Package ‘rearrr’

November 11, 2020

Title Rearranging Data
Version 0.2.0

Description Arrange data by a set of methods. Use rearrangers to reorder
data points and mutators to change their values. From basic utilities,
to centering the greatest value, to swirling in 3-dimensional space,
'rearrr’ enables creativity when plotting and experimenting with data.

License MIT + file LICENSE
URL https://github.com/ludvigolsen/rearrr

BugReports https://github.com/ludvigolsen/rearrr/issues

Depends R (>=3.5)

Imports checkmate (>= 2.0.0),
dplyr (>=0.8.5),
lifecycle,
plyr,
purrr (>=0.3.4),
rlang (>=0.4.7),
stats,
tibble,
utils

Suggests covr,

ggplot2,
knitr,

plotly,

testthat,

tidyr,

xpectr (>= 0.4.0)

RdMacros lifecycle

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1

R topics documented:

https://github.com/ludvigolsen/rearrr
https://github.com/ludvigolsen/rearrr/issues

Index

R topics documented:

apply_transformation_matrix Lo 5
CENLET_MAX . . v v v v o e e e e e e e e e e e e e 7
CENEI_MIN . . v v v v v ot e e e e e e e e e e e e 9
centroid L L e e e 11
circularize e e e e 12
CloSESt_tO 15
CIUSTEr_EIoups ot e 18
create_dimming_fn 21
create_N_fN L e 22
create_origin_fn 24
degrees_to_radians Lo e 25
dim_values e e 26
distance e e 30
expand_distances e 31
expand_distances_each L Lo 36
flip_values e 41
furthest_from e e 44
generate_CIUSIEIS e e 47
hexagonalize 49
is_most_centered L. L e e e e e e e e e e e e 51
median_indexX e 53
midrange e 54
min_max_scale e 55
most_centered L e e e e e 57
PAIT_EXITEIMES o v i v v et e e e e e e e e e e e e e e e e 58
POSIION_MAX o o vttt e e e e e 61
POSIION_MIN oot s e e e e 63
rev_windoWS e e e e 65
roll_elements e e e e 66
rollvalues e 69
rotate_2d L e e e e 72
rotate_3d . . . L e 75
shear_2d L e 79
shear_3d L e e 82
shuffle_hierarchy 86
SQUATE .« . v v v v e 88
swirl_2d . . . L e 90
swirl_3d e e 93
to_unit_length L 99
transfer_centroids 100
triangularize 102
vector_length 105

107

angle 3

angle Calculate the angle to an origin

Description

Experimental

Calculates the angle between each data point (22, y2) and the origin (21, y1) with:

atan2(y2 — yl,22 — z1)

And converts to degrees [0-360), measured counterclockwise from the {x > x1,y = y1} line.

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can
be useful when supplying a grouped data.frame and finding the angle to e.g. the centroid of each

group.

Usage
angle(
data,
x_col = NULL,
y_col = NULL,

origin = NULL,
origin_fn = NULL,

degrees_col_name = ".degrees",
origin_col_name = ".origin",
overwrite = FALSE
)
Arguments
data data.frame or vector.
x_col Name of x column in ‘data’. If NULL and ‘data" is a vector, the index of
‘data" isused. If *data" is a data. frame, it must be specified.
y_col Name of y column in “data*. If *data" is a data. frame, it must be specified.
origin Coordinates of the origin to calculate angle to. A scalar to use in all dimensions
or a vector with one scalar per dimension.
N.B. Ignored when “origin_fn" is not NULL.
origin_fn Function for finding the origin coordinates.

Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.
Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.
E.g. “create_origin_fn(median)" would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange ()
degrees_col_name
Name of new column with the degrees.
origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

4 angle

Value

data.frame (tibble) with the additional columns (degrees and origin coordinates).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other measuring functions: distance(), vector_length()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"x" = runif(20),
"y" runif(20),
"g" = rep(1:4, each = 5)
)

Calculate angles in the two dimensions (x and y)
With the origin at x=0.5, y=0.5
df_angles <- angle(

data = df,

x_col = "x",

y_col = "y",

origin = c(0.5, 0.5)
)
df_angles

Plot points with degrees
Degrees are measured counterclockwise around the
positive side of the x-axis
df_angles %>%
ggplot(aes(x = x, y =y, color = .degrees)) +
geom_segment(aes(x = 0.5, xend = 1, y = 0.5, yend = 0.5), color = "magenta”) +
geom_point() +
theme_minimal()

Calculate angles to the centroid for each group in 'g
angle(

data = dplyr::group_by(df, g),

x_col = "x",

y_col = "y",

origin_fn = centroid

apply_transformation_matrix 5

apply_transformation_matrix
Apply transformation matrix to a set of columns

Description

Experimental
Perform matrix multiplication with a transformation matrix and a set of data. frame columns.

The data points in ‘*data* are moved prior to the transformation, to bring the origin to @ in all
dimensions. After the transformation, the inverse move is applied to bring the origin back to its
original position. See ‘Details" section.

The columns in *data" are transposed, making the operation (without the origin movement):

matdatal, cols|”

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can
be useful when supplying a grouped data. frame and transforming around e.g. the centroid of each

group.

Usage

apply_transformation_matrix(
data,
mat,
cols,
origin = NULL,
origin_fn = NULL,

suffix = "_transformed”,

keep_original = TRUE,

origin_col_name = ".origin",

overwrite = FALSE
)

Arguments
data data.frame or vector.
mat Transformation matrix. Must have the same number of columns as *cols*.
cols Columns to mutate values of. Must be specified when ‘data* is a data. frame.
origin Coordinates of the origin. Vector with the same number of elements as ‘cols"*
(i.e. origin_x, origin_y, ...). Ignored when ‘origin_fn" is not NULL.

origin_fn Function for finding the origin coordinates.

Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. “create_origin_fn(median)" would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange ()

6 apply_transformation_matrix

suffix Suffix to add to the names of the generated columns.

nn

Use an empty string (i.e. "") to overwrite the original columns.

keep_original Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Details

Example with 2 columns (x, y) and a 2x2 transformation matrix:

* Move origin to (0,0):
X =X -origin_x
y=y-origin_y
* Convert to transposed matrix:
data_mat = rbind(x,y)
* Matrix multiplication:
transformed = mat %*% data_mat
* Move origin to original position (after extraction from transformed):
X=x+origin_x
y=y+origin_y

Value

data.frame (tibble) with the new, transformed columns and the origin coordinates.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: cluster_groups(), dim_values(), expand_distances_each(), expand_distances(),
flip_values(), roll_values(),rotate_2d(), rotate_3d(), shear_2d(), shear_3d(), swirl_2d(),
swirl_3d()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

Set seed
set.seed(3)

Create a data frame
df <- data.frame(

"Xt = 1:12,

"y = 13:24,

center_max

Apply identity matrix
mat <- matrix(c(1, @, @, @, 1, @, @, @, 1), nrow = 3)
apply_transformation_matrix(

data = df,

mat = mat,

cols = c("x", "y", "z"y,
origin = c(0, 0, 9)

)

Apply rotation matrix

90 degrees around z-axis

Origin is the most centered point

mat <- matrix(c(o, 1, o, -1, @, @, @, @, 1), nrow = 3)
res <- apply_transformation_matrix(

data = df,

mat = mat,

cols = c("x", "y", "z"),
origin_fn = most_centered

)

Plot the rotation
z wasn't changed so we plot x and y
res %>%
ggplot(aes(x = x, y = y)) +
geom_point() +
geom_point(aes(x = x_transformed, y = y_transformed)) +
theme_minimal()

Apply rotation matrix to grouped data frame
Around centroids
Same matrix as before
res <- apply_transformation_matrix(
data = dplyr::group_by(df, g),

mat = mat,
cols = c("x", "y", "z"),
origin_fn = centroid

Plot the rotation
res %>%
ggplot(aes(x = x, y =y, color = g)) +
geom_point() +
geom_point(aes(x = x_transformed, y = y_transformed)) +
theme_minimal ()

center_max Centers the highest value with values decreasing around it

8 center_max

Description

Experimental

The highest value is positioned in the middle with the other values decreasing around it.
Example:

The column values:

c(1,2,3,4, 5)

are ordered as:

c(1,3, 5,4,2)

Usage

center_max(data, col = NULL, shuffle_sides = FALSE)

Arguments
data data.frame or vector.
col Column to create sorting factor by. When NULL and ‘data" is a data.frame,

the row numbers are used.

shuffle_sides Whether to shuffle which elements are left and right of the center. (Logical)

Value

The sorted data. frame (tibble) / vector.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other rearrange functions: center_min(), closest_to(), furthest_from(), pair_extremes(),
position_max(), position_min(), rev_windows(), roll_elements(), shuffle_hierarchy()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(

"index" = 1:10,
"A" = sample(1:10),
"B" = runif(10),
"C" = LETTERS[1:10],
"G" = c(

1, 1,1, 2, 2,

2, 3, 3, 3,3

)Y

center_min 9

stringsAsFactors = FALSE
)

Center by the index (row numbers)
center_max(df)

Center by each of the columns

center_max(df, col = "A")
center_max(df, col = "B")
center_max(df, col = "C")

Randomize which elements are left and right of the center
center_max(df, col = "A", shuffle_sides = TRUE)

Grouped by G

df %>%
dplyr::select(G, A) %>% # For clarity
dplyr::group_by(G) %>%
center_max(col = "A")

Plot the centered values
plot(x = 1:10, y = center_max(df, col = "B")$B)
plot(x = 1:10, y = center_max(df, col = "B", shuffle_sides = TRUE)$B)

center_min Centers the lowest value with values increasing around it

Description

Experimental

The lowest value is positioned in the middle with the other values increasing around it.
Example:

The column values:

c(1,2,3,4,5)

are ordered as:

c(5,3,1,2,4)

Usage

center_min(data, col = NULL, shuffle_sides = FALSE)

Arguments
data data.frame or vector.
col Column to create sorting factor by. When NULL and ‘data" is a data.frame,

the row numbers are used.

shuffle_sides Whether to shuffle which elements are left and right of the center. (Logical)

Value

The sorted data. frame (tibble) / vector.

10 center_min

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other rearrange functions: center_max(), closest_to(), furthest_from(), pair_extremes(),
position_max(), position_min(), rev_windows(), roll_elements(), shuffle_hierarchy()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(

"index" = 1:10,

"A" = sample(1:10),
"B" = runif(10),

"C" = LETTERS[1:101],
"G" = c(

’ ’ ’ ’

1,1, 1, 2, 2
2,3,3,3,3

’

),
stringsAsFactors = FALSE

)

Center by the index (row numbers)
center_min(df)

Center by each of the columns

center_min(df, col = "A")
center_min(df, col = "B")
center_min(df, col = "C")

Randomize which elements are left and right of the center
center_min(df, col = "A", shuffle_sides = TRUE)

Grouped by G

df %>%
dplyr::select(G, A) %>% # For clarity
dplyr::group_by(G) %>%
center_min(col = "A")

Plot the centered values
plot(x = 1:10, y = center_min(df, col = "B")$B)
plot(x = 1:10, y = center_min(df, col = "B", shuffle_sides = TRUE)$B)

centroid 11

centroid Find the coordinates for the centroid

Description

Experimental

Calculates the mean of each passed vector/column.

Usage
centroid(..., cols = NULL, na.rm = FALSE)
Arguments
Numeric vectors or a single data. frame.
cols Names of columns to use when *. .. " is a single data. frame.
na.rm Whether to ignore missing values when calculating means. (Logical)
Value

Means of the supplied vectors/columns. Either as a vector or a data. frame.

Author(s)
Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other coordinate functions: create_origin_fn(), is_most_centered(), midrange(), most_centered()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create three vectors
X <- runif(10)
y <- runif(10)
z <- runif(10)

Find centroid coordinates
Aka. the means of each vector
centroid(x, y, z)

#
For data.frames

#

Create data frame

12 circularize

df <- data.frame(

nyn _

X X,
"=y,
"= g,
"g" = rep(1:2, each = 5)

)

Find centroid coordinates
Aka. the means of each column

non non

centroid(df, cols = c("x", "y", "z"))

When 'df' is grouped

df %>%
dplyr::group_by(g) %>%
centroid(cols = c("x", "y", "z"))

circularize Create x-coordinates so the points form a circle

Description

Experimental
Create the x-coordinates for a vector of y-coordinates such that they form a circle.

This will likely look most like a circle when the y-coordinates are somewhat equally distributed,
e.g. a uniform distribution.

Usage
circularize(
data,
y_col = NULL,
.min = NULL,
.max = NULL,
offset_x = 0,
keep_original = TRUE,
x_col_name = ".circle_x",
degrees_col_name = ".degrees",
origin_col_name = ".origin",
overwrite = FALSE
)
Arguments
data data.frame or vector.
y_col Name of column in ‘data* with y-coordinates to create x-coordinates for.
.min Minimum y-coordinate. If NULL, it is inferred by the given y-coordinates.
.max Maximum y-coordinate. If NULL, it is inferred by the given y-coordinates.
offset_x Value to offset the x-coordinates by.

keep_original Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

circularize 13

x_col_name Name of new column with the x-coordinates.
degrees_col_name
Name of new column with the angles in degrees. If NULL, no column is added.

Angling is counterclockwise around (0,0) and starts at (max(x),).

origin_col_name
Name of new column with the origin coordinates (center of circle). If NULL, no
column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Value

data.frame (tibble) with the added x-coordinates and the angle in degrees.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other forming functions: hexagonalize(), square(), triangularize()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(purrr)
library(ggplot2)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"y" = runif(200),
"g" = factor(rep(1:5, each = 40))

)

Circularize 'y'

df_circ <- circularize(df, y_col = "y")
df_circ

Plot circle

df_circ %>%
ggplot(aes(x = .circle_x, y =y, color = .degrees)) +
geom_point() +
theme_minimal()

#
Grouped circularization
#

Circularize 'y' for each group
First cluster the groups a bit to move the
circles away from each other

circularize

df_circ <- df %>%
cluster_groups(
cols = "y",
group_cols = "g",
suffix = ""
overwrite = TRUE
) %>%
dplyr::group_by(g) %>%
circularize(
y_col = "y",
overwrite = TRUE

)

Plot circles

df_circ %>%
ggplot(aes(x = .circle_x, y =y, color = g)) +
geom_point() +
theme_minimal ()

#
Specifying minimum value
#

Specify minimum value manually
df_circ <- circularize(df, y_col = "y", .min = -2)
df_circ

Plot circle

df_circ %>%
ggplot(aes(x = .circle_x, y =y, color = .degrees)) +
geom_point() +
theme_minimal()

#
Multiple circles by contraction
#

Start by circularizing 'y'
df_circ <- circularize(df, y_col = "y")

Contract '.circle_x' and 'y' towards the centroid
To contract with multiple multipliers at once,
we wrap the call in purrr::map_dfr
df_expanded <- purrr::map_dfr(
x = 1:10 / 10,
.f = function(mult) {
expand_distances(
data = df_circ,
cols = c(".circle_x", "y"),
multiplier = mult,
origin_fn = centroid,
overwrite = TRUE
)
}

)
df_expanded

closest_to 15

df_expanded %>%

ggplot(aes(
X = .circle_x_expanded, y = y_expanded,
color = .degrees, alpha = .multiplier
N+

geom_point() +
theme_minimal ()

closest_to Orders values by shortest distance to an origin

Description

Experimental
Values are ordered by how close they are to the origin.

In 1d (when ‘cols" has length 1), the origin can be thought of as a target value. In n dimensions,
the origin can be thought of as coordinates.

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can
be useful when supplying a grouped data.frame and ordering the rows by their distance to the
centroid of each group.

The *_vec() version takes and returns a vector.
Example:

The column values:

c(1,2,3,4,5)

and origin=2

are ordered as:

c(2,1,3,4,5)

Usage

closest_to(
data,
cols = NULL,
origin = NULL,
origin_fn = NULL,
shuffle_ties = FALSE,

origin_col_name = ".origin",
distance_col_name = ".distance”,
overwrite = FALSE

closest_to_vec(data, origin = NULL, origin_fn = NULL, shuffle_ties = FALSE)

Arguments
data data.frame or vector.
cols Column(s) to create sorting factor by. When NULL and ‘data" is a data. frame,

the row numbers are used.

16 closest_to

origin Coordinates of the origin to calculate distances to. A scalar to use in all dimen-
sions or a vector with one scalar per dimension.

