x2 -2.87500 0.77962 -3.688 0.002436 **
x1:x3 -3.75000 0.77962 -4.810 0.000277 ***
x1:x4 4.37500 0.77962 5.612 6.41e-05 ***
x2:x3 4.62500 0.77962 5.932 3.66e-05 ***
x2:x4 -1.50000 0.77962 -1.924 0.074926 .
x3:x4 -2.12500 0.77962 -2.726 0.016410 *
x1^2 -2.03750 0.60389 -3.374 0.004542 **
x2^2 -1.66250 0.60389 -2.753 0.015554 *
x3^2 -2.53750 0.60389 -4.202 0.000887 ***
x4^2 -0.16250 0.60389 -0.269 0.791788

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.118 on 14 degrees of freedom
Multiple R-squared: 0.9555, Adjusted R-squared: 0.9078
F-statistic: 20.04 on 15 and 14 DF, p-value: 6.54e-07

Analysis of Variance Table

Response: ave
Df Sum Sq Mean Sq F value Pr(>F)

block 1 16.81 16.81 1.7281 0.209786
FO(x1, x2, x3, x4) 4 1510.00 377.50 38.8175 1.965e-07
TWI(x1, x2, x3, x4) 6 1114.00 185.67 19.0917 5.355e-06
PQ(x1, x2, x3, x4) 4 282.54 70.64 7.2634 0.002201
Residuals 14 136.15 9.72
Lack of fit 10 125.40 12.54 4.6660 0.075500
Pure error 4 10.75 2.69

Stationary point of response surface:
x1 x2 x3 x4

0.8607107 -0.3307115 -0.8394866 -0.1161465

Stationary point in original units:
A R W L

11

12.916426 2.434015 1.040128 1.941927

Eigenanalysis:
$values
[1] 3.258222 -1.198324 -3.807935 -4.651963

$vectors
[,1] [,2] [,3] [,4]

[1,] 0.5177048 0.04099358 0.7608371 -0.38913772
[2,] -0.4504231 0.58176202 0.5056034 0.45059647
[3,] -0.4517232 0.37582195 -0.1219894 -0.79988915
[4,] 0.5701289 0.72015994 -0.3880860 0.07557783

This time, the situation is more complicated. Since the eigenvalues are of mixed sign, we have a
saddle point. Here we obtain contour plots of each pair of variables, holding the other two fixed at
their stationary values.

> par(mfrow = c(2, 3))

> contour(heli.rsm, ~x1 + x2 + x3 + x4, at = summary(heli.rsm)$canonical$xs)

The plots are shown in Figure 1. An important thing to note is that when the color underlay is
used (as is the default), the color scale is consistent across all plots, facilitating appropriate visual
comparisons.

Since we have not found a maximum, our next step might be to experiment along some path
that seems promising of providing a higher response. In this particular example, the stationary
point is within the experimental region, so we can regard it as reasonably well estimated. It is thus
believable that the actual response function has a saddle point in the vicinity of our stationary
point. The function canonical.path, by default, returns the path of steepest ascent each direction
from the stationary point. This path is linear.

> canonical.path(heli.rsm)

