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1 The psych package

1.1 Preface

The psych package (Revelle, 2010) has been developed to include those functions most
useful for teaching and learning basic psychometrics and personality theory. Functions
have been developed for many parts of the analysis of test data, including basic de-
scriptive statistics (describe and pairs.panels), dimensionality analysis (ICLUST, VSS,
principal, factor.pa), reliability analysis (omega, guttman) and eventual scale construc-
tion (cluster.cor, score.items). The use of these and other functions is described
in more detail in the accompanying vignette (overview.pdf) as well as in the complete
user’s manual and the relevant help pages. (These vignettes are also available at http://
personality-project.org/r/overview.pdf) and http://personality-project.org/
r/psych_for_sem.pdf) .

This vignette is concerned with the problem of modeling structural data and using the psych
package as a front end for the much more powerful sem package of John Fox Fox (2006,
2009). The first section discusses how to simulate particular latent variable structures. The
second considers several Exploratory Factor Analysis (EFA) solutions to these problems.
The third section considers how to do confirmatory factor analysis and structural equation
modeling using the sem package but with the input prepared using functions in the psych
package.

1.2 Creating and modeling structural relations

One common application of psych is the creation of simulated data matrices with particular
structures to use as examples for principal components analysis, factor analysis, cluster
analysis, and structural equation modeling. This vignette describes some of the functions
used for creating, analyzing, and displaying such data sets. The examples use two other
packages: Rgraphviz and sem. Although not required to use the psych package, sem is
required for these examples. Although Rgraphviz had been used for the graphical displays,
it has now been replaced with graphical functions within psych. The analyses themselves
require only the sem package to do the structural modeling.

2 Functions for generating correlational matrices with a par-
ticular structure

The sim family of functions create data sets with particular structure. Most of these func-
tions have default values that will produce useful examples. Although graphical summaries
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of these structures will be shown here, some of the options of the graphical displays will be
discussed in a later section.

The sim functions include:

sim.structure A function to combine a measurement and structural model into one
data matrix. Useful for understanding structural equation models. Combined with
structure.diagram to see the proposed structure.

sim.congeneric A function to create congeneric items/tests for demonstrating classical
test theory. This is just a special case of sim.structure.

sim.hierarchical A function to create data with a hierarchical (bifactor) structure.

sim.item A function to create items that either have a simple structure or a circumplex
structure.

sim.circ Create data with a circumplex structure.
sim.dichot Create dichotomous item data with a simple or circumplex structure.

sim.minor Create a factor structure for nvar variables defined by nfact major factors and

%“minor” factors for n observations.

sim.parallel Create a number of simulated data sets using sim.minor to show how parallel
analysis works.

sim.rasch Create IRT data following a Rasch model.
sim.irt Create a two parameter IRT logistic (2PL) model.

sim.anova Simulate a 3 way balanced ANOVA or linear model, with or without repeated
measures.

To make these examples replicable for readers, all simulations are prefaced by setting the
random seed to a fixed (and for some, memorable) number (Adams, 1980). For normal use
of the simulations, this is not necessary.

2.1 sim.congeneric

Classical test theory considers tests to be tau equivalent if they have the same covariance
with a vector of latent true scores, but perhaps different error variances. Tests are consid-
ered congeneric if they each have the same true score component (perhaps to a different
degree) and independent error components. The sim.congeneric function may be used
to generate either structure.



The first example considers four tests with equal loadings on a latent factor (that is, a
T equivalent model). If the number of subjects is not specified, a population correlation
matrix will be generated. If N is specified, then the sample correlation matrix is returned.
If the “short” option is FALSE, then the population matrix, sample matrix, and sample
data are all returned as elements of a list.

library(psych)

set.seed(42)

tau <- sim.congeneric(loads=c(.8,.8,.8,.8)) #population values

tau.samp <- sim.congeneric(loads=c(.8,.8,.8,.8),N=100) # sample correlation matrix for 10
round (tau. samp, 2)

vV V. Vv Vv V

vi Vv2 V3 V4
Vi 1.00 0.68 0.72 0.66
V2 0.68 1.00 0.65 0.67
V3 0.72 0.65 1.00 0.76
V4 0.66 0.67 0.76 1.00

