
Using the qs package

qs – quick serialization of R objects

This package provides an interface for quickly writing (serializing) and reading (de-serializing) objects to and
from disk. The goal of this package is to provide a lightning-fast and complete replacement for the saveRDS
and readRDS functions in R.

Inspired by the fst package, qs uses a similar block-compression approach using the zstd library and direct “in
memory” compression, which allows for lightning quick serialization. It differs in that it uses a more general
approach for attributes and object references for common data types (numeric data, strings, lists, etc.),
meaning any S3 object built on common data types, e.g., tibbles, time-stamps, bit64, etc. can be serialized.
For less common data types (formulas, environments, functions, etc.), qs relies on built in R serialization
functions via the RApiSerialize package followed by block-compression.

For character vectors, qs also uses the alt-rep system to quickly read in string data.

Features

The table below compares the features of different serialization approaches in R.

qs fst saveRDS
Not Slow Yes Yes No
Numeric Vectors Yes Yes Yes
Integer Vectors Yes Yes Yes
Logical Vectors Yes Yes Yes
Character Vectors Yes Yes Yes
Character Encoding Yes (vector-wide only) Yes
Complex Vectors Yes No Yes
Data.Frames Yes Yes Yes
On disk row access No Yes No
Attributes Yes Some Yes
Lists / Nested Lists Yes No Yes
Multi-threaded No (Not Yet) Yes No

Summary Benchmarks

The table below lists serialization speed for several different data types (listed in MB/s).

qwrite qread saveRDS readRDS
write_fst
threads:1

read_fst
threads:1

write_fst
threads:4

read_fst
threads:4

Integer
Vector

1015.2 889.8 27.1 135.5 686.6 442.4 699.1 567.9

Numeric
Vector

861.2 954.0 24.3 131.9 744.0 638.7 754.4 848.0

Character
Vector

1312.9 715.8* 49.1 43.9 1440.9 59.5 1536.3 59.3

List 197.2 311.5 7.7 123.5 N/A N/A N/A N/A
Environment 56.0 117.5 7.7 89.6 N/A N/A N/A N/A

1

Objects used for benchmarking

• Integer Vector: sample(1e8)
• Numeric Vector: runif(1e8)
• Character Vector: qs::randomStrings(1e7)
• List: map(1:1e5,sample(100))
• Environment:x<-map(1:1e5,sample(100)); names(x)<-1:1e5; as.environment(x)

Installation:

1. devtools::install_github("traversc/qs")

Example:

See tests/correctness_testing.r for more examples. Below is an example serializing a large data.frame
to disk.
library(qs)
x1 <- data.frame(int = sample(5e6, replace=T),

num = rnorm(5e6),
char = randomStrings(5e6), stringsAsFactors = F)

qsave(x1, "/tmp/mydata.qs")

x2 <- qread("/tmp/mydata.qs")
identical(x1, x2) # returns true

[1] TRUE

Additional Benchmarks

Data.Frame benchmark

Benchmarks for serializing and de-serializing large data.frames (5 million rows) composed of a numeric column
(rnorm), an integer column (sample(5e6)), and a character vector column (random alphanumeric strings of
length 50). See vignettes/dataframe_bench.png for a comparison using different compression parameters.

This benchmark also includes materialization of alt-rep data, for an apples-to-apples comparison.

Serialization speed with default parameters:

Method write time (s) read time (s)
qs 0.49391294 8.8818166
fst (1 thread) 0.37411811 8.9309314
fst (4 thread) 0.3676273 8.8565951
saveRDS 14.377122 12.467517

Serialization speed with different parameters

2

Figure 1: dataframe_bench

Nested List benchmark

Benchmarks for serialization of random nested lists with random attributes (approximately 50 Mb). See the
nested list example in the tests/correctness_testing.r.

Serialization speed with default parameters

Method write time (s) read time (s)
qs 0.17840716 0.19489372
saveRDS 3.484225 0.58762548

3

Figure 2: nested_list_bench

4

	qs – quick serialization of R objects
	Features
	Summary Benchmarks
	Objects used for benchmarking

	Installation:
	Example:
	Additional Benchmarks
	Data.Frame benchmark
	Nested List benchmark