dist x1 x2 x3 x4 | A R W L | yhat
1 -5.0 -1.728 1.921 1.419 -2.967 | 11.3632 3.01946 1.60475 0.5165 | 453.627
2 -4.5 -1.469 1.696 1.193 -2.682 | 11.5186 2.96096 1.54825 0.6590 | 438.150
3 -4.0 -1.210 1.471 0.967 -2.397 | 11.6740 2.90246 1.49175 0.8015 | 424.302
4 -3.5 -0.951 1.246 0.742 -2.112 | 11.8294 2.84396 1.43550 0.9440 | 412.094
5 -3.0 -0.692 1.021 0.516 -1.827 | 11.9848 2.78546 1.37900 1.0865 | 401.504
6 -2.5 -0.434 0.795 0.290 -1.541 | 12.1396 2.72670 1.32250 1.2295 | 392.534
7 -2.0 -0.175 0.570 0.064 -1.256 | 12.2950 2.66820 1.26600 1.3720 | 385.203
8 -1.5 0.084 0.345 -0.162 -0.971 | 12.4504 2.60970 1.20950 1.5145 | 379.502
9 -1.0 0.343 0.120 -0.388 -0.686 | 12.6058 2.55120 1.15300 1.6570 | 375.429
10 -0.5 0.602 -0.105 -0.614 -0.401 | 12.7612 2.49270 1.09650 1.7995 | 372.986
11 0.0 0.861 -0.331 -0.839 -0.116 | 12.9166 2.43394 1.04025 1.9420 | 372.172
12 0.5 1.120 -0.556 -1.065 0.169 | 13.0720 2.37544 0.98375 2.0845 | 372.987
13 1.0 1.378 -0.781 -1.291 0.454 | 13.2268 2.31694 0.92725 2.2270 | 375.428
14 1.5 1.637 -1.006 -1.517 0.739 | 13.3822 2.25844 0.87075 2.3695 | 379.499
15 2.0 1.896 -1.232 -1.743 1.024 | 13.5376 2.19968 0.81425 2.5120 | 385.206
16 2.5 2.155 -1.457 -1.969 1.309 | 13.6930 2.14118 0.75775 2.6545 | 392.538

12

17 3.0 2.414 -1.682 -2.195 1.594 | 13.8484 2.08268 0.70125 2.7970 | 401.498
18 3.5 2.673 -1.907 -2.421 1.879 | 14.0038 2.02418 0.64475 2.9395 | 412.088
19 4.0 2.932 -2.132 -2.646 2.164 | 14.1592 1.96568 0.58850 3.0820 | 424.295
20 4.5 3.190 -2.358 -2.872 2.449 | 14.3140 1.90692 0.53200 3.2245 | 438.140
21 5.0 3.449 -2.583 -3.098 2.734 | 14.4694 1.84842 0.47550 3.3670 | 453.615

We should conduct additional experimental runs along this path and see where we get the most
improvement in the observed response.

Had the stationary point been more distant, it would be more of an extrapolation from the range
of the experiment, and thus it would not be a good starting point for further experimentation. That
is, for a distant stationary point, a steepest-ascent method makes more sense. For second-order
surfaces, the steepest function uses ridge analysis to determine an appropriate path:

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x2

 345

 350

 355

 360

 360

 365

 365

 370

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x3

 345

 345

 350

 350

 355

 355

 360

 360

 365

 365

 370

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x4

 3
35

 3

40

 3
45

 3

50

 3
55

 360

 365

 3
65

 370

 3
70

 375

 375

−2 −1 0 1 2

−
2

−
1

0
1

2

x2

x3

 335
 34

0

 345

 350

 355

 355

 360

 360

 365

 365

 370

 370

−2 −1 0 1 2

−
2

−
1

0
1

2

x2

x4

 358
 360

 362

 364

 364

 366

 366

 368

 368

 370

 370

 372

 372

−2 −1 0 1 2

−
2

−
1

0
1

2

x3

x4

 345
 350

 355
 360 365

 365

 370

 370

Figure 1: Contour plots for heli data.

13

> steepest(heli.rsm)