> tau.samp <- sim.congeneric(loads=c(.8,.8,.8,.8),N=100, short=FALSE)
> tau.samp

Call: NULL

$model (Population correlation matrix)
Vi V2 V3 V4
Vi 1.00 0.64 0.64 0.64
V2 0.64 1.00 0.64 0.64
V3 0.64 0.64 1.00 0.64
V4 0.64 0.64 0.64 1.00

$r (Sample correlation matrix for sample size = 100 )
Vi V2 V3 V4

Vi 1.00 0.70 0.62 0.58

V2 0.70 1.00 0.65 0.64

V3 0.62 0.65 1.00 0.59

V4 0.58 0.64 0.59 1.00

> dim(tau.samp$observed)
(1] 100 4

In this last case, the generated data are retrieved from tau.samp$observed. Congeneric
data are created by specifying unequal loading values. The default values are loadings of
c(.8,.7,.6,.5). As seen in Figure 1, tau equivalence is the special case where all paths are



equal.

> cong <- sim.congeneric(N=100)
> round(cong,2)

Vi V2 V3 V4
Vi 1.00 0.57 0.53 0.46
V2 0.57 1.00 0.35 0.41
V3 0.53 0.35 1.00 0.43
V4 0.46 0.41 0.43 1.00

> #plot.new()
> ml <- structure.diagram(c("a","b","c","d"))

Structural model

x1
X2
C
af
x4

Figure 1: Tau equivalent tests are special cases of congeneric tests. Tau equivalence assumes
a=b=c=d



2.2 sim.hierarchical

The previous function, sim.congeneric, is used when one factor accounts for the pattern
of correlations. A slightly more complicated model is when one broad factor and several
narrower factors are observed. An example of this structure might be the structure of
mental abilities, where there is a broad factor of general ability and several narrower factors
(e.g., spatial ability, verbal ability, working memory capacity). Another example is in the
measure of psychopathology where a broad general factor of neuroticism is seen along with
more specific anxiety, depression, and aggression factors. This kind of structure may be
simulated with sim.hierarchical specifying the loadings of each sub factor on a general
factor (the g-loadings) as well as the loadings of individual items on the lower order factors
(the f-loadings). An early paper describing a bifactor structure was by Holzinger and
Swineford (1937). A helpful description of what makes a good general factor is that of
Jensen and Weng (1994).

For those who prefer real data to simulated data, six data sets are included in the bifac-
tor data set. One is the original 14 variable problem of Holzinger and Swineford (1937)
(holzinger), a second is a nine variable problem adapted by Bechtoldt (1961) from Thur-
stone and Thurstone (1941) (the data set is used as an example in the SAS manual and
discussed in great detail by McDonald (1999)), a third is from a recent paper by Reise
et al. (2007) with 16 measures of patient reports of interactions with their health care
provider.

> set.seed(42)

> gload=matrix(c(.9,.8,.7),nrow=3)

> fload <- matrix(c(.9,.8,.7,rep(0,9),.7,.6,.5,
+ rep(0,9),.6,.5,.4), ncol=3)

> fload #echo it to see the structure

(.11 [,2]1 [,3]

[1,] 0.9 0.0 0.0
[2,] 0.8 0.0 0.0
[3,] 0.7 0.0 0.0
[4,] 0.0 0.7 0.0
[5,] 0.0 0.6 0.0
[6,] 0.0 0.5 0.0
[7,] 0.0 0.0 0.6
[8,] 0.0 0.0 0.5
[9,] 0.0 0.0 0.4