N.B. Ignored when “origin_fn" is not NULL.

origin_fn Function for finding the origin coordinates.
Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. “create_origin_fn(median) " would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange()

shuffle_ties = Whether to shuffle elements with the same distance to the origin. (Logical)
origin_col_name

Name of new column with the origin coordinates. If NULL, no column is added.
distance_col_name

Name of new column with the distances to the origin. If NULL, no column is
added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Value

The sorted data.frame (tibble) / vector.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other rearrange functions: center_max(), center_min(), furthest_from(), pair_extremes(),
position_max(), position_min(), rev_windows(), roll_elements(), shuffle_hierarchy()

Other distance functions: dim_values(), distance(), expand_distances_each(), expand_distances(),
furthest_from(), swirl_2d(), swirl_3d()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"index" = 1:10,
"A" = sample(1:10),
"B" = runif(10),
"G" = c(

1,1, 1, 2, 2
2,3,3,3,3

’

)?
stringsAsFactors = FALSE

closest_to 17

)

Closest to 3 in a vector
closest_to_vec(1:10, origin = 3)

Closest to the third row (index of data.frame)
closest_to(df, origin = 3)$index

By each of the columns

closest_to(df, cols = "A", origin = 3)$A

closest_to(df, cols = "A", origin_fn = most_centered)$A
closest_to(df, cols = "B"”, origin = 0.5)$B
closest_to(df, cols = "B", origin_fn = centroid)$B

Shuffle the elements with the same distance to the origin
closest_to(df,

cols = "A",

origin_fn = create_origin_fn(median),

shuffle_ties = TRUE
)$A

Grouped by G

df %>%
dplyr::select(G, A) %>% # For clarity
dplyr: :group_by(G) %>%
closest_to(

cols = "A",
origin_fn = create_origin_fn(median)
)
Plot the rearranged values
plot(
x = 1:10,
y = closest_to(df,
cols = "B",
origin_fn = create_origin_fn(median)
)$B,
xlab = "Position”,
ylab = "B”"
)
plot(
x = 1:10,
y = closest_to(df,
cols = "A",

origin_fn = create_origin_fn(median),
shuffle_ties = TRUE

)$Ay
xlab = "Position”,
ylab = "A”"

)

In multiple dimensions
df %>%
closest_to(cols = c("A", "B"), origin_fn = most_centered)

18

cluster_groups

cluster_groups

Move data points into clusters

Description

Experimental

Transform values such that the elements in each group move closer to their centroid.

Usage

cluster_groups(

data,
cols,
group_cols =
scale_min_fn
scale_max_fn

NULL,
= function(x) { quantile(x, 0.025) 3},
= function(x) { quantile(x, 0.975) 3},

keep_centroids = FALSE,

multiplier = 9.05,
suffix = "_clustered”,
keep_original = TRUE,
overwrite = FALSE
)
Arguments
data data.frame. If *group_cols" is NULL, it must be grouped with dplyr: :group_by ().
cols Names of columns in *data" to mutate. Each column is considered a dimension
to contract distances in.
group_cols Names of grouping columns in ‘data‘. Must be distinct from the names in

‘cols®.
If NULL and “data" is grouped, those groups are used instead.

scale_min_fn, scale_max_fn

keep_centroids

multiplier

suffix

keep_original

overwrite

Function to find the minimum/maximum value in the original data when rescal-
ing the contracted data.

Input: A numeric vector.
Output: A numeric scalar.

Whether to ensure the clusters have their original centroids. (Logical)

Numeric constant to multiply the distance to the group centroid by. A smaller
value makes the clusters more compact and vice versa.

Suffix to add to the names of the generated columns.
Use an empty string (i.e. "") to overwrite the original columns.
Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

Whether to allow overwriting of existing columns. (Logical)

cluster_groups 19

Details

 Contracts the distance from each data point to the centroid of its group.
* Performs MinMax scaling such that the scale of the data points is similar to the original data.

* If enabled (not default), the centroids are moved to the original centroids.

Value

data.frame (tibble) with the clustered columns.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: apply_transformation_matrix(), dim_values(), expand_distances_each(),
expand_distances(), flip_values(), roll_values(), rotate_2d(), rotate_3d(), shear_2d(),
shear_3d(), swirl_2d(), swirl_3d()

Other clustering functions: generate_clusters(), transfer_centroids()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

Set seed
set.seed(2)

Create a data frame
df <- data.frame(
"x" = runif(50),
" = runif(50),
" = runif(50),
" = rep(c(1, 2, 3, 4, 5), each = 10)

e N <
|

)

Move the data points into clusters
cluster_groups(df,
cols = c("x", "y"),
group_col = "g"
)
cluster_groups(df,
cols = c("x", "y"),
group_col = "g",
multiplier = 0.1
)
cluster_groups(df,
cols = c("x"),
group_col = "g",
multiplier = 0.1

)

#

20

Plotting clusters
#

Cluster x and y for each group in g
df_clustered <- cluster_groups(

data = df,
cols = c("x", "y"),
group_col = "g"

)

Plot the clusters over the original data points
As we work with random data, the cluster might overlap
ggplot(

df_clustered,

aes(x = x_clustered, y = y_clustered, color = factor(g))
)+

Original data

geom_point(aes(x = x, y = y), alpha = 0.3, size = 0.8) +

Clustered data

geom_point() +

theme_minimal() +

labs(x = "x", y = "y", color = "g")

ETS

Maintain original group centroids

df_clustered <- cluster_groups(
data = df,
cols = c("x", "y"),

group_col = "g",
keep_centroids = TRUE

Plot the clusters over the original data points
As we work with random data, the cluster might overlap
ggplot(

df_clustered,

aes(x = x_clustered, y = y_clustered, color = factor(g))
)+

Original data

geom_point(aes(x = x, y = y), alpha = 0.3, size = 0.8) +

Clustered data

geom_point() +

theme_minimal() +

labs(x = "x", y = "y", color = "g")

#
Three dimensions
#

Cluster in 3d

df_clustered <- cluster_groups(
data = df,
cols = c("x", "y", "z"),

group_col = "g
)

cluster_groups

create_dimming_fn 21

Not run:
Plot 3d with plotly
plotly::plot_ly(
x = df_clustered$x_clustered,
y = df_clustered$y_clustered,
z = df_clustered$z_clustered,
type = "scatter3d”,
mode = "markers”,
color = df_clustereds$g
)

End(Not run)

create_dimming_fn Create dimming_fn function

Description

Experimental

Creates a function that takes 2 inputs (*x*, *d*) and performs the operation:

x * (numerator /((addiogistance + d)°xzponent))

Here, *x" is the current value and “d" is its distance to an origin. The greater the distance, the more
we will dim the value of *x*.

With the default values, the returned function is:

function(x,d){
x* (17 (1 +d) *2))

b

Usage

create_dimming_fn(numerator = 1, exponent = 2, add_to_distance = 1)

Arguments
numerator The numerator. Defaults to 1.
exponent The exponent. Defaults to 2.

add_to_distance
Constant to add to the distance before exponentiation. Ensures dimming even
when the distance (d) is below 1. Defaults to 1.

Value

Function with the arguments x and d, with both expected to be numeric vectors. More specifically:
function(x,d){
x * (numerator / ((add_to_distance +d) * exponent))

b

22 create_n_fn

Author(s)
Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other function creators: create_n_fn(), create_origin_fn()

Examples

Attach packages
library(rearrr)
library(ggplot2)

Set seed
set.seed(1)

Create two vectors
x <= runif(10)
d <- runif(10, max = 0.5)

Create dimming_fn with an add_to_distance of @

Note: In practice this risks zero-division
non_smoothed_dimming_fn <- create_dimming_fn(add_to_distance = @)
non_smoothed_dimming_fn
as.list(environment(non_smoothed_dimming_fn))

Use median_origin_fn
non_smoothed_dimming_fn(x, d)

Plotting the dimming

Create data.frame with distance-based dimming
df <- data.frame(
IIXH = ‘I’
"d” = 1:10
)
df$x_dimmed <- non_smoothed_dimming_fn(dfx, dfd)

Plot the dimming

ggplot(df, aes(x=d, y=x_dimmed)) +
geom_point() +
geom_line() +
theme_minimal()

create_n_fn Create n_fn function

Description

Experimental

Creates a function that applies a supplied function to all input vectors, or their indices, and rounds
the results.

As used with roll_elements(). E.g. to find the the median index in a subset of a grouped
data.frame.

create_n_fn 23

Usage
create_n_fn(fn, use_index = FALSE, negate = FALSE, round_fn = round, ...)
Arguments
fn Function to apply to each dimension. Should return a numeric scalar.
use_index Whether to apply *fn" to the indices of the vectors. (Logical)
The indices are created with seq_along(x).
negate Whether to negate the result. L.e. to multiply it with -1. (Logical)
round_fn Function for rounding results of *fn*.
Rounding is done prior to negation.
E.g. round, floor, or ceiling.
To avoid rounding, supply identity.
Arguments for *fn*. E.g. *na.rm=TRUE".
Value

Function with the dots (*. .. ") argument that applies the *fn* function to each element in *..."
(or indices thereof) (usually one vector per dimension). The results are rounded with *round_fn*.

Note: The dots argument in the generated function should not to be confused with the dots argument
in create_n_fn()).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other n functions: median_index()

Other function creators: create_dimming_fn(), create_origin_fn()

Examples

Attach packages
library(rearrr)

Set seed
set.seed(1)

Create three vectors
<- runif(10)
<- runif(10)
<- runif(10)

N < X #

Create n_fn that gets the median index
and rounds down with floor()
median_index_fn <- create_n_fn(median, use_index = TRUE, round_fn = floor)

Use median_index_fn
median_index_fn(x, y, z)

Create n_fn that gets the median of each dimension

24 create_origin_fn

median_n_fn <- create_n_fn(median)

Use median_origin_fn
median_n_fn(x, y, z)

Should be the same as
round(c(median(x), median(y), median(z)))

Use mean and ignore missing values
mean_n_fn <- create_n_fn(mean, na.rm = TRUE)

Add missing values
x[[2]] <= NA
y[[5]1] <- NA

Use mean_n_fn
mean_n_fn(x, y, z)

Should be the same as
round(c(
mean(x, na.rm = TRUE),
mean(y, na.rm = TRUE),
mean(z, na.rm = TRUE)

)

create_origin_fn Create origin_fn function

Description

Experimental

Creates a function that applies a supplied function to all input vectors.

Usage
create_origin_fn(fn, ...)
Arguments
fn Function to apply to each dimension. Should return a numeric scalar.
Arguments for *fn*. E.g. *na.rm=TRUE".
Value

Function with the dots (. . .) argument that applies the *fn" function to each element in .
one vector per dimension).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

.. (usually

degrees_to_radians 25

See Also

Other coordinate functions: centroid(), is_most_centered(), midrange(), most_centered()

Other function creators: create_dimming_fn(), create_n_fn()

Examples

Attach packages
library(rearrr)

Set seed
set.seed(1)

Create three vectors
<- runif(10)
<- runif(10)
<- runif(10)

N < X #

Create origin_fn that gets the median of each dimension
median_origin_fn <- create_origin_fn(median)

Use median_origin_fn
median_origin_fn(x, y, z)

Should be the same as
c(median(x), median(y), median(z))

Use mean and ignore missing values
mean_origin_fn <- create_origin_fn(mean, na.rm = TRUE)

Add missing values
x[[2]] <= NA
y[[511 <- NA

Use mean_origin_fn
mean_origin_fn(x, y, z)

Should be the same as
c(mean(x, na.rm = TRUE),
mean(y, na.rm = TRUE),
mean(z, na.rm = TRUE)

)

degrees_to_radians Conversion between radians and degrees

Description

Experimental

Convert degrees to radians or radians to degrees.

26

Usage

degrees_to_
radians_to_
Arguments

degrees

radians

Value

radians(degrees)

degrees(radians)

vector of degrees to convert to radians with
‘degrees x (w/180)
vector of radians to convert to degrees with

‘radians‘/(m/180)

vector with converted degrees/radians.

Missing value

Author(s)

s (NAs) are returned as they are.

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

Examples

Attach packages
library(rearrr)
library(dplyr)

Degrees to

radians

degrees_to_radians(c(90, 180, 270))

Radians to

degrees

radians_to_degrees(c(pi / 2, pi, 1.5 * pi))

Get back the original degrees
radians_to_degrees(degrees_to_radians(c(90, 180, 270)))

dim_values

dim_values

Dim values of a dimension based on the distance to an n-dimensional

origin

Description

Experimental

Dims the values in the dimming dimension (last by default) based on the data point’s distance to the

origin.

Distance is cal

culated as:

d(P1,P2) = sqrt((z2 — 21)® + (y2 — y1)® + (22 — 21)* + ...)

dim_values 27

The default *dimming_fn* multiplies by the inverse-square of 1 + distance and is calculated as:

dimmingsn(z,d) =z« (1/(1+ d)?)

Where z is the value in the dimming dimension. The +1 is added to ensure that values are dimmed
even when the distance is below 1. The quickest way to change the exponent or the +1 is with
create_dimming_fn().

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can be
useful when supplying a grouped data. frame and dimming around e.g. the centroid of each group.

Usage

dim_values(
data,
cols,
dimming_fn = create_dimming_fn(numerator = 1, exponent = 2, add_to_distance = 1),
origin = NULL,
origin_fn = NULL,
dim_col = tail(cols, 1),

suffix = "_dimmed”,
keep_original = TRUE,
origin_col_name = ".origin",
overwrite = FALSE
)
Arguments
data data.frame or vector.
cols Names of columns in *data" to calculate distances from. The dimming column
(*dim_col") is dimmed based on all the columns. Each column is considered a
dimension.
N.B. when the dimming dimension is included in “cols®, it is used in the dis-
tance calculation as well.
dimming_fn Function for calculating the dimmed values.
Input: Two (2) input arguments:
1. A numeric vector with the values in the dimming dimension.
2. A numeric vector with corresponding distances to the origin.
Output: A numeric vector with the same length as the input vectors.
E.g.:
function(x,d){
x*x (17 CQ1+d)*2))
3
This kind of dimming function can be created with create_dimming_fn(),
which for instance makes it easy to change the exponent (the 2 above).
origin Coordinates of the origin to dim around. A scalar to use in all dimensions or a
vector with one scalar per dimension.
N.B. Ignored when “origin_fn" is not NULL.
origin_fn Function for finding the origin coordinates.

Input: Each column will be passed as a vector in the order of *cols".

28 dim_values

Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. “create_origin_fn(median)* would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange ()

dim_col Name of column to dim. Default is the last column in “cols*.
When the “*dim_col" is not present in ‘cols®, it is not used in the distance
calculation.

suffix Suffix to add to the names of the generated columns.

nn

Use an empty string (i.e. "") to overwrite the original columns.

keep_original Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Details

* Calculates distances to origin with:
d(P1, P2) = sqrt((x2 — x1)* + (y2 — y1)* + (22 — 21)* + ...)

* Applies the *dimming_fn" to the *dim_col" based on the distances.

Value

data.frame (tibble) with the dimmed column, along with the origin coordinates.

Author(s)
Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), expand_distances_each(),
expand_distances(), flip_values(), roll_values(), rotate_2d(), rotate_3d(), shear_2d(),
shear_3d(), swirl_2d(), swirl_3d()

Other distance functions: closest_to(), distance(), expand_distances_each(), expand_distances(),
furthest_from(), swirl_2d(), swirl_3d()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(purrr)
library(ggplot2)

Set seed
set.seed(7)

dim_values

Create a data frame with clusters
df <- generate_clusters(
num_rows = 70,
num_cols = 3,
num_clusters = 5,
compactness = 1.6
) %>%
dplyr::rename(x = D1, y = D2, z = D3) %>%
dplyr::mutate(o = 1)

Dim the values in the z column
dim_values(

data = df,
CO]_S = C("X”, Ilyll, "Z"),
origin = c(0.5, 0.5, 0.5)

)

Dim the values in the ‘o' column (all 1s)
around the centroid
dim_values(

data = df,

COlS = C("X”, Hy”)’
dim_col = "o",
origin_fn = centroid

)

Specify dimming_fn
around the centroid
dim_values(

data = df,
COlS = C(HX”’ Hy”)’
dim_col = "o",

origin_fn = centroid,
dimming_fn = function(x, d) {
x* 1/ Q1 +d))
}
)

#
Dim cluster-wise
#

Group-wise dimming
df_dimmed <- df %>%
dplyr::group_by(.cluster) %>%
dim_values(
cols = c("x", "y"),
dim_col = "o",
origin_fn = centroid

)

Plot the dimmed data such that the alpha (opacity) is
controlled by the dimming
(Note: This works because the ‘o' column is 1 for all values)
ggplot(
data = df_dimmed,
aes(x = x, y =y, alpha = o_dimmed, color = .cluster)

29

30 distance

)+
geom_point() +
theme_minimal() +
labs(x = "x", y = "y", color = "Cluster”, alpha = "o_dimmed")

distance Calculate the distance to an origin

Description

Experimental

Calculates the distance to the specified origin with:
d(P1,P2) = sqrt((22 — 21)® + (y2 — y1)? + (22 — 21)* + ...)

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can be
useful when supplying a grouped data.frame and finding the distance to e.g. the centroid of each

group.

Usage

distance(
data,
cols = NULL,
origin = NULL,
origin_fn = NULL,

distance_col_name = ".distance”,
origin_col_name = ".origin",
overwrite = FALSE
)
Arguments
data data.frame or vector.
cols Names of columns in *data" to measure distance in. Each column is considered
a dimension.
origin Coordinates of the origin to calculate distances to. A scalar to use in all dimen-
sions or a vector with one scalar per dimension.
N.B. Ignored when “origin_fn" is not NULL.
origin_fn Function for finding the origin coordinates.

Input: Each column will be passed as a vector in the order of *cols".
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-

tion to each dimension.

