To perform these tests, make sure you’re in the correct directory with the correct version of R-RerF
installed and run the below code chunk.
require(rmarkdown)
require(knitr)
require(devtools)
opts_chunk$set(cache=FALSE,warning=FALSE,message=FALSE)
rmarkdown::render("test-Times.Rmd", output_format = "html_document")
Timed tests between different versions of the RerF
code that live across various git-branches are performed below.
## sandbox the install location
dev_mode(on = TRUE)
## install from version 1.1.3 which is the CRAN version as of 20181005.
install_github('neurodata/R-RerF', ref = 'v1.1.3', local = FALSE)
require('rerf')
times <- list()
data(mnist)
## Get a random subsample, 100 each of 3's and 5's
set.seed(317)
threes <- sample(which(mnist$Ytrain %in% 3), 100)
fives <- sample(which(mnist$Ytrain %in% 5), 100)
numsub <- c(threes, fives)
Ytrain <- mnist$Ytrain[numsub]
Xtrain <- mnist$Xtrain[numsub,]
Ytest <- mnist$Ytest[mnist$Ytest %in% c(3,5)]
Xtest <- mnist$Xtest[mnist$Ytest %in% c(3,5),]
# p is number of dimensions, d is the number of random features to evaluate, iw is image width, ih is image height, patch.min is min width of square patch to sample pixels from, and patch.max is the max width of square patch
p <- ncol(Xtrain)
d <- ceiling(sqrt(p))
iw <- sqrt(p)
ih <- iw
patch.min <- 1L
patch.max <- 5L
invisible(gc())
startTime <- Sys.time()
forest <- RerF(Xtrain, Ytrain, num.cores = 1L,
mat.options = list(p = p, d = d, random.matrix = "image-patch", iw = iw, ih = ih,
patch.min = patch.min, patch.max = patch.max),
seed = 1L, rfPack = FALSE)
stopTime <- Sys.time()
times$cran <- stopTime - startTime
invisible(gc())
startTime <- Sys.time()
forest <- RerF(Xtrain, Ytrain, num.cores = 1L,
mat.options = list(p = p, d = d, random.matrix = "image-patch", iw = iw, ih = ih,
patch.min = patch.min, patch.max = patch.max), seed = 1L)
stopTime <- Sys.time()
times$staging <- stopTime - startTime
invisible(gc())
startTime <- Sys.time()
forest <- RerF(Xtrain, Ytrain, num.cores = 1L, FUN = RandMatImagePatch,
paramList = list(p = p, d = d, iw = iw, ih = ih,
pwMin = patch.min, pwMax = patch.max),
seed = 1L)
stopTime <- Sys.time()
times$randMatSplit <- stopTime - startTime
dev_mode(on = FALSE)
kable(data.frame(times), format = 'markdown')
cran | staging | randMatSplit |
---|---|---|
14.94767 secs | 15.02846 secs | 15.04736 secs |
runs <- list()
require(microbenchmark)
## below is the output of RandMat with mat.options
## from commit 73b896ff053537ee23d82b9debee054171b1c41b
## with set.seed(317) and RcppZiggurat::zsetseed(14)
## for comparison to the new version of RandMat*
#mat.options <- list(p = 5, d = 3, "binary", rho = 0.25, prob = 0.5)
rBinary <- structure(c(3, 2, 3, 2, 1, 2, 2, 3, 1, -1, -1, 1), .Dim = 4:3)
## sandbox the install location
dev_mode(on = TRUE)
## install from version 1.1.3 which is the CRAN version as of 20181005.
install_github('neurodata/R-RerF', ref = 'v1.1.3', local = FALSE, force = TRUE)
require('rerf')
opt1 <- list(p = 5, d = 3, random.matrix = "binary", rho = 0.25, prob = 0.5)
runs$cran <- microbenchmark(run1 = RandMat(opt1))
## install from branch RandMat-split
detach('package:rerf', unload = TRUE)
install_github('neurodata/R-RerF', ref = 'RandMat-split', local = FALSE, force = TRUE)
require('rerf')
runs$randmat <- microbenchmark(run2 = RandMatBinary(p = 5, d = 3, sparsity = 0.25, prob = 0.5))
dev_mode(on = FALSE)
runs
## $cran
## Unit: microseconds
## expr min lq mean median uq max neval
## run1 41.042 45.2365 55.00814 45.9505 47.14 787.393 100
##
## $randmat
## Unit: microseconds
## expr min lq mean median uq max neval
## run2 42.721 45.4845 55.54579 51.8275 55.55 416.578 100