> bifact <- sim.hierarchical(gload=gload,fload=fload)
> round(bifact,2)



vi v2 V3 Vv4 V5 Ve V7 V8 V9

Vi 1.00 0.72 0.63 0.45 0.39 0.32 0.34 0.28 0.23
V2 0.72 1.00 0.56 0.40 0.35 0.29 0.30 0.25 0.20
V3 0.63 0.56 1.00 0.35 0.30 0.25 0.26 0.22 0.18
V4 0.45 0.40 0.35 1.00 0.42 0.35 0.24 0.20 0.16
V5 0.39 0.35 0.30 0.42 1.00 0.30 0.20 0.17 0.13
V6 0.32 0.29 0.25 0.35 0.30 1.00 0.17 0.14 0.11
V7 0.34 0.30 0.26 0.24 0.20 0.17 1.00 0.30 0.24
V8 0.28 0.25 0.22 0.20 0.17 0.14 0.30 1.00 0.20
V9 0.23 0.20 0.18 0.16 0.13 0.11 0.24 0.20 1.00

These data can be represented as either a bifactor (Figure 2 panel A) or hierarchical
(Figure 2 Panel B) factor solution. The analysis was done with the omega function.

2.3 sim.item and sim.circ

Many personality questionnaires are thought to represent multiple, independent factors. A
particularly interesting case is when there are two factors and the items either have simple
structure or circumplex structure. Examples of such items with a circumplex structure are
measures of emotion (Rafaeli and Revelle, 2006) where many different emotion terms can
be arranged in a two dimensional space, but where there is no obvious clustering of items.
Typical personality scales are constructed to have simple structure, where items load on
one and only one factor.

An additional challenge to measurement with emotion or personality items is that the items
can be highly skewed and are assessed with a small number of discrete categories (do not
agree, somewhat agree, strongly agree).

The more general sim.item function, and the more specific, sim.circ functions simulate
items with a two dimensional structure, with or without skew, and varying the number of
categories for the items. An example of a circumplex structure is shown in Figure 3

2.4 sim.structure

A more general case is to consider three matrices, f;,@y, f; which describe, in turn, a
measurement model of x variables, j?x, a measurement model of y variables, f;, and a
covariance matrix between and within the two sets of factors. If f; is a vector and fy and
p7zixy are NULL, then this is just the congeneric model. If ];; is a matrix of loadings with
n rows and ¢ columns, then this is a measurement model for n variables across ¢ factors.
If p_hixy is not null, but ]_C; is NULL, then the factors in f, are correlated. Finally, if all



> op <- par(mfrow=c(1,2))

> m.bi <- omega(bifact,title="A bifactor model")

> m.hi <- omega(bifact,sl=FALSE,title="A hierarchical model")
> op <- par(mfrow = c¢(1,1))

A bifactor model A hierarchical model

Figure 2: (Left panel) A bifactor solution represents each test in terms of a general factor
and a residualized group factor. (Right Panel) A hierarchical factor solution has g as a
second order factor accounting for the correlations between the first order factors



> circ <- sim.circ(16)
> f2 <- fa(circ,2)
> plot(f2,title="16 simulated variables in a circumplex pattern")

16 simulated variables in a circumplex pattern
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Figure 3: Emotion items or interpersonal items frequently show a circumplex structure.
Data generated by sim.circ and factor loadings found by the principal axis algorithm using
factor.pa.
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three matrices are not NULL, then the data show the standard linear structural relations
(LISREL) structure.

Consider the following examples:

2.4.1 ﬁc is a vector implies a congeneric model

> set.seed(42)

> fx <- ¢(.9,.8,.7,.6)

> congl <- sim.structure(fx)
> congl

Call: sim.structure(fx = fx)

$model (Population correlation matrix)
Vi v2 V3 V4
Vi 1.00 0.72 0.63 0.54
V2 0.72 1.00 0.56 0.48
V3 0.63 0.56 1.00 0.42
V4 0.54 0.48 0.42 1.00

$reliability (population reliability)
[1] 0.81 0.64 0.49 0.36

2.4.2 f; is a matrix implies an independent factors model:

> set.seed(42)

> fx <- matrix(c(.9,.8,.7,rep(0,9),.7,.6,.5,rep(0,9),.6,.5,.4), ncol=3)
> three.fact <- sim.structure(fx)