E.g. “create_origin_fn(median)" would find the median of each column.

Built-in functions are centroid(), most_centered(), and midrange()
distance_col_name

Name of new column with the distances.
origin_col_name

Name of new column with the origin coordinates. If NULL, no column is added.
overwrite Whether to allow overwriting of existing columns. (Logical)

expand_distances 31

Value

data.frame (tibble) with the additional columns (distances and origin coordinates).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other measuring functions: angle(), vector_length()

Other distance functions: closest_to(), dim_values(), expand_distances_each(), expand_distances(),
furthest_from(), swirl_2d(), swirl_3d()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"x" = runif(20),
"y runif(20),

g" = rep(1:4, each = 5)
)

Calculate distances in the two dimensions (x and y)
With the origin at x=0.5, y=0.5
distance(
data = df,
cols = c("x", "y"),
origin = c(0.5, 0.5)
)

Calculate distances to the centroid for each group in
distance(

data = dplyr::group_by(df, g),

cols = c("x", "y"),

origin_fn = centroid

)

g

expand_distances Expand the distances to an origin

Description

Experimental

Moves the data points in n-dimensional space such that their distance to a specified origin is in-
creased/decreased. A “multiplier® greater than 1 leads to expansion, while a positive *multiplier®
lower than 1 leads to contraction.

32

expand_distances

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can
be useful when supplying a grouped data.frame and expanding around e.g. the centroid of each

group.

The multiplier/exponent can be supplied as a constant or as a function that returns a constant. The
latter can be useful when supplying a grouped data. frame and the multiplier/exponent depends on
the data in the groups.

For expansion in each dimension separately, use expand_distances_each().

NOTE: When exponentiating, the default is to first add 1 to the distances, to ensure expansion
even when the distance is between @ and 1. If you need the purely exponentiated distances, disable

“add_one_exp*.

Usage

expand_distances(
data,
cols = NULL,
multiplier = NULL,
multiplier_fn = NULL,
origin = NULL,
origin_fn = NULL,
exponentiate = FALSE,
add_one_exp = TRUE,
suffix = "_expanded”,
keep_original = TRUE,
mult_col_name = ifelse(isTRUE(exponentiate), ".exponent”, ".multiplier"),
origin_col_name = ".origin",
overwrite = FALSE

)

Arguments
data data.frame or vector.
cols Names of columns in “data" to expand coordinates of. Each column is consid-
ered a dimension.
multiplier Constant to multiply/exponentiate the distances to the origin by.

multiplier_fn

origin

origin_fn

N.B. When “exponentiate" is TRUE, the *‘multiplier® becomes an exponent.

Function for finding the *multiplier®.

Input: Each column will be passed as a vector in the order of *cols"*.
Output: A numeric scalar.

Coordinates of the origin to expand around. A scalar to use in all dimensions or
a vector with one scalar per dimension.

N.B. Ignored when ‘origin_fn" is not NULL.

Function for finding the origin coordinates.
Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. “create_origin_fn(median)* would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange ()

expand_distances 33

exponentiate Whether to exponentiate instead of multiplying. (Logical)

add_one_exp Whether to add 1 to the distances before exponentiating to ensure they don’t
contract when between @ and 1. The added value is subtracted after the expo-
nentiation. (Logical)
The distances to the origin (*d*) are exponentiated as such:
d<-d+1
d<-d *multiplier
d<-d-1
N.B. Ignored when “exponentiate" is FALSE.
suffix Suffix to add to the names of the generated columns.

nn

Use an empty string (i.e. "") to overwrite the original columns.

keep_original Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

mult_col_name Name of new column with the ‘multiplier®. If NULL, no column is added.
origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Details

Increases the distance to the origin in n-dimensional space by multiplying or exponentiating it by
the multiplier.

We first move the origin to the zero-coordinates (e.g. c(@,@,0)) and normalize each vector to unit
length. We then multiply this unit vector by the multiplied/exponentiated distance and moves the
origin back to its original coordinates.

The distance to the specified origin is calculated with:
d(P1, P2) = sqrt((x2 — x1)® + (y2 — y1)* + (22 — 21)* + ...)

Note: By default (when *add_one_exp* is TRUE), we add 1 to the distance before the exponentiation
and subtract it afterwards. See “add_one_exp"*.

Value
data.frame (tibble) with the expanded columns, along with the applied multiplier/exponent and
origin coordinates.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances_each(), flip_values(), roll_values(), rotate_2d(), rotate_3d(), shear_2d(),
shear_3d(), swirl_2d(), swirl_3d()

Other expander functions: expand_distances_each()

Other distance functions: closest_to(), dim_values(), distance(), expand_distances_each(),
furthest_from(), swirl_2d(), swirl_3d()

34

Examples

Attach packages
library(rearrr)
library(dplyr)
library(purrr)
library(ggplot2)

Set seed
set.seed(1)

Create a data frame

df <-
nyn
Ilyll
ng
)

Expand distances in the two dimensions (x and y)
With the origin at x=0.5, y=0.5

We multiply the distances by 2
expand_distances(

data

cols =

origin = c(0.5, 0.5)

Expand distances in the two dimensions (x and y)
With the origin at x=0.5, y=0.5

We exponentiate the distances by 2
expand_distances(

data.frame(

runif(20),
runif(20),

rep(1:4, each = 5)

df,

C(HX“, Ilyll),
multiplier = 2,

data = df,

cols = c("x", "y"),
multiplier = 2,
exponentiate = TRUE,
origin = 0.5

Expand values in one dimension (x)
With the origin at x=0.5

We exponentiate the distances by 3
expand_distances(

cols

data =

df,
C("X”),

multiplier = 3,
exponentiate =
origin = 0.5

T

TRUE,

Expand x and y around the centroid

We use exponentiation for a more drastic effect
The add_one_exp makes sure it expands

even when x or y is in the range [0, <1]

To compare multiple exponents, we wrap the

call in purrr::map_dfr

df_expanded <- purrr::map_dfr(

expand_distances

expand_distances 35

.x =c(1, 3, 5),
.f = function(exponent) {
expand_distances(
data = df,
cols = c("x", "y"),

multiplier = exponent,
origin_fn = centroid,
exponentiate = TRUE,
add_one_exp = TRUE
)
}

)
df_expanded

Plot the expansions of x and y around the overall centroid
ggplot(df_expanded, aes(x = x_expanded, y = y_expanded, color = factor(.exponent))) +
geom_vline(
xintercept = df_expanded[[".origin"]1[[111C[11],
size = 0.2, alpha = .4, linetype = "dashed"
) +
geom_hline(
yintercept = df_expanded[[".origin"]]1[[1]1[[2]],
size = 0.2, alpha = .4, linetype = "dashed”
) +
geom_path(size = 0.2) +
geom_point() +
theme_minimal() +
labs(x = "x", y = "y", color = "Exponent")

Expand x and y around the centroid using multiplication
To compare multiple multipliers, we wrap the
call in purrr::map_dfr
df_expanded <- purrr::map_dfr(
.x =c(1, 3, 5),
.f = function(multiplier) {
expand_distances(df,
cols = c("x", "y"),
multiplier = multiplier,
origin_fn = centroid,
exponentiate = FALSE
)
}

)
df_expanded

Plot the expansions of x and y around the overall centroid
ggplot(df_expanded, aes(x = x_expanded, y = y_expanded, color = factor(.multiplier))) +
geom_vline(
xintercept = df_expanded[[".origin"]]1[[1]]C[1]],
size = 0.2, alpha = .4, linetype = "dashed"
) +
geom_hline(
yintercept = df_expanded[[".origin"]][[1]11[[2]1],
size = 0.2, alpha = .4, linetype = "dashed”
) +
geom_path(size = 0.2, alpha = .8) +
geom_point() +

36

expand_distances_each
theme_minimal() +
labs(x = "x", y = "y", color = "Multiplier”)
#
Contraction
#

Group-wise contraction to create clusters
df_contracted <- df %>%
dplyr::group_by(g) %>%
expand_distances(
cols = c("x", "y"),
multiplier = 0.07,
suffix = "_contracted”,
origin_fn = centroid

)

Plot the clustered data point on top of the original data points
ggplot(df_contracted, aes(x = x_contracted, y = y_contracted, color = factor(g))) +
geom_point(aes(x = x, y =y, color = factor(g)), alpha = 0.3, shape = 16) +
geom_point() +
theme_minimal() +
labs(x = "x", y = "y", color = "g")

expand_distances_each Expand the distances to an origin in each dimension

Description

Experimental

Moves the data points in n-dimensional space such that their distance to the specified origin is
increased/decreased in each dimension separately. A *multiplier® greater than 1 leads to expan-
sion, while a positive *multiplier® lower than 1 leads to contraction.

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can
be useful when supplying a grouped data. frame and expanding around e.g. the centroid of each
group.

The multipliers/exponents can be supplied as constant(s) or as a function that returns constants. The
latter can be useful when supplying a grouped data. frame and the multiplier/exponent depends on
the data in the groups. If supplying multiple constants, there must be one per dimension (length of
‘cols?t).

For expansion of the multidimensional distance, use expand_distances().

NOTE: When exponentiating, the default is to first add 1 or -1 (depending on the sign of the
distance) to the distances, to ensure expansion even when the distance is between -1 and 1. If you
need the purely exponentiated distances, disable *add_one_exp".

Usage

expand_distances_each(
data,
cols = NULL,

multipliers = NULL,

expand_distances_each 37

multipliers_fn = NULL,
origin = NULL,
origin_fn = NULL,
exponentiate = FALSE,
add_one_exp = TRUE,

suffix = "_expanded”,
keep_original = TRUE,
mult_col_name = ifelse(isTRUE(exponentiate), ".exponents”, ".multipliers”),
origin_col_name = ".origin",
overwrite = FALSE

)

Arguments
data data.frame or vector.
cols Names of columns in “data" to expand. Each column is considered a dimension
to expand in.
multipliers Constant(s) to multiply/exponentiate the distance to the origin by. A scalar to

use in all dimensions or a vector with one scalar per dimension.

N.B. When ‘exponentiate" is TRUE, the *‘multipliers" become exponents.

multipliers_fn Function for finding the *‘multipliers®.
Input: Each column will be passed as a vector in the order of *cols"*.
Output: A numeric vector with one element per dimension.
Just as for “origin_fn*, it can be created with create_origin_fn() if you
want to apply the same function to each dimension. See *origin_fn".

origin Coordinates of the origin to expand around. A scalar to use in all dimensions or
a vector with one scalar per dimension.
N.B. Ignored when *origin_fn" is not NULL.

origin_fn Function for finding the origin coordinates.
Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. *create_origin_fn(median)* would find the median of each column.

Built-in functions are centroid(), most_centered(), and midrange()

exponentiate Whether to exponentiate instead of multiplying. (Logical)

add_one_exp Whether to add the sign (either 1 or -1) before exponentiating to ensure the
values don’t contract. The added value is subtracted after the exponentiation.
(Logical)

Exponentiation becomes:

X <-x +sign(x)

x <-sign(x) * abs(x) *multiplier

X <-x -sign(x)

N.B. Ignored when “exponentiate® is FALSE.
suffix Suffix to add to the names of the generated columns.

Use an empty string (i.e. "") to overwrite the original columns.

38 expand_distances_each

keep_original Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

mult_col_name Name of new column with the multiplier(s). If NULL, no column is added.
origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Details

For each value of each dimension (column), either multiply or exponentiate by the multiplier:
#Multiplication

x<-x *multiplier

Exponentiation

x <-sign(x) * abs(x) *multiplier

Note: By default (when “add_one_exp" is TRUE), we add the sign (1 / -1) of the value before the
exponentiation and subtract it afterwards. See “add_one_exp*.

Value

data.frame (tibble) with the expanded columns, along with the applied multiplier/exponent and
origin coordinates.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances(), flip_values(), roll_values(), rotate_2d(), rotate_3d(), shear_2d(),
shear_3d(), swirl_2d(), swirl_3d()

Other expander functions: expand_distances()

Other distance functions: closest_to(), dim_values(), distance(), expand_distances(),
furthest_from(), swirl_2d(), swirl_3d()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(purrr)
library(ggplot2)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"x" = runif(20),
"y" = runif(20),

expand_distances_each

"g" = rep(1:4, each = 5)

Expand values in the two dimensions (x and y)
With the origin at x=0.5, y=0.5
We expand x by 2 and y by 4
expand_distances_each(

data = df,

cols = c("x", "y"),

multipliers = c(2, 4),

origin = c(0.5, 0.5)

Expand values in the two dimensions (x and y)
With the origin at x=0.5, y=0.5
We expand both by 3
expand_distances_each(
data = df,
cols = c("x", "y"),
multipliers = 3,
origin = 0.5

Expand values in one dimension (x)
With the origin at x=0.5
We expand by 3
expand_distances_each(

data = df,

cols = c("x"),

multipliers = 3,

origin = 0.5

)

Expand x and y around the centroid

We use exponentiation for a more drastic effect
The add_one_exp makes sure it expands

even when x or y is in the range [>-1, <1]

To compare multiple exponents, we wrap the

call in purrr::map_dfr

df_expanded <- purrr: :map_dfr(
.x = c(1, 2.0, 3.0, 4.0),
.f = function(exponent) {
expand_distances_each(
data = df,
cols = c("x", "y"),
multipliers = exponent,
origin_fn = centroid,
exponentiate = TRUE,
add_one_exp = TRUE
)
}

)
df_expanded

Plot the expansions of x and y around the overall centroid
ggplot(df_expanded, aes(x = x_expanded, y = y_expanded, color = factor(.exponents))) +
geom_vline(

40

xintercept = df_expanded[[".origin”]]1[[11IC[1]1],
size = 0.2, alpha = .4, linetype = "dashed”
) +
geom_hline(
yintercept = df_expanded[[".origin"]][[1]][[2]],
size = 0.2, alpha = .4, linetype = "dashed”
) +
geom_point() +
theme_minimal() +
labs(x = "x", y = "y", color = "Exponent”)
Expand x and y around the centroid using multiplication
To compare multiple multipliers, we wrap the
call in purrr::map_dfr
df_expanded <- purrr::map_dfr(
.x =c(1, 2.0, 3.0, 4.0),
.f = function(multiplier) {
expand_distances_each(df,
cols = c("x", "y"),
multipliers = multiplier,
origin_fn = centroid,
exponentiate = FALSE
)
}

)
df_expanded

Plot the expansions of x and y around the overall centroid
ggplot(df_expanded, aes(x = x_expanded, y = y_expanded, color
geom_vline(
xintercept = df_expanded[[".origin"]]1[[1]]C[1]],
size = 0.2, alpha = .4, linetype = "dashed"
) +
geom_hline(
yintercept = df_expanded[[".origin"]I[[1]][[2]],
size = 0.2, alpha = .4, linetype = "dashed”
) +
geom_point() +
theme_minimal() +
labs(x = "x", y = "y", color = "Multiplier"”)
Expand x and y with different multipliers
around the centroid using multiplication
df_expanded <- expand_distances_each(
df,
cols = c("x", "y"),
multipliers = c(1.25, 10),
origin_fn = centroid,
exponentiate = FALSE
)
df_expanded

Plot the expansions of x and y around the overall centroid
Note how the y axis is expanded a lot more than the x-axis
ggplot(df_expanded, aes(x = x_expanded, y = y_expanded)) +
geom_vline(
xintercept = df_expanded[[".origin"]]1[[1]1C[1]],

expand_distances_each

factor(.multipliers))) +

flip_values 41

size = 0.2, alpha = .4, linetype = "dashed”

) +

geom_hline(
yintercept = df_expanded[[".origin"]]1[[1]1[[2]],
size = 0.2, alpha = .4, linetype = "dashed"

) +

geom_line(aes(color = "Expanded")) +
geom_point(aes(color = "Expanded")) +
geom_line(aes(x = x, y =y, color = "Original”)) +
geom_point(aes(x = x, y =y, color = "Original”)) +

theme_minimal() +
labs(x = "x", y = "y", color = "Multiplier")

#
Contraction
#

Group-wise contraction to create clusters
df_contracted <- df %>%
dplyr::group_by(g) %>%
expand_distances_each(
cols = c("x", "y"),
multipliers = 0.07,
suffix = "_contracted”,
origin_fn = centroid

)

Plot the clustered data point on top of the original data points
ggplot(df_contracted, aes(x = x_contracted, y = y_contracted, color = factor(g))) +
geom_point(aes(x = x, y =y, color = factor(g)), alpha = 0.3, shape = 16) +
geom_point() +
theme_minimal() +
labs(x = "x", y = "y", color = "g")

flip_values Flip the values around an origin

Description

Experimental

The values are flipped with the formula ‘cz = 2 % ¢ — a‘ where x is the value and c is the origin
coordinate to flip the values around.

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can be
useful when supplying a grouped data. frame and flipping around e.g. the centroid of each group.
By default the median value in each dimension is used.