Path of steepest ascent from ridge analysis:
dist x1 x2 x3 x4 | A R W L | yhat

1 0.0 0.000 0.000 0.000 0.000 | 12.4000 2.52000 1.25000 2.0000 | 372.800
2 0.5 -0.127 0.288 0.116 -0.371 | 12.3238 2.59488 1.27900 1.8145 | 377.106
3 1.0 -0.351 0.538 0.312 -0.700 | 12.1894 2.65988 1.32800 1.6500 | 382.675
4 1.5 -0.595 0.775 0.526 -1.009 | 12.0430 2.72150 1.38150 1.4955 | 389.783
5 2.0 -0.846 1.007 0.745 -1.309 | 11.8924 2.78182 1.43625 1.3455 | 398.485
6 2.5 -1.101 1.237 0.966 -1.605 | 11.7394 2.84162 1.49150 1.1975 | 408.819
7 3.0 -1.356 1.465 1.189 -1.897 | 11.5864 2.90090 1.54725 1.0515 | 420.740
8 3.5 -1.613 1.693 1.413 -2.188 | 11.4322 2.96018 1.60325 0.9060 | 434.322
9 4.0 -1.870 1.920 1.637 -2.477 | 11.2780 3.01920 1.65925 0.7615 | 449.497
10 4.5 -2.127 2.147 1.862 -2.766 | 11.1238 3.07822 1.71550 0.6170 | 466.323
11 5.0 -2.385 2.373 2.086 -3.054 | 10.9690 3.13698 1.77150 0.4730 | 484.750

This gives a path that starts at the origin in the coded variables, rather than the stationary point.

5 Miscellaneous notes and examples

5.1 Coded data

Use coded.data as shown in the Chemical reactor example to convert a dataset that has its
predictors in raw units. If the dataset is already in coded units, you may embed the coding
information using as.coded.data:

> dat = expand.grid(t = c(-1, 1), w = -1:1)

> dat = as.coded.data(dat, t ~ (Thickness - 3.5)/0.5, w ~ (Width -

+ 12)/2)

> dat

t w
1 -1 -1
2 1 -1
3 -1 0
4 1 0
5 -1 1
6 1 1

Variable codings ...
t ~ (Thickness - 3.5)/0.5
w ~ (Width - 12)/2

> decode.data(dat)

Thickness Width
1 3 10
2 4 10
3 3 12

14

4 4 12
5 3 14
6 4 14

> code2val(c(t = -0.5, w = 0.25), attr(dat, "codings"))

Thickness Width
3.25 12.50

The design-generation functions ccd and bbd also support coding:

> des = bbd(Finish ~ x1 + x2 + x3, coding = list(x1 ~ (Time - 60)/10,

+ x2 ~ (Feedrate - 2.2)/0.4, x3 ~ (Speed - 2000)/250))

> des[1:3,]

x1 x2 x3 Finish
9 0 -1 -1 NA
14 0 0 0 NA
6 1 0 -1 NA

Variable codings ...
x1 ~ (Time - 60)/10
x2 ~ (Feedrate - 2.2)/0.4
x3 ~ (Speed - 2000)/250

> decode.data(des[1:3,])

Time Feedrate Speed Finish
9 60 1.8 1750 NA
14 60 2.2 2000 NA
6 70 2.2 1750 NA

5.2 Contour plots

The contour method provided by this package works for any lm object, not just response surfaces.
By default, it overlays the contour plot on an image plot using terrain colors. Arguments provide
for the image portion to be disabled or the colors changed if desired.

To make contour work, it was necessary to obtain the data used by a lm object. The standard
function get_all_vars does not make it very easy, and model.frame incorporates transformations
and expands polynomials and factors. The provided function model.data makes it very easy to
obtain just the variables included in the model formula. For example, following the first-order
model for the chemical reactor example,

> model.data(CR.rsm1, lhs = TRUE)

Yield x1 x2
1 80.5 -1 -1
2 81.5 -1 1
3 82.0 1 -1
4 83.5 1 1
5 83.9 0 0
6 84.3 0 0
7 84.0 0 0

15

References

Box, G.E.P., Hunter, J.S., and Hunter, W.G. (2005), Statistics for Experimenters: Design, Inno-
vation, and Discovery (2nd ed.), New York: Wiley-Interscience.

Myers, R. H. and Montgomery, D. C. (2002), Response Surface Methodology: Process and Product
Optimization Using Designed Experiments (2nd ed.), New York: Wiley-Interscience.

Contact information

Russell V. Lenth
Department of Statistics
The University of Iowa
Iowa City, IA, USA 52242
russell-lenth@uiowa.edu

16