> three.fact

Call: sim.structure(fx = fx)

$model (Population correlation matrix)
Vi v2 V3 Vv4 V5 V6 V7 V8 V9

Vi 1.00 0.72 0.63 0.00 0.00 0.00 0.00 0.0 0.00
V2 0.72 1.00 0.56 0.00 0.00 0.00 0.00 0.0 0.00
V3 0.63 0.56 1.00 0.00 0.00 0.00 0.00 0.0 0.00
V4 0.00 0.00 0.00 1.00 0.42 0.35 0.00 0.0 0.00
V5 0.00 0.00 0.00 0.42 1.00 0.30 0.00 0.0 0.00
V6 0.00 0.00 0.00 0.35 0.30 1.00 0.00 0.0 0.00

11



V7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.3 0.24
V8 0.00 0.00 0.00 0.00 0.00 0.00 0.30 1.0 0.20
V9 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.2 1.00

$reliability (population reliability)
[1] 0.81 0.64 0.49 0.49 0.36 0.25 0.36 0.25 0.16

Structural model

x1

=
g 06-=(2)
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o] ~ w N
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Figure 4: Three uncorrelated factors generated using the sim.structure function and drawn
using structure.diagram.
2.4.3 f, is a matrix and Phi #1 is a correlated factors model

> Phi = matrix(c(1,.5,.3,.5,1,.2,.3,.2,1), ncol=3)
> cor.f3 <- sim.structure(fx,Phi)

12



> fx

[,11 [,2] [,3]
[1,1] 0.9 0.0 oO.
[2,]
[3,]
(4,1
[5,]
(6,]
[7,]
[8,]
[9,]

> Phi

[,11 [,2]1 [,3]
[1,] 1.0 0.5 0.3

O O O O O O O O
O O O O O O N
O O O O O O O O
O O O U1 o N OO
O O O O O O O O
01Oy O O O O O O

> cor.f3

Call: sim.structure(fx = fx, Phi = Phi)

$model (Population correlation matrix)
Vi V2 V3 V4 V5 V6 V7 V8 Vo

Vi 1.00 0.720 0.630 0.315 0.270 0.23 0.162 0.14 0.108
V2 0.72 1.000 0.560 0.280 0.240 0.20 0.144 0.12 0.096
V3 0.63 0.560 1.000 0.245 0.210 0.17 0.126 0.10 0.084
V4 0.32 0.280 0.245 1.000 0.420 0.35 0.084 0.07 0.056
V5 0.27 0.240 0.210 0.420 1.000 0.30 0.072 0.06 0.048
V6 0.23 0.200 0.175 0.350 0.300 1.00 0.060 0.05 0.040
V7 0.16 0.144 0.126 0.084 0.072 0.06 1.000 0.30 0.240
V8 0.14 0.120 0.105 0.070 0.060 0.05 0.300 1.00 0.200
V9 0.11 0.096 0.084 0.056 0.048 0.04 0.240 0.20 1.000

$reliability (population reliability)
[1] 0.81 0.64 0.49 0.49 0.36 0.25 0.36 0.25 0.16

Using symbolic loadings and path coefficients For some purposes, it is helpful not
to specify particular values for the paths, but rather to think of them symbolically. This
can be shown with symbolic loadings and path coefficients by using the structure.list
and phi.list functions to create the fx and Phi matrices (Figure 5).

13



> fxs <- structure.list(9,list(F1=c(1,2,3),F2=c(4,5,6),F3=c(7,8,9)))
> Phis <- phi.list(3,list(F1=c(2,3),F2=c(1,3),F3=c(1,2)))
> fxs #show the matrix

F1 F2 F3
[1’] ngqn nQn non
[2,] ngon nQn non
[3’] ng3n nQn non
[4,] "O" "b4" nou
[5,] non npgn nQn
[6,] IIOII "b6" nou
[7,] I|Oll ||Ou "C7"
[8,] IIOII uou "C8"
[9,] non non negn

> Phis #show this one as well

F1 F2 F3
Fl lllll llrball llrcall
F2 llrabﬂ ll1|| "erll
F3 llracll "I‘bC“ ll1||

The structure.list and phi.list functions allow for creation of fx, Phi, and fy matrices
in a very compact form, just by specifying the relevant variables.