The x_vec() version take and return a vector.
Example:

The column values:

c(5,2,7,4,3,1)

and the origin_fn =create_origin_fn(median)
Changes the values to :

c(2,5,0,3,4,6)

42 flip_values
Usage
flip_values(
data,
cols = NULL,
origin = NULL,
origin_fn = create_origin_fn(median),
suffix = "_flipped”,
keep_original = TRUE,
origin_col_name = ".origin",
overwrite = FALSE
)
flip_values_vec(data, origin = NULL, origin_fn = create_origin_fn(median))
Arguments
data data.frame or vector.
cols Names of columns in “data* to flip values of.
origin Coordinates of the origin to flip around. A scalar to use in all dimensions
(columns) or a vector with one scalar per dimension.
N.B. Ignored when “origin_fn" is not NULL. Remember to set it to NULL when
passing origin coordinates manually!
origin_fn Function for finding the origin coordinates.
Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.
Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.
E.g. “create_origin_fn(median)* would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange ()
suffix Suffix to add to the names of the generated columns.
Use an empty string (i.e. "") to overwrite the original columns.
keep_original Whether to keep the original columns. (Logical)
Some columns may have been overwritten, in which case only the newest ver-
sions are returned.
origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.
overwrite Whether to allow overwriting of existing columns. (Logical)
Author(s)
Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>
See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances_each(), expand_distances(), roll_values(), rotate_2d(), rotate_3d(),
shear_2d(), shear_3d(), swirl_2d(), swirl_3d()

flip_values
Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

Set seed
set.seed(1)

Create a data frame

df <- data.frame(
"Index” = 1:10,
"A" = sample(1:10),
"B" = runif(10),
"G" = c(

1, 1,1, 2, 2,

2, 3, 3, 3,3

)Y

stringsAsFactors = FALSE

)

Flip values of the columns
flip_values(df$A)
flip_values(df, cols "A")
flip_values(df, cols = "B", origin = 0.3, origin_fn = NULL, keep_original = FALSE)
flip_values(df,

cols = c("A", "B"),

origin = c(3, 0.3),

origin_fn = NULL,

suffix = "",

keep_original = FALSE,

overwrite = TRUE
)

flip_values(df, cols = c("A", "B"), origin_fn = create_origin_fn(max))

Grouped by G
df %>%
dplyr::group_by(G) %>%
flip_values(
cols = c("A", "B"),
origin_fn = create_origin_fn(median),
keep_original = FALSE
)

Plot A and flipped A

First flip A around the median and then around the value 3.
df <- df %%
flip_values(cols = "A", suffix = "_flip_median”, origin_col_name = NULL) %>%
flip_values(cols = "A", suffix = "_flip_3", origin = 3,
origin_fn = NULL, origin_col_name = NULL)

Plot A and A flipped around its median
ggplot(df, aes(x = Index, y = A)) +
geom_line(aes(color = "A")) +
geom_line(aes(y = A_flip_median, color = "Flipped A (median)")) +

44 furthest_from

geom_hline(aes(color = "Median A", yintercept = median(A))) +
theme_minimal()

Plot A and A flipped around the value 3
ggplot(df, aes(x = Index, y = A)) +

geom_line(aes(color = "A")) +
geom_line(aes(y = A_flip_3, color = "Flipped A (3)")) +
geom_hline(aes(color = "3", yintercept = 3)) +

theme_minimal()

furthest_from Orders values by longest distance to an origin

Description

Experimental
Values are ordered by how far they are from the origin.

In 1d (when “cols" has length 1), the origin can be thought of as a target value. In n dimensions,
the origin can be thought of as coordinates.

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can
be useful when supplying a grouped data.frame and ordering the rows by their distance to the
centroid of each group.

The x_vec() version takes and returns a vector.
Example:

The column values:

c(1,2,3,4,5)

and origin=2

are ordered as:

c(5,4,1,3, 2)
Usage
furthest_from(
data,
cols = NULL,

origin = NULL,
origin_fn = NULL,
shuffle_ties = FALSE,

origin_col_name = ".origin",
distance_col_name = ".distance”,
overwrite = FALSE

furthest_from_vec(data, origin = NULL, origin_fn = NULL, shuffle_ties = FALSE)

furthest_from 45

Arguments

data data.frame or vector.

cols Column(s) to create sorting factor by. When NULL and ‘data" is a data. frame,
the row numbers are used.

origin Coordinates of the origin to calculate distances to. A scalar to use in all dimen-
sions or a vector with one scalar per dimension.
N.B. Ignored when “origin_fn" is not NULL.

origin_fn Function for finding the origin coordinates.

Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. *create_origin_fn(median)* would find the median of each column.

Built-in functions are centroid(), most_centered(), and midrange ()
shuffle_ties Whether to shuffle elements with the same distance to the origin. (Logical)
origin_col_name

Name of new column with the origin coordinates. If NULL, no column is added.
distance_col_name

Name of new column with the distances to the origin. If NULL, no column is

added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Value

The sorted data. frame (tibble) / vector.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other rearrange functions: center_max(), center_min(), closest_to(), pair_extremes(),
position_max(), position_min(), rev_windows(), roll_elements(), shuffle_hierarchy()

Other distance functions: closest_to(), dim_values(), distance(), expand_distances_each(),
expand_distances(), swirl_2d(), swirl_3d()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"index" = 1:10,
"A" = sample(1:10),

46

"B" = runif(10),

)Y

stringsAsFactors = FALSE

)

Furthest from 3 in a

furthest_from_vec(1:10,

vector
origin = 3)

Furthest from the third row (index of data.frame)
furthest_from(df, origin = 3)$index

By each of the columns

furthest_from(df, cols
furthest_from(df, cols
furthest_from(df, cols
furthest_from(df, cols

Shuffle the elements
furthest_from(df,
cols = "A",

= "A", origin = 3)%A

= "A", origin_fn = most_centered)$A
= "B", origin = 0.5)$B

= "B", origin_fn = centroid)$B

with the same distance to the origin

origin_fn = create_origin_fn(median),

shuffle_ties = TRUE
)$A

Grouped by G
df %>%

dplyr::select(G, A) %>% # For clarity
dplyr::group_by(G) %>%

furthest_from(

origin_fn(median)

origin_fn(median)

origin_fn(median),

cols = "A",
origin_fn = create_
)
Plot the rearranged values
plot(
x = 1:10,
y = furthest_from(df,
cols = "B",
origin_fn = create_
)$8B,
xlab = "Position”, ylab = "B"
)
plot(
x =1:10,
y = furthest_from(df,
cols = "A",
origin_fn = create_
shuffle_ties = TRUE
%A,

xlab = "Position”, ylab = "A"

)

In multiple dimensions

df %>%

furthest_from

generate_cl usters

furthest_from(cols = c("A", "B"), origin_fn = most_centered)

47

generate_clusters

Generate n-dimensional clusters

Description

Experimental

Generates data. frame (tibble) with clustered groups.

Usage

generate_clusters(

num_rows,
num_cols,

num_clusters,

compactness 1.6,
generator = runif,
name_prefix = "D",
cluster_col_name = ".cluster”

)

Arguments
NnuM_rows Number of rows.
num_cols Number of columns (dimensions).

num_clusters

compactness

generator

name_prefix

Number of clusters.

How compact the clusters should be. A larger value leads to more compact

clusters (on average).

Technically, it is passed to the *multiplier® argument in cluster_groups()

as ‘0.1/compactness’.

Function to generate the numeric values.

Must have the number of values to generate as its first (and only required) argu-

ment, as that is the only argument we pass to it.

Prefix string for naming columns.

cluster_col_name

Details

* Generates data. frame with random values using the ‘generator®.

Name of cluster factor.

* Divides the rows into groups (the clusters).

 Contracts the distance from each data point to the centroid of its group.

* Performs MinMax scaling such that the scale of the data points is similar to the generated data.

Value

data.frame (tibble) with the clustered columns and the cluster grouping factor.

48 generate_clusters

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other clustering functions: cluster_groups(), transfer_centroids()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)
library(plotly)

Set seed
set.seed(10)

Generate clusters
generate_clusters(num_rows = 20, num_cols = 3, num_clusters = 3, compactness = 1.6)
generate_clusters(num_rows = 20, num_cols = 5, num_clusters = 6, compactness

I
N
(S3]

~

Generate clusters and plot them
Tip: Call this multiple times
to see the behavior of ‘generate_clusters()"
generate_clusters(

num_rows = 50, num_cols = 2,

num_clusters = 5, compactness = 1.6
) %>%

ggplot(

aes(x = D1, y = D2, color = .cluster)

) +

geom_point() +

theme_minimal() +

labs(x = "D1", y = "D2", color = "Cluster")

#
Plot clusters in 3d view
#

Generate clusters

clusters <- generate_clusters(
num_rows = 50, num_cols = 3,
num_clusters = 5, compactness = 1.6

Not run:
Plot 3d with plotly
plotly::plot_ly(

x = clusters$D1,

y = clusters$D2,

z = clusters$D3,

type = "scatter3d”,

mode = "markers”,

color = clusters$.cluster

hexagonalize

End(Not run)

49

hexagonalize

Create x-coordinates so the points form a hexagon

Description

Experimental

Create the x-coordinates for a vector of y-coordinates such that they form a hexagon.

This will likely look most like a hexagon when the y-coordinates are somewhat equally distributed,
e.g. a uniform distribution.

Usage
hexagonalize(
data,
y_col = NULL,
.min = NULL,
.max = NULL,
offset_x = 0,
keep_original = TRUE,
x_col_name = ".hexagon_x",
edge_col_name = ".edge",

overwrite = FALSE

Arguments

data
y_col
.min
.max
offset_x

keep_original

Xx_col_name

edge_col_name

overwrite

Value

data.frame or vector.

Name of column in ‘data* with y-coordinates to create x-coordinates for.
Minimum y-coordinate. If NULL, it is inferred by the given y-coordinates.

Maximum y-coordinate. If NULL, it is inferred by the given y-coordinates.
Value to offset the x-coordinates by.

Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

Name of new column with the x-coordinates.

Name of new column with the edge identifiers. If NULL, no column is added.

Numbering is clockwise and starts at the upper-right edge.

Whether to allow overwriting of existing columns. (Logical)

data.frame (tibble) with the added x-coordinates and an identifier for the edge the data point is

a part of.

50 hexagonalize

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other forming functions: circularize(), square(), triangularize()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(purrr)
library(ggplot2)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(

"y" = runif(200),

"g" = factor(rep(1:5, each = 40))
)

Hexagonalize 'y'
df_hex <- hexagonalize(df, y_col = "y")
df_hex

Plot hexagon

df_hex %>%
ggplot(aes(x = .hexagon_x, y =y, color = .edge)) +
geom_point() +
theme_minimal()

#
Grouped hexagonalization
#

Hexagonalize 'y' for each group
First cluster the groups a bit to move the
hexagons away from each other
df_hex <- df %>%
cluster_groups(
cols = "y",
group_cols = "g",
suffix = ""
overwrite = TRUE
) %%
dplyr::group_by(g) %>%
hexagonalize(
y_col = "y",
overwrite = TRUE

Plot hexagons
df_hex %>%

is_most_centered 51

ggplot(aes(x = .hexagon_x, y =y, color = g)) +
geom_point() +
theme_minimal()

#
Specifying minimum value
#

Specify minimum value manually
df_hex <- hexagonalize(df, y_col = "y", .min = -2)
df _hex

Plot hexagon

df_hex %>%
ggplot(aes(x = .hexagon_x, y =y, color = .edge)) +
geom_point() +
theme_minimal()

#
Multiple hexagons by contraction
#

Start by hexagonalizing 'y'
df_hex <- hexagonalize(df, y_col = "y")

Contract '.hexagon_x' and 'y' towards the centroid
To contract with multiple multipliers at once,
we wrap the call in purrr::map_dfr
df_expanded <- purrr::map_dfr(
.x = c(1, 0.75, 0.5, 0.25, 0.125),
.f = function(mult) {
expand_distances(
data = df_hex,
cols = c(”".hexagon_x", "y"),
multiplier = mult,
origin_fn = centroid,
overwrite = TRUE
)
}

)
df_expanded

df_expanded %>%

ggplot(aes(
X = .hexagon_x_expanded, y = y_expanded,
color = .edge, alpha = .multiplier

Nt

geom_point() +
theme_minimal()

is_most_centered Find which data point is closest to the centroid

52 is_most_centered

Description

Experimental
Finds the data point with the shortest distance to the centroid.

To get the coordinates of the most centered data point, use most_centered() instead.

Usage
is_most_centered(..., na.rm = FALSE)
Arguments
Numeric vectors.
na.rm Whether to ignore missing values. At least one data point must be complete.
(Logical)
Value

Logical vector (TRUE/FALSE) indicating if a data point is the most centered.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other coordinate functions: centroid(), create_origin_fn(), midrange(), most_centered()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create three vectors
<- runif(10)
<- runif(10)
<- runif(10)

N < X =

Find the data point closest to the centroid
is_most_centered(x, y, z)

Compare to coordinates for the most centered
most_centered(x, y, z)

#
For data.frames
#

Create data frame
df <- data.frame(

median_index

T
"=y,

n

=z,

0] N < X

)

" rep(1:2, each = 5)

Filter the data points
closest to the centroid

df %>%

dplyr::filter(is_most_centered(x, y, z))

When 'df' is grouped

df %>%

dplyr::group_by(g) %>%
dplyr::filter(is_most_centered(x, y, z))

Add as column

df %>%

dplyr::group_by(g) %>%
dplyr::mutate(mc = is_most_centered(x, y, z))

53

median_index

Find index of interest for each vector

Description

Experimental

Applies function to the indices of each vectorin *. ..

\

These functions were created with create_n_fn().

Usage
median_index(..., negate = FALSE, round_fn = round)
quantile_index(..., prob, type = 7, negate = FALSE, round_fn = round)
Arguments
Numeric vectors.
negate Whether to negate the result. I.e. to multiply it with -1. (Logical)
round_fn Function for rounding output. Rounding is done prior to negation.
E.g. round, floor, or ceiling.
prob Probability in [0, 1] for quantile().
type Quantile algorithm to use. See quantile().
Value

numeric vector with one element per supplied vector.

54 midrange

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other n functions: create_n_fn()

Examples

Attach packages
library(rearrr)

Set seed
set.seed(1)

Create three vectors
X <= runif(10)
y <= runif(15)
z <- runif(20)

median_index(x, vy, z)

quantile_index(x, y, z, prob = 0.2)

Negate result
median_index(x, y, z, negate = TRUE)

midrange Find the midrange values

Description

Experimental

Calculates the midrange for each of the passed vectors/columns.

Midrange is defined as:
(mazxx + minx)/2
Usage
midrange(..., cols = NULL, na.rm = FALSE)
Arguments

Numeric vectors or a single data. frame.
cols Names of columns to use when *..." is a single data. frame.

na.rm Whether to ignore missing values when calculating min and max values. (Logi-
cal)

min_max_scale 55

Value

Either a vector with the midrange of each supplied vector or a data. frame with the midrange of
each supplied column along with any grouping variables.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other coordinate functions: centroid(), create_origin_fn(), is_most_centered(), most_centered()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create three vectors
<- runif(10)
<- runif(10)
<- runif(10)

N < X #

Find midrange for each vector
midrange(x, y, z)

#
For data.frames
#

Create data frame
df <- data.frame(

nyn

x" = x,
o=y,
"t = g,
"g" = rep(1:2, each = 5)

)

Find midrange for each column
midrange(df, cols = c("x", "y", "z"))

When 'df' is grouped

df %>%
dplyr::group_by(g) %>%
midrange(cols = c("x", "y", "z"))

min_max_scale Scale to a range

56 min_max_scale

Description

Experimental

Scales the values to a range with MinMax scaling.

Usage

min_max_scale(
X,
new_min,
new_max,
old_min = NULL,
old_max = NULL,
na.rm = FALSE

)
Arguments
X Numeric vector to scale.
new_min Minimum value of target range.
new_max Maximum value of target range.
old_min Minimum value of original range.
If NULL, this is the minimum value in “x*.
0ld_max Maximum value of original range.
If NULL, this is the maximum value in “x*.
na.rm Whether missing values should be removed when calculating *0ld_min* and/or
old_max.
N.B. Ignored when both *old_min® and “old_max" are NULL.
Value

Scaled version of “x*.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other scaling functions: to_unit_length()

Examples

Attach packages
library(rearrr)

Set seed
set.seed(1)

Create numeric vector
X <= runif(10)

Scale

most_centered 57

min_max_scale(x, new_min = -1, new_max = 0)
min_max_scale(x, new_min = -1, new_max = @, old_max = 3)
most_centered Find the coordinates for the data point closest to the centroid
Description
Experimental

Returns the coordinates for the data point with the shortest distance to the centroid.

To get a logical vector (TRUE/FALSE) indicating whether a data point is the most centered, use
is_most_centered().

Usage
most_centered(..., cols = NULL, na.rm = FALSE)
Arguments
Numeric vectors or a single data. frame.
cols Names of columns to use when *..." is a single data. frame.
na.rm Whether to ignore missing values. At least one data point must be complete.
(Logical)
Value

The coordinates for the data point closest to the centroid. Either as a vector or a data. frame.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other coordinate functions: centroid(), create_origin_fn(), is_most_centered(), midrange()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create three vectors
<- runif(10)
<- runif(10)
<- runif(10)

N < X #

H+

Find coordinates of the data point
closest to the centroid

ETS

58 pair_extremes

most_centered(x, y, z)

Compare to centroid coordinates
centroid(x, y, z)

#
For data.frames
#

Create data frame
df <- data.frame(

nyn

x" = x,
"y" =y,
"Z” = Z’
'g" = rep(1:2, each = 5)

)
Find coordinates of the data point
closest to the centroid

most_centered(df, cols = c("x", "y", "z"))

When 'df' is grouped

df %>%
dplyr::group_by(g) %>%
most_centered(cols = c("x", "y", "z"))

Filter to only include most centered data points
df %>%
dplyr::group_by(g) %>%
dplyr::filter(is_most_centered(x, y, z))

pair_extremes Fair extreme values and sort by the pairs

Description

Experimental

The values are paired/grouped such that the highest and lowest values form the first group, the
second highest and the second lowest values form the second group, and so on. The values are then
sorted by these groups/pairs.

When ‘data’ has an uneven number of rows, the ‘unequal_method" determines which group
should have only 1 element.

The *_vec() version takes and returns a vector.
Example:

The column values:

c(1,2,3,4,5,6)

Creates the sorting factor:

c(1,2,3,3,2,1)

And are ordered as:

c(1,6,2,5,3,4)

pair_extremes

Usage

pair_extremes(

)

data,

col = NULL,

unequal_method = "middle”,
num_pairings = 1,

balance = "mean”,
shuffle_members = FALSE,
shuffle_pairs = FALSE,

_ =1 um_pairi == .pai .pairi ,
factor_name felse(num_pairings 1, ".pair"”, ".pairing"

overwrite = FALSE

pair_extremes_vec(

data,
unequal_method =
num_pairings = 1,
balance = "mean”,
shuffle_members = FALSE,
shuffle_pairs = FALSE

"middle”,

Arguments

data data.frame or vector.

col

unequal_method

the row numbers are used.

One of: first, middle or last

first: The first group will have size 1.
Example:

The ordered column values:
c(1,2,3,4,5)

Creates the sorting factor:
c(1,2,3,3,2)

And are ordered as:

c(1,2,5,3,4)

middle: The middle group will have size 1.

Example:

The ordered column values:
c(1,2,3,4,5)

Creates the sorting factor:
c(1,3,2,3,1)

And are ordered as:
c(1,5, 3,2,4)

last: The last group will have size 1.
Example:

The ordered column values:
c(1,2,3,4,5)

Creates the sorting factor:

Method for dealing with an unequal number of rows in “data*.

59

Column to create sorting factor by. When NULL and ‘data" is a data.frame,

60

num_pairings

balance

shuffle_members

shuffle_pairs
factor_name

overwrite

Value

pair_extremes

c(1,2,2,1,3)
And are ordered as:
c(1,4,2,3, 5)
Number of pairings to perform (recursively). At least 1.

Based on ‘balance®, the secondary pairings perform extreme pairing on either
the sum, absolute difference, min, or max of the pair elements.

n on

What to balance pairs for in a given secondary pairing. Either "mean”, "spread”,
"min”, or "max”. Can be a single string used for all secondary pairings or one
for each secondary pairing (*num_pairings® -1).

The first pairing always pairs the actual element values.

mean: Pairs have similar means. The values in the pairs from the previous
pairing are aggregated with *sum() * and paired.

spread: Pairs have similar spread (e.g. standard deviations). The values in
the pairs from the previous pairing are aggregated with *sum(abs(diff()))*
and paired.

min / max: Pairs have similar minimum / maximum values. The values in
the pairs from the previous pairing are aggregated with *min()* / *max()*
and paired.

Whether to shuffle the pair members. (Logical)
Whether to shuffle the pairs. (Logical)
Name of new column with the sorting factor. If NULL, no column is added.

Whether to allow overwriting of existing columns. (Logical)

The sorted data. frame (tibble) / vector. Optionally with the sorting factor added.

When “data* is a vector and “keep_factors" is FALSE, the output will be a vector. Otherwise,

a data.frame.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other rearrange functions: center_max(), center_min(), closest_to(), furthest_from(),
position_max(), position_min(), rev_windows(), roll_elements(), shuffle_hierarchy()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame

df <- data.frame(

position_max

"index" = 1:10,
"A" = sample(1:10),
"B" = runif(10),

"C" = LETTERS[1:101],
"G” = C(
1! 1! 1! 2! 2!
2, 3, 3, 3,3
)?
stringsAsFactors = FALSE

)

Pair extreme indices (row numbers)
pair_extremes(df)

Pair extremes in each of the columns
pair_extremes(df, col = "A")$A
pair_extremes(df, col = "B")$B
pair_extremes(df, col = "C")$C

Shuffle the members pair-wise
pair_extremes(df, col = "A" shuffle_members = TRUE)

Shuffle the order of the pairs
pair_extremes(df, col = "A", shuffle_pairs = TRUE)

Use recursive pairing
pair_extremes(df, col = "A", num_pairings = 2)

Grouped by G

df %>%
dplyr::select(G, A) %>% # For clarity
dplyr::group_by(G) %>%
pair_extremes(col = "A")

Plot the extreme pairs

plot(
x = 1:10,
y = pair_extremes(df, col = "B")$B
)
With shuffled pair members (run a few times)
plot(
x = 1:10,
y = pair_extremes(df, col = "B", shuffle_members = TRUE)$B
)
With shuffled pairs (run a few times)
plot(

x = rep(1:5, each = 2),
y = pair_extremes(df, col = "B"”, shuffle_pairs = TRUE)$B
)

position_max Positions the highest values with values decreasing around it

62

Description

Experimental

position_max

The highest value is positioned at the given index/quantile with the other values decreasing around

1t.

Example:

The column values
c(1,2,3,4,5)
and position=2
are ordered as:
c(3,5,4,2,1)

Usage

position_max(data, col = NULL, position = NULL, shuffle_sides = FALSE)

Arguments

data

col

position

shuffle_sides

Value

data.frame or vector.

Column to create sorting factor by. When NULL and ‘data" is a data.frame,
the row numbers are used.

Index or quantile (in @-1) at which to position the element of interest.

Whether to shuffle which elements are left and right of the position. (Logical)

The sorted data. frame (tibble) / vector.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other rearrange functions: center_max(), center_min(), closest_to(), furthest_from(),

pair_extremes(),

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

position_min(), rev_windows(), roll_elements(), shuffle_hierarchy()

Create a data frame

df <- data.frame(
"index" = 1:10,
"A" = sample(1:
"B" = runif(10)
"C" = LETTERS[1

10),

)

2107,

position_min 63

"Gr = C(
’ ’ ’ ’

1,1, 1, 2, 2
2,3,3, 3,3

’

)?
stringsAsFactors = FALSE

)

Position the highest index (row number)
position_max(df, position = 3)$index
position_max(df, position = 8)$index

Position the maximum value in each of the columns
position_max(df, col = "A", position = 3)$A
position_max(df, col = "B", position = 3)$B
position_max(df, col = "C", position = 3)$C

Randomize which elements are left and right of the position
position_max(df, col = "A", position = 3, shuffle_sides = TRUE)S$A

Grouped by G

df %>%
dplyr::select(G, A) %>% # For clarity
dplyr::group_by(G) %>%
position_max(col = "A", position = 2)

Plot the rearranged values
plot(x = 1:10, y = position_max(df, col = "B", position = 3)$B)
plot(x = 1:10, y = position_max(df, col = "B", position = 3, shuffle_sides = TRUE)$B)

position_min Positions the lowest value with values increasing around it

Description

Experimental

The lowest value is positioned at the given index/quantile with the other values increasing around
it.

Example:

The column values:
c(1,2,3,4,5)

and position =2
are ordered as:

c(3,1,2,4,5)

Usage

position_min(data, col = NULL, position = NULL, shuffle_sides = FALSE)

64

Arguments

data

col

position
shuffle_sides

Value

position_min

data.frame or vector.

Column to create sorting factor by. When NULL and ‘data" is a data.frame,
the row numbers are used.

Index or quantile (in @-1) at which to position the element of interest.

Whether to shuffle which elements are left and right of the position. (Logical)

The sorted data.frame (tibble) / vector.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other rearrange functions: center_max(), center_min(), closest_to(), furthest_from(),

pair_extremes(),

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

position_max(), rev_windows(), roll_elements(), shuffle_hierarchy()

Create a data frame

df <- data.frame(
"index" = 1:10,
"A" = sample(1:
"B" = runif(10)

"C" = LETTERS[1
"G" = c(
1, 1,1, 2,2
2, 3, 3, 3,3
),
stringsAsFactor

)

10),

’

2101,

’

s = FALSE

Position the smallest index (row number)

position_min(df,
position_min(df,

Position the mi
position_min(df,
position_min(df,
position_min(df,

Randomize which
position_min(df,

position = 3)$index
position = 8)$index

nimum value in each of the columns
col = "A", position = 3)$A
col = "B", position = 3)$B
col = "C", position = 3)$%C

elements are left and right of the position
col = "A", position = 3, shuffle_sides = TRUE)$A

rev_windows 65

Grouped by G

df %>%
dplyr::select(G, A) %>% # For clarity
dplyr::group_by(G) %>%
position_min(col = "A", position = 2)

Plot the rearranged values
plot(x = 1:10, y = position_min(df, col = "B", position = 3)$B)
plot(x = 1:10, y = position_min(df, col = "B"”, position = 3, shuffle_sides = TRUE)$B)

rev_windows Reverse order window-wise

Description

Experimental

The values are windowed and reversed within windows.
The x_vec() version takes and returns a vector.
Example:

The column values:

c(1,2,3,4,5,6)

With window_size = 3

Are ordered as:

c(3,2,1,6,4,5)

Usage

rev_windows(data, window_size, factor_name = ".window"”, overwrite = FALSE)

rev_windows_vec(data, window_size)

Arguments
data data.frame or vector.
window_size Size of the windows. (Logical)
factor_name Name of the factor with window identifiers. If NULL, no column is added.
overwrite Whether to allow overwriting of existing columns. (Logical)
Value

The sorted data.frame (tibble) / vector. Optionally with the windows factor added.

When “data* is a vector and “keep_windows" is FALSE, the output will be a vector. Otherwise,
adata.frame.

Author(s)
Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

66 roll_elements

See Also

Other rearrange functions: center_max(), center_min(), closest_to(), furthest_from(),
pair_extremes(), position_max(), position_min(), roll_elements(), shuffle_hierarchy()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"index" = 1:10,
"A" = sample(1:10),
"B" = runif(10),
e LETTERS[1:10],
"G" = rep(1:2, each = 5),
stringsAsFactors = FALSE
)

For vector
rev_windows_vec(1:10, window_size = 3)

For data frame
rev_windows(df, window_size = 3)
rev_windows(df, window_size = 3, factor_name = NULL)

Grouped by G

df %>%
dplyr::select(G, index) %>% # For clarity
dplyr::group_by(G) %>%
rev_windows(window_size = 3)

Plot the extreme pairs
plot(
x = 1:10,
y = rev_windows_vec(1:10, window_size = 3)

)

roll_elements Roll elements

Description

Experimental

Rolls positions of elements.

Example:

Rolling c(1,2,3,4,5) with *n = 2" becomes:
c(3,4,5,1,2)

roll_elements

67

roll_elements_vec() takes and returns a vector.

Should not be confused with roll_values(), which changes the values of the elements and wraps

to a given range.

Usage
roll_elements(
data,
cols = NULL,
n = NULL,
n_fn = NULL,
n_col_name = ".n",
overwrite = FALSE,
)
roll_elements_vec(data, n = NULL, n_fn = NULL, ...)
Arguments
data vector or data. frame to roll elements of. When a data. frame is grouped, the
rolling is applied group-wise.
cols Names of columns in ‘data* to roll. If NULL, the index is rolled and used to
reorder ‘data’.
N.B. only used when ‘data" is a data. frame.
n Number of positions to roll. A positive number rolls left/up. A negative number
rolls right/down.
n_fn Function to find *n*. Useful when ‘data" is a grouped data.frame and *n*

n_col_name

overwrite

Value

Rolled ‘data*.

Author(s)

should depend on the rows in the group.

Input: Each specified vector/column in “data" is passed to the function as a
separate argument.

Qutput: It should return either a vector with one integer-like scalar per

column or a single integer-1like scalar to use for all columns.

Can be created with create_n_fn(). See alsomedian_index () and quantile_index().
Name of new column with the applied *n* values. If NULL, no column is added.
Whether to allow overwriting of columns with the same name as *n_col_name"*.
(Logical)

Extra arguments for *n_fn*.

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other roll functions: roll_values()

Other rearrange functions: center_max(), center_min(), closest_to(), furthest_from(),
pair_extremes(), position_max(), position_min(), rev_windows(), shuffle_hierarchy()

68 roll_elements

Examples

Attach packages
library(rearrr)
library(dplyr)

Roll vector left
roll_elements(1:10, n = 2)

Roll vector right and return the vector
roll_elements_vec(1:10, n = -2)

Roll vector left by median index (rounded to 6)
roll_elements(3:12, n_fn = median_index)

Roll vector right by median value (rounded to 8)
roll_elements(3:12, n_fn = create_n_fn(median, negate = TRUE))

' 1 '

Pass extra arguments (here 'prob') to 'n_fn' via
roll_elements(

1:10,

n_fn = quantile_index,

prob = 0.2

)

#
Roll data.frame
#

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"' = 1:20,
"y" = runif(20) * 10,
"g" = rep(1:4, each = 5)
)

Roll rows left/up
roll_elements(df, n = 2)

Roll rows right/down
roll_elements(df, n = -2)

Roll 'x' column right/down
roll_elements(df, cols = "x", n = -2)

Roll rows right by median index in each group
Specify 'negate' for the 'median_index' function
roll_elements(
df %>% dplyr::group_by(g),
n_fn = median_index,
negate = TRUE
)

roll_values 69

roll_values Shift values and wrap to range

Description

Experimental

Adds a specified value to each element in the vector and wraps the values around the min-max range
with:

(x — .min) % (.max — .min + between) + .min

Useful when adding to the degrees of a circle, where the values should remain in the 0-360 range.
A value larger than 360 will start over from 9, e.g. 365— > 5, while a value smaller than @ would
become e.g. —5— > 355. Here, @ and 360 are considered the same angle. If we were instead
adding days to the weekdays 1-7, where 1 and 7 are separate days, we can set “between=1" to
have one day in-between them.

wrap_to_range() is a wrapper with *add = @".
The x_vec() versions take and return a vector.

Should not be confused with roll_elements(), which changes the positions of the elements.

Usage
roll_values(
data,
cols = NULL,
add = 0,
.min = NULL,
.max = NULL,

between = 0,

na.rm = FALSE,

suffix = "_rolled"”,
keep_original = TRUE,

range_col_name = ".range",
overwrite = FALSE
)
wrap_to_range(
data,
cols = NULL,
.min = NULL,
.max = NULL,

between = 0,

na.rm = FALSE,

suffix = "_wrapped”,
keep_original = TRUE,
range_col_name = ".range",
overwrite = FALSE

)

roll_values_vec(
data,

70 roll_values

add = 0,
.min = NULL,
.max = NULL,

between = 0,
na.rm = FALSE

)

wrap_to_range_vec(data, .min = NULL, .max = NULL, between = @, na.rm = FALSE)

Arguments

data vector or data. frame to roll/wrap values of. When a data. frame is grouped,
the rolling/wrapping is applied group-wise.

cols Names of columns to roll/wrap in *data*. Must be specified when ‘data® is a
data. frame.

add Amount to add to each element. (numeric scalar)
When 0, the wrapping is applied without any rolling.

.min Minimum value allowed. If NULL, the minimum value in the vector/column is
used.

.max Maximum value allowed. If NULL, the maximum value in the vector/column is
used.

between The wrapping distance between *.max" and *.min".
When 0, they are considered the same. Le. ‘. maxr == .min‘.
When 1, *x* can be greater than *.max" by up to 1, why *.min" and *.max"
are two separate values with 1 in-between them. Le. ‘.maz + 1 == .min’.

na.rm Whether to remove missing values (NAs) when finding the *.min" and *.max"
values.

suffix Suffix to add to the names of the generated columns.

nn

Use an empty string (i.e. "") to overwrite the original columns.

keep_original Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

range_col_name Name of new column with the min-max range. If NULL, no column is added.

N.B. Ignored when ‘data" is a vector.

overwrite Whether to allow overwriting of existing columns. (Logical)

Value

‘data‘ with new columns with values in the specified min-max range(s) and columns with the
applied ranges.

The x_vec() versions return a vector.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

roll_values 71

See Also

Other roll functions: roll_elements()

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances_each(), expand_distances(), flip_values(), rotate_2d(), rotate_3d(),
shear_2d(), shear_3d(), swirl_2d(), swirl_3d()

Examples

Attach packages
library(rearrr)

Add 90 to all degrees

Note that @ and 360 is considered the same angle
why there is no distance between the two
roll_values(c(0:360), add = 90)

Get as vector
roll_values_vec(c(0:360), add = 90)

Change limits to 0-180
so e.g. 270 becomes 90
roll_values(c(0:360), .min = @, .max = 180)

Change values first, then wrap to range
x <= c(1:7)

X <= x"2

wrap_to_range(x, .min =1, .max = 7)

With 1 in-between .min and .max
wrap_to_range(x, .min =1, .max = 7, between = 1)

Get as vector
wrap_to_range_vec(x, .min = 1, .max = 7, between = 1)

#
Roll data.frame
#

Set seed
set.seed(1)

Create a data frame
df <- data.frame(

"Wt o=1:7,

"d" = c(o, 45, 90, 135, 180, 270, 360)
)

Roll weekdays by 1 day
roll_values(
df,
cols = "w",
add = 1,
.min =1
.max = 7,
between = 1

’

72 rotate_2d

Roll degrees by -90 degrees
roll_values(

df,

cols = "d",

add = -90,

.min = 0,

.max = 360,

between = 0
)
Roll both weekdays and degrees by 1
We don't specify .min and .max, so they
are based on the values in the columns
Note: This is not that meaningful but shows
the option
roll_values(

df,

cols = c("w", "d"),

add = 1

)

Wrap weekdays to 2-5 range
wrap_to_range(

df,

cols = "w",

.min = 2,

.max = 5,

between = 1

rotate_2d Rotate the values around an origin in 2 dimensions

Description

Experimental
The values are rotated counterclockwise around a specified origin.

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can be
useful when supplying a grouped data. frame and rotating around e.g. the centroid of each group.

Usage
rotate_2d(
data,
degrees,
x_col = NULL,
y_col = NULL,
suffix = "_rotated”,

origin = NULL,

origin_fn = NULL,
keep_original = TRUE,
degrees_col_name = ".degrees",

rotate_2d 73
origin_col_name = ".origin",
overwrite = FALSE
)
Arguments
data data.frame or vector.
degrees Degrees to rotate values counterclockwise. In [-360,360]. Can be a vector
with multiple degrees.
x_col Name of x column in ‘data‘. If NULL and ‘data" is a vector, the index of
‘data" isused. If *data" is a data. frame, it must be specified.
y_col Name of y column in “data*. If *data" is a data. frame, it must be specified.
suffix Suffix to add to the names of the generated columns.
Use an empty string (i.e. "") to overwrite the original columns.
origin Coordinates of the origin to rotate around. A vector with 2 elements (i.e. ori-
gin_x, origin_y). Ignored when “origin_fn" is not NULL.
origin_fn Function for finding the origin coordinates.

keep_original

Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. “create_origin_fn(median)* would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange ()
Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

degrees_col_name

Name of new column with the degrees. If NULL, no column is added.

origin_col_name

overwrite

Details

Name of new column with the origin coordinates. If NULL, no column is added.

Whether to allow overwriting of existing columns. (Logical)

Applies the following rotation matrix:

That is:

[cos® |, —sinf]
[sinf , cos®]

7' = xcosh — ysind

y' = zsinb + ycosd

Where 6 is the angle in radians.

As specified at Wikipedia/Rotation_matrix.

https://en.wikipedia.org/wiki/Rotation_matrix

74 rotate_2d

Value

data.frame (tibble) with seven new columns containing the rotated x-,y- and z-values and the
degrees, radiuses and origin coordinates.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances_each(), expand_distances(), flip_values(), roll_values(), rotate_3d(),
shear_2d(), shear_3d(), swirl_2d(), swirl_3d()

Other rotation functions: rotate_3d(), swirl_2d(), swirl_3d()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

Set seed
set.seed(1)

Create a data frame

df <- data.frame(
"Index" = 1:12,
"A" = c(1:4, 9:12, 15:18),
"G" = rep(1:3, each = 4)

)

Rotate values around (0, 0)
rotate_2d(df, degrees = 45, x_col = "Index", y_col = "A", origin = c(@, 0))

Rotate A around the centroid
df_rotated <- df %>%

rotate_2d(
x_col = "Index",
y_COl = "A" ,

degrees = c(0, 120, 240),
origin_fn = centroid
)
df_rotated

Plot A and A rotated around overall centroid

ggplot(df_rotated, aes(x = Index_rotated, y = A_rotated, color = factor(.degrees))) +
geom_hline(yintercept = mean(df$A), size = 0.2, alpha = .4, linetype = "dashed"”) +
geom_vline(xintercept = mean(df$Index), size = 0.2, alpha = .4, linetype = "dashed") +
geom_line(alpha = .4)
geom_point() +
theme_minimal() +
labs(x = "Index", y = "Value"”, color = "Degrees")

+

Rotate around group centroids

rotate_3d 75

df_grouped <- df %>%
dplyr::group_by(G) %>%

rotate_2d(
x_col = "Index",
y_COl = "A" ,

degrees = c(0, 120, 240),
origin_fn = centroid
)
df _grouped

Plot A and A rotated around group centroids

ggplot(df_grouped, aes(x = Index_rotated, y = A_rotated, color = factor(.degrees))) +
geom_point() +
theme_minimal() +

labs(x = "Index", y = "Value"”, color = "Degrees")
rotate_3d Rotate the values around an origin in 3 dimensions
Description
Experimental

The values are rotated counterclockwise around a specified origin.

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can be
useful when supplying a grouped data. frame and rotating around e.g. the centroid of each group.

Usage

rotate_3d(
data,
x_col,
y_col,
z_col,
x_deg = 0,
y_deg = 0,
z_deg = 0,
suffix = "_rotated”,
origin = NULL,
origin_fn = NULL,
keep_original = TRUE,

degrees_col_name = ".degrees",
origin_col_name = ".origin",
overwrite = FALSE
)
Arguments
data data.frame or vector.

x_col, y_col, z_col
Name of x/y/z column in “data". All must be specified.

76 rotate_3d

x_deg, y_deg, z_deg
Degrees to rotate values around the x/y/z-axis counterclockwise. In [-360, 360].
Can be vectors with multiple degrees.

*x_deg" is roll. “y_deg" is pitch. *z_deg" is yaw.

suffix Suffix to add to the names of the generated columns.
Use an empty string (i.e. "") to overwrite the original columns.

origin Coordinates of the origin to rotate around. Vector with 3 elements (i.e. ori-
gin_x, origin_y, origin_z). Ignored when “origin_fn" is not NULL.

origin_fn Function for finding the origin coordinates.
Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. “create_origin_fn(median)* would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange ()
keep_original Whether to keep the original columns. (Logical)
Some columns may have been overwritten, in which case only the newest ver-
sions are returned.
degrees_col_name
Name of new column with the degrees. If NULL, no column is added.

Also adds a string version with the same name + "_str"”, making it easier to
group by the degrees when plotting multiple rotations.

origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Details

Applies the following rotation matrix:

[cosacosfB , cosasinfsiny — sinacosy , cosasinfcosy + sinasiny]
[sinacosf , sinasinfsiny + cosacosy , sinasinfcosy — cosasiny]
[—sing , cosfBsiny , cos3cosy]

Where o = ‘z_deg" in radians, 8 = “y_deg" in radians, v = ‘x_deg" in radians.

As specified at Wikipedia/Rotation_matrix.

Value

data.frame (tibble) with six new columns containing the rotated x-,y- and z-values and the de-
grees and origin coordinates.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

https://en.wikipedia.org/wiki/Rotation_matrix

rotate_3d 77

See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances_each(), expand_distances(), flip_values(), roll_values(), rotate_2d(),
shear_2d(), shear_3d(), swirl_2d(), swirl_3d()

Other rotation functions: rotate_2d(), swirl_2d(), swirl_3d()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

Set seed
set.seed(3)

Create a data frame
df <- data.frame(
"x" =1:12,
"y" = c(1:4, 9:12, 15:18),
"z" = runif(12),
"g" rep(1:3, each = 4)
)

Rotate values 45 degrees around x-axis at (@, 0, 0)
rotate_3d(df, x_col = "x", y_col = "y", z_col = "z", x_deg = 45, origin = c(@, 0, 0))

Rotate all axes around the centroid
df_rotated <- df %>%

rotate_3d(
x_col = "x",
y_col = Nyll’
z_col = "z",

x_deg = c(0, 72, 144, 216, 288),
y_deg = c(0, 72, 144, 216, 288),
z_deg = c(0, 72, 144, 216, 288),
origin_fn = centroid
)
df_rotated

Plot rotations

ggplot(df_rotated, aes(x = x_rotated, y = y_rotated, color = .degrees_str, alpha = z_rotated)) +
geom_vline(xintercept = mean(df$x), size = 0.2, alpha = .4, linetype = "dashed"”) +
geom_hline(yintercept = mean(df$y), size = 0.2, alpha = .4, linetype = "dashed") +
geom_line(alpha = .4) +
geom_point() +
theme_minimal()
labs(x = "x", y = "y", color = "degrees"”, alpha = "z (opacity)"”)

+

Not run:

Plot 3d with plotly

plotly::plot_ly(
x = df_rotated$x_rotated,
y = df_rotated$y_rotated,
z = df_rotated$z_rotated,
type = "scatter3d”,

rotate_3d

mode = "markers”,
color = df_rotated$.degrees_str

)

End(Not run)

Rotate randomly around all axes
df_rotated <- df %>%

rotate_3d(
x_col = "x",
y_col = "y",
z_col = "z",
x_deg = round(runif (10, min = @, max = 360)),
y_deg = round(runif (10, min = @, max = 360)),
z_deg = round(runif (10, min = @, max = 360)),

origin_fn = centroid

)
df_rotated

Plot rotations
ggplot(df_rotated, aes(x = x_rotated, y = y_rotated, color = .degrees_str, alpha = z_rotated)) +
geom_vline(xintercept = mean(df$x), size = 0.2, alpha = .4, linetype = "dashed") +
geom_hline(yintercept = mean(df$y), size = 0.2, alpha = .4, linetype = "dashed") +
geom_line(alpha = .4) +
geom_point() +
theme_minimal() +
labs(x = "x",

non

y = "y", color = "degrees", alpha = "z (opacity)")

Not run:
Plot 3d with plotly
plotly::plot_ly(
x = df_rotated$x_rotated,
y = df_rotated$y_rotated,

z = df_rotated$z_rotated,

type = "scatter3d”,

mode = "markers”,

color = df_rotated$.degrees_str

)
End(Not run)
Rotate around group centroids

df_grouped <- df %>%
dplyr: :group_by(g) %>%

rotate_3d(
x_col = "x",
y_col = "y",
z_col = "z",

x_deg = c(0, 72, 144, 216, 288),
c(0, 72, 144, 216, 288),
c(0, 72, 144, 216, 288),

y_deg =
z_deg =
origin_f

n = centroid

shear_2d 79

Plot A and A rotated around group centroids

ggplot(df_grouped, aes(x = x_rotated, y = y_rotated, color = .degrees_str, alpha = z_rotated)) +
geom_point() +
theme_minimal() +

non

labs(x = "x", y = "y", color = "degrees"”, alpha = "z (opacity)")

Not run:
Plot 3d with plotly
plotly::plot_ly(

x = df_grouped$x_rotated,

y = df_grouped$y_rotated,

z = df_grouped$z_rotated,

type = "scatter3d”,

mode = "markers”,

color = df_grouped$.degrees_str

)

End(Not run)

shear_2d Shear the values around an origin in 2 dimensions

Description

Experimental

Shear a set of 2d points around an origin. The shearing formulas (excluding the origin movements)
is:

2’ =x + zshear xy

Y =y +yshear x x

The data points in *data" are moved prior to the shearing, to bring the origin to @ in all dimensions.
After the shearing, the inverse move is applied to bring the origin back to its original position.

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can be
useful when supplying a grouped data. frame and shearing around e.g. the centroid of each group.

Usage

shear_2d(
data,
x_shear,
y_shear = 0,
x_col = NULL,
y_col = NULL,
suffix = "_sheared”,
origin = NULL,
origin_fn = NULL,
keep_original = TRUE,
shear_col_name = ".shear”,
origin_col_name = ".origin",
overwrite = FALSE

80 shear_2d

Arguments

data data.frame or vector.

x_shear Shear factor for the x dimension (numeric). Decides the amount of shearing.
Can be a vector with multiple shear factors.

y_shear Shear factor for the y dimension (numeric). Decides the amount of shearing.
Can be a vector with multiple shear factors.

x_col Name of x column in “data".

y_col Name of y column in “data*.

suffix Suffix to add to the names of the generated columns.
Use an empty string (i.e. "") to overwrite the original columns.

origin Coordinates of the origin to shear around. Vector with 2 elements (origin_x,
origin_y). Ignored when ‘origin_fn® is not NULL.

origin_fn Function for finding the origin coordinates.

Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. “create_origin_fn(median) " would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange ()

keep_original Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

shear_col_name Name of new column with the shearing factors. If NULL, no column is added.

Also adds a string version with the same name + "_str", making it easier to
group by the shearing factors when plotting multiple shearings.

origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Value

data.frame (tibble) with sheared columns, the shearing factors and the origin coordinates.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances_each(), expand_distances(), flip_values(), roll_values(), rotate_2d(),
rotate_3d(), shear_3d(), swirl_2d(), swirl_3d()

Other shearing functions: shear_3d()

shear 2d

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

Create a data frame

df <- data.frame(
"x" = rep(1:6, each = 2),
"y" = rep(c(1, 4), 6),
"g" = rep(1:2, each = 6)

)

Shear the x variable with regards to y
around the centroid
df_sheared <- shear_2d(

data = df,

x_shear = 2.5,

x_col = "x",

y_col = "y",
origin_fn = centroid

)

Plot sheared data

Black: original points
Red: sheared points
df_sheared %>%

ggplot(aes(x = x, y = y)) +
geom_point() +
geom_point(aes(x = x_sheared, y = y_sheared, color = "red")) +

theme_minimal ()

Shear in both dimensions
df_sheared <- shear_2d(
data = df,
x_shear = 2.5,
y_shear = 2.5,

x_col = "x",
y_col = "y",
origin_fn = centroid

)

Plot sheared data

Black: original points
Red: sheared points
df_sheared %>%

ggplot(aes(x = x, y = y)) +
geom_point() +
geom_point(aes(x = x_sheared,y = y_sheared, color = "red")) +

theme_minimal()

Shear grouped data frame
Affects the calculated origin
df_sheared <- shear_2d(
data = dplyr::group_by(df, g),
x_shear = 2.5,

81

82 shear_3d

nyn
’
uyn

x_col =
y_col =
origin_fn = centroid

)

Plot sheared data
Black: original points
Red: sheared points
df_sheared %>%
ggplot(aes(x = x, y =y)) +
geom_point() +
geom_point(aes(x = x_sheared, y = y_sheared, color = "red")) +
theme_minimal ()

Shear a vector with multiple shearing factors
shear_2d(

data = c(1:10),

x_shear = c(1, 1.5, 2, 2.5),

origin = c(0, 0)
)

shear_3d Shear values around an origin in 3 dimensions

Description

Experimental
Shears points around an origin in 3-dimensional space. See applied shearing matrices under Details.

The data points in “data* are moved prior to the shearing, to bring the origin to @ in all dimensions.
After the shearing, the inverse move is applied to bring the origin back to its original position.

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can be
useful when supplying a grouped data. frame and shearing around e.g. the centroid of each group.

Usage

shear_3d(
data,
x_col,
y_col,
z_col,
x_shear
y_shear = NULL,
z_shear = NULL,
suffix = "_sheared”,
origin = NULL,
origin_fn = NULL,
keep_original = TRUE,
shear_col_name = ".shear”,
origin_col_name = ".origin",
overwrite = FALSE

NULL,

shear_3d

Arguments

data

83

data.frame or vector.

x_col, y_col, z_col

Name of x/y/z column in “data". All must be specified.

x_shear, y_shear, z_shear

suffix

origin

origin_fn

keep_original

shear_col_name

origin_col_name

overwrite

Details

Shear factor for the x/y/z dimension (numeric). Decides the amount of shearing.
Can be vectors with multiple shear factors.

N.B. Exactly 2 of the dimensions must have shear factors specified.

Suffix to add to the names of the generated columns.

nn

Use an empty string (i.e. "") to overwrite the original columns.

Coordinates of the origin to shear around. Vector with 3 elements (i.e. origin_x,
origin_y, origin_z). Ignored when “origin_fn" is not NULL.

Function for finding the origin coordinates.

Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. “create_origin_fn(median)" would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange()

Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

Name of new column with the shearing amounts. If NULL, no column is added.

Also adds a string version with the same name + "_str”, making it easier to
group by the shearing amounts when plotting multiple shears.

Name of new column with the origin coordinates. If NULL, no column is added.

Whether to allow overwriting of existing columns. (Logical)

Applies one of the following transformation matrices, depending on which two shearing amounts

are specified:

Given ‘x_shear" and ‘y_shear*:

[1 ,0 ,x_shear]
[0 ,1 ,y_shear]
[0 ,0 .1 1

Given ‘x_shear" and ‘z_shear*:

[1 ,x_shear ,0]
[0 ,1 ,
[0 ,z_shear ,1]

o

84 shear_3d

Given ‘y_shear" and ‘z_shear":

[1 ;0,0]
[y_shear ,1 ,0]
[z_shear ,0 1]

Value

data.frame (tibble) with six new columns containing the sheared x-, y- and z-values and the
shearing amounts and origin coordinates.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances_each(), expand_distances(), flip_values(), roll_values(), rotate_2d(),
rotate_3d(), shear_2d(), swirl_2d(), swirl_3d()

Other shearing functions: shear_2d()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

Set seed
set.seed(1)

df_square <- square(runif(100)) %>%
rename(x = .square_x,
y = Value) %>%
mutate(z = 1)

Shear the x and z axes
around the centroid
df_sheared <- shear_3d(
data = df_square,
x_col = "x",
y_col = "y",
z_col = "z"
x_shear = 2,
z_shear = 4,
origin_fn = centroid

)

’

Plot sheared data

Black: original points

Red: sheared points

df_sheared %>%
ggplot(aes(x
geom_point()

X, y=y))+

+

shear_3d

geom_point(aes(x = x_sheared, y = y_sheared, color = "red")) +
theme_minimal()

Not run:
Plot 3d with plotly
plotly::plot_ly(
x = df_sheared$x_sheared,
y = df_sheared$y_sheared,

z = df_sheared$z_sheared,
type = "scatter3d”,

mode = "markers”,

color = df_sheared$.shear_str

)

End(Not run)

Shear the y and z axes

around the centroid

df_sheared <- shear_3d(
data = df_square,
x_col = "x"
y_col = "y",
z_col = "z"
y_shear = 2,
z_shear = 4,
origin_fn =

)

’

b
centroid

Plot sheared data
Black: original points
Red: sheared points
df_sheared %>%
ggplot(aes(x = x, y = y)) +
geom_point() +
geom_point(aes(x = x_sheared, y = y_sheared, color = "red")) +
theme_minimal ()

Not run:
Plot 3d with plotly
plotly::plot_ly(
x = df_sheared$x_sheared,
y = df_sheared$y_sheared,
z = df_sheared$z_sheared,
type = "scatter3d”,
mode = "markers”,
color = df_sheared$.shear_str

)

End(Not run)

Shear the y and z axes with multiple amounts at once
around the centroid
df_sheared <- shear_3d(
data = df_square,
x_col = "x",
y_col = "y"
z_col =

’
n
)

N < x

86 shuffle_hierarchy

y_shear = c(0, 2, 4),
z_shear = c(0, 4, 6),
origin_fn = centroid

)

Plot sheared data

df_sheared %>%
ggplot(aes(x = x_sheared, y = y_sheared, color = .shear_str)) +
geom_point() +
theme_minimal ()

Not run:
Plot 3d with plotly
plotly::plot_ly(
x = df_sheared$x_sheared,
y = df_sheared$y_sheared,
z = df_sheared$z_sheared,
type = "scatter3d”,
mode = "markers”,
color = df_sheared$.shear_str

)

End(Not run)

shuffle_hierarchy Shuffle multi-column hierarchy of groups

Description

Experimental

Shuffles a tree/hierarchy of groups, one column at a time. The levels in the last ("leaf") column
are shuffled first, then the second-last column, and so on. Elements of the same group are ordered
sequentially.

Usage

shuffle_hierarchy(
data,
group_cols,
cols_to_shuffle = group_cols,

leaf_has_groups = TRUE
)
Arguments
data data.frame.
group_cols Names of columns making up the group hierarchy. The last column is the leaf

and is shuffled first (if also in *cols_to_shuffle®).
cols_to_shuffle

Names of columns to shuffle hierarchically. By default, all the *group_cols®
are shuffled.

shuffle_hierarchy 87

leaf_has_groups
Whether the leaf column contains groups or values. (Logical)

When the elements are group identifiers, they are ordered sequentially and shuf-
fled together.

When the elements are values, they are simply shuffled.

Value

The shuffled data.frame (tibble).

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other rearrange functions: center_max(), center_min(), closest_to(), furthest_from(),
pair_extremes(), position_max(), position_min(), rev_windows(), roll_elements()

Examples

Attach packages
library(rearrr)
library(dplyr)

df <- data.frame(
'a' = rep(1:4, each = 4),
'b' = rep(1:8, each = 2),
'c' =1:16

)

Set seed for reproducibility
set.seed(2)

Shuffle all columns
shuffle_hierarchy(df, group_cols = c('a', 'b', 'c'))

Don't shuffle 'b' but keep grouping by it
So 'c' will be shuffled within each group in 'b'
shuffle_hierarchy(

data = df,
group_cols = c('a', 'b', 'c'),
cols_to_shuffle = c('a', 'c")

)

Shuffle 'b' as if it's not a group column

so elements are independent within their group

(i.e. same-valued elements are not necessarily ordered sequentially)
shuffle_hierarchy(df, group_cols = c('a', 'b'), leaf_has_groups = FALSE)

88

square

square

Create x-coordinates so the points form a square

Description

Experimental

Create the x-coordinates for a vector of y-coordinates such that they form a rotated square.

This will likely look most like a square when the y-coordinates are somewhat equally distributed,
e.g. a uniform distribution.

Usage

square(
data,
y_col = NULL,
.min = NULL,
.max = NULL,
offset_x = 0,
keep_original
x_col_name =

edge_col_name

= TRUE,
".square_x",
= ".edge",

overwrite = FALSE

Arguments

data
y_col
.min
.max
offset_x

keep_original

Xx_col_name

edge_col_name

overwrite

Value

data.frame or vector.

Name of column in ‘data* with y-coordinates to create x-coordinates for.
Minimum y-coordinate. If NULL, it is inferred by the given y-coordinates.
Maximum y-coordinate. If NULL, it is inferred by the given y-coordinates.
Value to offset the x-coordinates by.

Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

Name of new column with the x-coordinates.

Name of new column with the edge identifiers. If NULL, no column is added.
Numbering is clockwise and starts at the upper-right edge.

Whether to allow overwriting of existing columns. (Logical)

data.frame (tibble) with the added x-coordinates and an identifier for the edge the data point is

a part of.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

square

See Also

Other forming functions: circularize(), hexagonalize(), triangularize()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(purrr)
library(ggplot2)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"y" = runif(200),
"g" = factor(rep(1:5, each = 40))

)

Square 'y'

df_sq <- square(df, y_col = "y")
df_sq

Plot square

df_sq %>%
ggplot(aes(x = .square_x, y =y, color = .edge)) +
geom_point() +
theme_minimal()

#
Grouped squaring
#

Square 'y' for each group
First cluster the groups a bit to move the
squares away from each other
df_sq <- df %>%
cluster_groups(

cols = "y",
group_cols = "g",
suffix = ""
overwrite = TRUE
) %>%
dplyr::group_by(g) %>%
square(
y_col ="y",

overwrite = TRUE

)

Plot squares

df_sq %>%
ggplot(aes(x = .square_x, y =y, color = g)) +
geom_point() +
theme_minimal()

90 swirl_2d

#
Specifying minimum value
#

Specify minimum value manually

df_sq <- square(df, y_col = "y", .min = -2)
df_sq

Plot square

df_sq %>%
ggplot(aes(x = .square_x, y =y, color = .edge)) +
geom_point() +
theme_minimal ()

#
Multiple squares by contraction
#

Start by squaring 'y'
df_sq <- square(df, y_col = "y")

Contract '.square_x' and 'y' towards the centroid
To contract with multiple multipliers at once,
we wrap the call in purrr::map_dfr
df_expanded <- purrr: :map_dfr(
.x = c(1, 0.75, 0.5, 0.25, 0.125),
.f = function(mult) {
expand_distances(
data = df_sq,
cols = c(".square_x", "y"),
multiplier = mult,
origin_fn = centroid,
overwrite = TRUE
)
}

)
df_expanded

df_expanded %>%

ggplot(aes(
X = .square_x_expanded, y = y_expanded,
color = .edge, alpha = .multiplier
N+

geom_point() +
theme_minimal ()

swirl_2d Swirl the values around an origin in 2 dimensions

Description

Experimental

The values are swirled counterclockwise around a specified origin. The swirling is done by rotating
around the origin with the degrees based on the distances to the origin as so:

degrees = scaleyn(distances)/(2 x radius) * 360

swirl _2d

91

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can be
useful when supplying a grouped data. frame and swirling around e.g. the centroid of each group.

Usage
swirl_2d(
data,
radius,
x_col = NULL,
y_col = NULL,
suffix = "_swirled”,

origin = NULL,
origin_fn = NULL,
scale_fn = identity,
keep_original = TRUE,

degrees_col_name = ".degrees",
radius_col_name = ".radius"”,
origin_col_name = ".origin",

overwrite = FALSE

Arguments

data data.frame or vector.

radius Radius of the most-inner swirl on the x-axis in the simplest case. A negative
number changes the direction to clockwise rotation. Can be a vector with mul-
tiple radiuses.
Note: With a custom ‘scaling_fn*, this might not be the actual swirl radius
anymore. Think of it more as a width setting where a larger number leads to
fewer full rotations.

x_col Name of x column in ‘data’. If NULL and ‘data" is a vector, the index of
‘data" isused. If *data" is a data. frame, it must be specified.

y_col Name of y column in “data*. If *data" is a data. frame, it must be specified.

suffix Suffix to add to the names of the generated columns.
Use an empty string (i.e. "") to overwrite the original columns.

origin Coordinates of the origin to swirl around. Vector with 2 elements (i.e. origin_x,
origin_y). Ignored when “origin_fn* is not NULL.

origin_fn Function for finding the origin coordinates.
Input: Each column will be passed as a vector in the order of *cols"*.
Output: A vector with one scalar per dimension.
Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.
E.g. *create_origin_fn(median)* would find the median of each column
Built-in functions are centroid(), most_centered(), and midrange()

scale_fn Function for scaling the distances before calculating the degrees.

Input: A numeric vector (the distances).

Output: A numeric vector (the scaled distances) of the same length.
E.g.:

function(d){

92 swirl_2d

d~1.5
3

keep_original Whether to keep the original columns. (Logical)
Some columns may have been overwritten, in which case only the newest ver-
sions are returned.
degrees_col_name
Name of new column with the degrees. If NULL, no column is added.
radius_col_name
Name of new column with the radius. If NULL, no column is added.
origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Value

data.frame (tibble) with three new columns containing the swirled x- and y-values, the degrees,
the radius, and the origin coordinates.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances_each(), expand_distances(), flip_values(), roll_values(), rotate_2d(),
rotate_3d(), shear_2d(), shear_3d(), swirl_3d()

Other rotation functions: rotate_2d(), rotate_3d(), swirl_3d()

Other distance functions: closest_to(), dim_values(), distance(), expand_distances_each(),
expand_distances(), furthest_from(), swirl_3d()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

Set seed
set.seed(4)

Create a data frame
df <- data.frame(
"x" =1:50,
"y” = 1 ’
"r1" = runif(50),
"r2" = runif(50) * 35,
"g" = rep(1:5, each = 10)

)

Swirl values around (0, 0)
swirl_2d(
data = df,

swirl_3d

radius = 45,
x_col = "x",
y_col = "y"
origin = c(0, 0)

Swirl around the centroid
with 6 different radius settings
Scale the distances with custom function

df_swirled <- swirl_2d(

data = df,

radius = c(95, 96, 97
x_col = "x",

y_col = "y",

origin_fn = centroid,

, 98, 99, 100),

scale_fn = function(d) {

d*1.6
}
)

df_swirled

Plot swirls
df_swirled %>%

ggplot(aes(x = x_swirled, y = y_swirled, color = factor(.radius))) +

geom_point() +
theme_minimal() +

labs(x = "x", y = "y",

#
Swirl random data

color = ".radius")

The trick lies in finding the right radius

#

Swirl the random columns

df_swirled <- swirl_2d(

data = df,
radius = 5,
x_col = "r1",
y_col = "r2",

origin_fn = centroid

)

Plot swirls
df_swirled %>%

ggplot(aes(x = ri_swirled, y = r2_swirled)) +

geom_point() +
theme_minimal() +

labs(x = "r1", y = "r2")

93

swirl_3d

Swirl the values around an origin in 3 dimensions

94 swirl_3d

Description

Experimental

The values are swirled counterclockwise around a specified origin. The swirling is done by rotating
around the origin, basing the degrees for each rotation-axis on the distances to the origin as so:

zqegrees = scale pn(distances)/(2 x zradius) * 360

The origin can be supplied as coordinates or as a function that returns coordinates. The latter can be
useful when supplying a grouped data. frame and swirling around e.g. the centroid of each group.

Usage

swirl_3d(
data,
x_col,
y_col,
z_col,
x_radius = 0,
y_radius = 0,
z_radius = 0,
suffix = "_swirled”,
origin = NULL,
origin_fn = NULL,
scale_fn = identity,
keep_original = TRUE,

degrees_col_name = ".degrees”,
radius_col_name = ".radius”,
origin_col_name = ".origin",
overwrite = FALSE
)
Arguments
data data.frame or vector.

x_col, y_col, z_col
Name of x/y/z column in “data*. All must be specified.

x_radius, y_radius, z_radius
Radiuses of the most-inner swirls around each axis (in the simplest case). Can
be vectors with multiple radiuses.
E.g. the “x_radius" specifies the radius when rotating around the x-axis, not
the radius on the x-axis.
Note: With a custom “scaling_fn*, these might not be the actual swirl radiuses
anymore. Think of them more as width settings where a larger number leads to
fewer full rotations.

suffix Suffix to add to the names of the generated columns.

nn

Use an empty string (i.e. "") to overwrite the original columns.

origin Coordinates of the origin to swirl around. Vector with 3 elements (i.e. origin_x,
origin_y, origin_z). Ignored when “origin_fn" is not NULL.

origin_fn Function for finding the origin coordinates.
Input: Each column will be passed as a vector in the order of *cols".

swirl_3d 95

Output: A vector with one scalar per dimension.

Can be created with create_origin_fn() if you want to apply the same func-
tion to each dimension.

E.g. “create_origin_fn(median)" would find the median of each column.
Built-in functions are centroid(), most_centered(), and midrange ()

scale_fn Function for scaling the distances before calculating the degrees.
Input: A numeric vector (the distances).
Output: A numeric vector (the scaled distances) of the same length.
E.g.:
function(d){
d*~1.5
}
keep_original Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.
degrees_col_name
Name of new column with the degrees. If NULL, no column is added.
Also adds a string version with the same name + "_str”, making it easier to
group by the degrees when plotting multiple rotations.
radius_col_name
Name of new column with the radiuses. If NULL, no column is added.
origin_col_name
Name of new column with the origin coordinates. If NULL, no column is added.

overwrite Whether to allow overwriting of existing columns. (Logical)

Value

data.frame (tibble) with new columns containing the swirled x- and y-values, the degrees, the
radiuses, and the origin coordinates.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other mutate functions: apply_transformation_matrix(), cluster_groups(), dim_values(),
expand_distances_each(), expand_distances(), flip_values(), roll_values(), rotate_2d(),
rotate_3d(), shear_2d(), shear_3d(), swirl_2d()

Other rotation functions: rotate_2d(), rotate_3d(), swirl_2d()

Other distance functions: closest_to(), dim_values(), distance(), expand_distances_each(),
expand_distances(), furthest_from(), swirl_2d()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(ggplot2)

96

Set seed
set.seed(4)

Create a data frame
df <- data.frame(

"x" = 1:50,
"y" = 1:50,
"z" =1:50,

"r1" = runif(50),

"r2" = runif(50) * 35,
"O” = 1 s

"g" = rep(1:5, each = 10)

)
Swirl values around (0, 0, 0)
swirl_3d(
data = df,
x_radius = 45,
x_col = "x",
y_col = "y",
z_col = "z",
origin = c(0, 0, 0)
)

Swirl around the centroid
df_swirled <- swirl_3d(

data = df,

x_col = "x",

y_col = "y",

z_col = "z",

x_radius = c(100, 0, 0),
y_radius = c(@, 100, 0),

z_radius = c(@, 0, 100),
origin_fn = centroid

)

df_swirled

Plot swirls

ggplot(df_swirled, aes(x = x_swirled, y = y_swirled, color = .radius_str, alpha = z_swirled)) +

swirl_3d

geom_vline(xintercept = mean(df$x), size = 0.2, alpha = .4, linetype = "dashed") +
geom_hline(yintercept = mean(df$y), size = 0.2, alpha = .4, linetype = "dashed") +

geom_path(alpha = .4) +
geom_point() +

theme_minimal() +

labs(x = "x", y = "y", color =

Not run:
Plot 3d with plotly
plotly::plot_ly(

x = df_swirled$x_swirled,

y = df_swirled$y_swirled,

z = df_swirled$z_swirled,

type = "scatter3d”,

mode = "markers”,

color = df_swirled$.radius_str

"radius”, alpha

"z (opacity)")

swirl_3d 97

End(Not run)

Swirl around the centroid
df_swirled <- swirl_3d(
data = df,
x_col =
y_col =
z_col =
x_radius

n
’
"
’
n

c(50, 0, 0),
y_radius = c(@, 50, @),
z_radius = c(0, 0, 50),
origin_fn = centroid

)

NN < X

df_swirled

Plot swirls

ggplot(df_swirled, aes(x = x_swirled, y = y_swirled, color = .radius_str, alpha = z_swirled)) +
geom_vline(xintercept = mean(df$x), size = 0.2, alpha = .4, linetype = "dashed") +
geom_hline(yintercept = mean(df$y), size = 0.2, alpha = .4, linetype = "dashed") +
geom_path(alpha = .4) +
geom_point() +
theme_minimal() +
labs(x = "x", y = "y", color = "radius”, alpha = "z (opacity)")

Not run:
Plot 3d with plotly
plotly::plot_ly(

x = df_swirled$x_swirled,

y = df_swirled$y_swirled,

z = df_swirled$z_swirled,

type = "scatter3d”,

mode = "markers”,

color = df_swirled$.radius_str

)

End(Not run)

df_swirled <- swirl_3d(

data = df,

x_col = "x",

y_col = "y",

z_col = "z",

x_radius = c(25, 50, 25, 25),
y_radius = c(50, 75, 100, 25),
z_radius = c(75, 25, 25, 25),

origin_fn = centroid,
scale_fn = function(x) {
Xx*0.81
}
)

Plot swirls
ggplot(df_swirled, aes(x = x_swirled, y = y_swirled, color = .radius_str, alpha = z_swirled)) +
geom_vline(xintercept = mean(df$x), size = 0.2, alpha = .4, linetype = "dashed"”) +

98

geom_hline(yintercept = mean(df$y), size = 0.2, alpha = .4, linetype

geom_path(alpha = .4) +
geom_point() +
theme_minimal() +
labs(x = "x", y = "y",

color = "radius"”, alpha

Not run:
Plot 3d with plotly
plotly::plot_ly(

x = df_swirled$x_swirled,

y = df_swirled$y_swirled,

z = df_swirled$z_swirled,

type = "scatter3d”,

mode = "markers”,

color = df_swirled$.radius_str

End(Not run)

#

Swirl random data

The trick lies in finding the right radiuses
#

Swirl the random columns
df_swirled <- swirl_3d(

data = df,

x_col = "r1",
y_col = "r2",
z_col = "o",

x_radius = c(0, 0, 0, 0),
y_radius = c(@, 30, 60, 90),
z_radius = c(10, 10, 10, 10),
origin_fn = centroid

)

Not let's rotate it every 10 degrees
df_rotated <- df_swirled %>%

rotate_3d(
x_col = "r1_swirled”,
y_col = "r2_swirled”,
z_col = "o_swirled"”,

x_deg = rep(@, 36),

y_deg = rep(0, 36),

z_deg = (1:36) * 10,

suffix = ""

origin = df_swirled$.origin[[1]],
overwrite = TRUE

)

Plot rotated swirls
ggplot(
df_rotated,
aes(
X = ri_swirled,

= "z (opacity)")

swirl_3d

"dashed”) +

to_unit_length

y = r2_swirled,

color = .degrees_str,

alpha = o_swirled
)

) +

geom_vline(xintercept = mean(df$rl1), size
geom_hline(yintercept = mean(df$r2), size
geom_point(show.legend = FALSE) +
theme_minimal() +
labs(x = "r1", y = "r2", color = "radius”, alpha = "o (opacity)")

0.2, alpha = .4, linetype
0.2, alpha = .4, linetype

"dashed”) +
"dashed”) +

99

to_unit_length Scale to unit length

Description

Experimental
Scales the vectors to unit length row-wise or column-wise.

The *_vec() version take and return a vector.

Usage

to_unit_length(
data,
cols = NULL,
by_row = is.data.frame(data),
suffix = ifelse(isTRUE(by_row), "_row_unit"”, "_col_unit"),
overwrite = FALSE

to_unit_length_vec(data)

Arguments
data data.frame or vector.
cols Names of columns in “data" to scale.
by_row Whether to scale row vectors instead of column vectors. (Logical)
Note: Disable when “data* is a vector.
suffix Suffix to add to the names of the generated columns.
Use an empty string (i.e. "") to overwrite the original columns.
overwrite Whether to allow overwriting of existing columns. (Logical)
Value

Scaled vector or data. frame (tibble) with the scaled columns.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

100

See Also

transfer centroids

Other scaling functions: min_max_scale()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame
data. frame(

df <-
an
uyn
ngn
)

runif(20),
runif(20),
rep(1:4, each =

Scale row-wise
to_unit_length(df, cols

Scale column-wise
to_unit_length(df, cols

Overwrite columns
to_unit_length(df, cols

By groups in 'g
df %>%

1

= c("x", "y"), by_row = TRUE)

c("x", "y"), by_row = FALSE)

= c("x", "y"), suffix = "", overwrite = TRUE)

dplyr::group_by(g) %>%
to_unit_length(cols =

Scale a vector
to_unit_length_vec(c(1:10))

to_unit_length(c(1:10), suffix = "", overwrite = TRUE)
vector_length(to_unit_length_vec(c(1:10)))

c("x", "y"), by_row = FALSE)

transfer_centroids

Transfer centroids from one data frame to another

Description

Experimental

Given two data. frames with the same columns (and groupings), transfer the centroids from one to
the other.

This is commonly used to restore the centroids after transforming the columns.

Usage

transfer_centroids(to_data, from_data, cols, group_cols = NULL)

transfer_centroids 101

Arguments
to_data data. frame.
Existing “dplyr* groups are ignored. Specify in *group_cols" instead.
from_data data. frame with the same columns (and groupings) as “to_data".
Existing “dplyr* groups are ignored. Specify in *group_cols" instead.
cols Names of numeric columns to transfer centroids to. Must exist in both *to_data*
and ‘from_data".
group_cols Names of grouping columns.
Value

The “to_data" data.frame (tibble) with the centroids from the *from_data" data.frame.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other clustering functions: cluster_groups(), generate_clusters()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame
data.frame(

df <-

nyn

X

nem
y

nn

g
)

runif(20),
runif(20),
rep(1:4, each = 5)

Create another data frame with different x and y values
df2 <- df

df2$x <- runif(20)

df2$y <- runif(20)

Check centroids before transfer

df %>%

dplyr
dplyr

df2 %>%
dplyr
dplyr

::group_by(g) %>%
::summarize_all(mean)

::group_by(g) %>%
::summarize_all(mean)

Now let's transfer the centroids from df to df2

102 triangularize

df3 <- transfer_centroids(
to_data = df2,
from_data = df,
cols = c("x", "y"),

group_cols = "g

)

Check that the transfer gave us the same centroids as df
df3 %>%

dplyr::group_by(g) %>%

dplyr::summarize_all(mean)

triangularize Create x-coordinates so the points form a triangle

Description

Experimental
Create the x-coordinates for a vector of y-coordinates such that they form a triangle.

The data points are stochastically distributed based on edge lengths, why it might be preferable to
set a random seed.

This will likely look most like a triangle when the y-coordinates are somewhat equally distributed,
e.g. a uniform distribution.

Usage
triangularize(
data,
y_col = NULL,
.min = NULL,
.max = NULL,
offset_x = 0,
keep_original = TRUE,
x_col_name = ".triangle_x",
edge_col_name = ".edge",
overwrite = FALSE
)
Arguments
data data.frame or vector.
y_col Name of column in ‘data* with y-coordinates to create x-coordinates for.
.min Minimum y-coordinate. If NULL, it is inferred by the given y-coordinates.
.max Maximum y-coordinate. If NULL, it is inferred by the given y-coordinates.
offset_x Value to offset the x-coordinates by.

keep_original = Whether to keep the original columns. (Logical)

Some columns may have been overwritten, in which case only the newest ver-
sions are returned.

Xx_col_name Name of new column with the x-coordinates.

triangularize 103

edge_col_name Name of new column with the edge identifiers. If NULL, no column is added.
Numbering is clockwise and starts at the upper-right edge.

overwrite Whether to allow overwriting of existing columns. (Logical)

Value

data.frame (tibble) with the added x-coordinates and an identifier for the edge the data point is
a part of.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other forming functions: circularize(), hexagonalize(), square()

Examples

Attach packages
library(rearrr)
library(dplyr)
library(purrr)
library(ggplot2)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(

"y" = runif(200),

"g" = factor(rep(1:5, each = 40))
)

Triangularize 'y'
df_tri <- triangularize(df, y_col = "y")
df_tri

Plot triangle

df_tri %>%
ggplot(aes(x = .triangle_x, y =y, color = .edge)) +
geom_point() +
theme_minimal ()

#
Grouped squaring
#

Triangularize 'y' for each group
First cluster the groups a bit to move the
triangles away from each other
df_tri <- df %>%
cluster_groups(

cols = "y",

group_cols = "g",

suffix = ""

104

triangularize

overwrite = TRUE
) %>%
dplyr::group_by(g) %>%
triangularize(

y_col ="y",

overwrite = TRUE

)

Plot triangles

df_tri %>%
ggplot(aes(x = .triangle_x, y =y, color = g)) +
geom_point() +
theme_minimal ()

#
Specifying minimum value
#

Specify minimum value manually
df_tri <- triangularize(df, y_col ="y
df _tri

n
’

.min = -2)

Plot triangle

df_tri %>%
ggplot(aes(x = .triangle_x, y =y, color = .edge)) +
geom_point() +
theme_minimal ()

#
Multiple triangles by contraction
#

Start by squaring 'y'
df_tri <- triangularize(df, y_col = "y")

Contract '.triangle_x' and 'y' towards the centroid
To contract with multiple multipliers at once,
we wrap the call in purrr::map_dfr
df_expanded <- purrr: :map_dfr(
x = 1:10 / 10,
.f = function(mult) {
expand_distances(
data = df_tri,
cols = c(".triangle_x", "y"),
multiplier = mult,
origin_fn = centroid,
overwrite = TRUE
)
}

)
df_expanded

df_expanded %>%
ggplot(aes(
x = .triangle_x_expanded, y = y_expanded,
color = .edge, alpha = .multiplier

vector_length

)+
geom_point() +
theme_minimal()

105

vector_length

Calculate vector length(s)

Description

Experimental

Calculates vector lengths/magnitudes row- or column-wise with

Where x is the vec

sqrt(sum(z?))

tor to get the length/magnitude of.

Should not be confused with 1length (), which counts the elements.

Usage
vector_length(
data,
cols = NULL,

by_row = is.data.frame(data),
len_col_name = ".vec_len",
overwrite = FALSE

Arguments

data
cols

by_row

len_col_name

overwrite

Value

Vector length(s).

data.frame or vector.

Names of columns in “data* to measure vector length of.

Whether to measure length of row vectors instead of column vectors. (Logical)

Note: Disable when ‘data" is a vector.

Name of new column with the row vector lengths when “data* isadata.frame

and “by_row" is TRUE.

Whether to allow overwriting of existing columns. (Logical)

When ‘data" is a vector: scalar

When ‘data’ is a data.frame and ‘by_row" is TRUE: ‘data‘ with an extra column with row

vector lengths.

When ‘data* is a data.frame and “by_row" is FALSE: A data.frame with the summarized col-

umn vector lengths

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

106 vector_length

See Also

Other measuring functions: angle(), distance()

Examples

Attach packages
library(rearrr)
library(dplyr)

Set seed
set.seed(1)

Create a data frame
df <- data.frame(
"x" = runif(20),
"y" = runif(20),

non

g" = rep(1:4, each = 5)
)

Measure row-wise
vector_length(df, cols = c("x", "y"), by_row = TRUE)

Measure column-wise
vector_length(df, cols = c("x", "y"), by_row = FALSE)

Tyt

By groups in
df %>%
dplyr::group_by(g) %>%
vector_length(cols = c("x", "y"), by_row = FALSE)

g

Measure vector length of a vector
vector_length(c(1:10))

Index

angle, 3, 31, 106
apply_transformation_matrix, 5, 19, 28,
33,38,42,71,74,77,80, 84, 92, 95

ceiling, 23, 53
center_max, 7, 10, 16, 45, 60, 62, 64, 66, 67
87
center_min, 8,9, 16, 45, 60, 62, 64, 66, 67, 87
centroid, 11, 25, 52, 55, 57
centroid(), 3, 5, 16, 28, 30, 32, 37,42, 45,
73,76, 80, 83, 91, 95
circularize, 12, 50, 89, 103
closest_to, 8, 10, 15, 28, 31, 33, 38, 45, 60,
62, 64, 66, 67,87, 92, 95
closest_to_vec (closest_to), 15
cluster_groups, 6, 18, 28, 33, 38, 42,48, 71,
74,77, 80, 84, 92, 95, 101
cluster_groups(), 47
create_dimming_fn, 21, 23, 25
create_dimming_fn(), 27
create_n_fn, 22, 22, 25, 54
create_n_fn(), 53, 67
create_origin_fn, 11, 22, 23,24, 52, 55, 57
create_origin_fn(), 3, 5, 16, 28, 30, 32, 37,
42,45, 73,76, 80, 83, 91, 95

degrees_to_radians, 25

dim_values, 6, 16, 19, 26, 31, 33, 38, 42, 45,
71,74,77, 80, 84, 92, 95

distance, 4, 16, 28, 30, 33, 38, 45, 92, 95, 106

dplyr::group_by(), I8

expand_distances, 6, 16, 19, 28, 31, 31, 38,
42,45,71,74,77, 80, 84, 92, 95

expand_distances(), 36

expand_distances_each, 6, 16, 19, 28, 31,
33,36,42,45,71,74,77, 80, 84, 92,
95

expand_distances_each(), 32

farthest_from (furthest_from), 44

flip_values, 6, 19, 28, 33, 38,41, 71,74, 77,
80, 84, 92, 95

flip_values_vec (flip_values), 41

107

floor, 23,53

furthest_from, 8, 10, 16, 28, 31, 33, 38, 44,
60, 62, 64, 66, 67, 87, 92, 95

furthest_from_vec (furthest_from), 44

generate_clusters, 19,47, 101
hexagonalize, 13,49, 89, 103

identity, 23
is_most_centered, /1, 25, 51, 55, 57
is_most_centered(), 57

length(), 105

matrix multiplication, 5
median_index, 23, 53
median_index(), 67
midrange, 11, 25,52, 54, 57
midrange(), 3, 5, 16, 28, 30, 32, 37,42, 45,
73,76, 80, 83, 91, 95
min_max_scale, 55, 100
most_centered, /1, 25, 52, 55, 57
most_centered(), 3, 5, 16, 28, 30, 32, 37, 42,
45, 52,73, 76, 80, 83, 91, 95

pair_extremes, 8, 10, 16, 45, 58, 62, 64, 66,
67,87

pair_extremes_vec (pair_extremes), 58

position_max, 8, 10, 16, 45, 60, 61, 64, 66,
67,87

position_min, 8, 10, 16, 45, 60, 62, 63, 66,
67,87

quantile(), 53
quantile_index (median_index), 53
quantile_index(), 67

radians_to_degrees
(degrees_to_radians), 25

rev_windows, 8, 10, 16,45, 60, 62, 64, 65, 67,
87

rev_windows_vec (rev_windows), 65

roll_elements, 8, 10, 16,45, 60, 62, 64, 66,
66, 71,87

108

roll_elements(), 22, 69

roll_elements_vec (roll_elements), 66

roll_values, 6, 19, 28, 33, 38, 42, 67, 69, 74,
77,80, 84, 92, 95

roll_values(), 67

roll_values_vec (roll_values), 69

rotate_2d, 6, 19, 28, 33, 38,42, 71,72, 77,

80, 84, 92, 95

rotate_3d, 6, 19, 28, 33, 38, 42,71, 74,75,
80, 84, 92, 95

round, 23, 53

shear_2d, 6, 19, 28, 33, 38,42,71,74,77,79,
84, 92, 95

shear_3d, 6, 19, 28, 33, 38,42,71,74, 77, 80,
82,92, 95

shuffle_hierarchy, 8, 10, 16, 45, 60, 62, 64,
66, 67, 86

square, 13, 50, 88, 103

swirl_2d, 6, 16, 19, 28, 31, 33, 38,42, 45,71,
74,77, 80, 84, 90, 95

swirl_3d, 6, 16, 19, 28, 31, 33, 38, 42,45, 71,
74,77, 80, 84, 92, 93

to_unit_length, 56, 99
to_unit_length_vec (to_unit_length), 99
transfer_centroids, 19, 48, 100
triangularize, 13, 50, 89, 102

vector_length, 4, 31, 105

wrap_to_range (roll_values), 69
wrap_to_range_vec (roll_values), 69

INDEX

	angle
	apply_transformation_matrix
	center_max
	center_min
	centroid
	circularize
	closest_to
	cluster_groups
	create_dimming_fn
	create_n_fn
	create_origin_fn
	degrees_to_radians
	dim_values
	distance
	expand_distances
	expand_distances_each
	flip_values
	furthest_from
	generate_clusters
	hexagonalize
	is_most_centered
	median_index
	midrange
	min_max_scale
	most_centered
	pair_extremes
	position_max
	position_min
	rev_windows
	roll_elements
	roll_values
	rotate_2d
	rotate_3d
	shear_2d
	shear_3d
	shuffle_hierarchy
	square
	swirl_2d
	swirl_3d
	to_unit_length
	transfer_centroids
	triangularize
	vector_length
	Index