Drawing path models from Exploratory Factor Analysis solutions Alternatively,
this result can represent the estimated factor loadings and oblique correlations found us-
ing factanal (Maximum Likelihood factoring) or fa (Principal axis or minimum residual
(minres) factoring) followed by a promax rotation using the Promax function (Figure 6.
Comparing this figure with the previous one (Figure 5), it will be seen that one path was
dropped because it was less than the arbitrary “cut” value of .2.

> f3.p <- Promax(fa(cor.f3$model,3))

2.4.4 }_’; and f; are matrices, and Phi # 1 represents their correlations

A more complicated model is when there is a f; vector or matrix representing a set of Y
latent variables that are associated with the a set of y variables. In this case, the Phi
matrix is a set of correlations within the X set and between the X and Y set.

> set.seed(42)
> fx <- matrix(c(.9,.8,.7,rep(0,9),.7,.6,.5,rep(0,9),.6,.5,.4), ncol=3)

14



> #plot.new()
> corf3.mod <- structure.diagram(fxs,Phis)

Structural model

:
}
rab
rac
rbc

X7

x8

X | [ X
IIIHT
QO O O

X9

Figure 5: Three correlated factors with symbolic paths. Created using structure.diagram
and structure.list and phi.list for ease of input.
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> #plot.new()
> mod.f3p <- structure.diagram(f3.p,cut=.2)

Structural model

Figure 6: The empirically fitted structural model. Paths less than cut (.2 in this case, the
default is .3) are not shown.

16



> fy <- ¢(.6,.5,.4)
> Phi <- matrix(c(1,.48,.32,.4,.48,1,.32,.3,.32,.32,1,.2,.4,.3,.2,1), ncol=4)
> twelveV <- sim.structure(fx,Phi, fy)$model
> colnames (twelveV) <-rownames (twelveV) <- c(paste("x",1:9,sep=""),paste("y",1:3,sep=""))
> round (twelveV,2)
x1 x2 x3 x4 x5 x6 x7 x8 x9 yl1 y2 y3
x1 1.00 0.72 0.63 0.30 0.26 0.22 0.17 0.14 0.12 0.22 0.18 0.14
x2 0.72 1.00 0.56 0.27 0.23 0.19 0.15 0.13 0.10 0.19 0.16 0.13
x3 0.63 0.56 1.00 0.24 0.20 0.17 0.13 0.11 0.09 0.17 0.14 0.11
x4 0.30 0.27 0.24 1.00 0.42 0.35 0.13 0.11 0.09 0.13 0.10 0.08
x5 0.26 0.23 0.20 0.42 1.00 0.30 0.12 0.10 0.08 0.11 0.09 0.07
x6 0.22 0.19 0.17 0.35 0.30 1.00 0.10 0.08 0.06 0.09 0.08 0.06
x7 0.17 0.15 0.13 0.13 0.12 0.10 1.00 0.30 0.24 0.07 0.06 0.05
x8 0.14 0.13 0.11 0.11 0.10 0.08 0.30 1.00 0.20 0.06 0.05 0.04
x9 0.12 0.10 0.09 0.09 0.08 0.06 0.24 0.20 1.00 0.05 0.04 0.03
yl 0.22 0.19 0.17 0.13 0.11 0.09 0.07 0.06 0.05 1.00 0.30 0.24
y2 0.18 0.16 0.14 0.10 0.09 0.08 0.06 0.05 0.04 0.30 1.00 0.20
y3 0.14 0.13 0.11 0.08 0.07 0.06 0.05 0.04 0.03 0.24 0.20 1.00

Data with this structure may be created using the sim.structure function, and shown
either with the numeric values or symbolically using the structure.diagram function
(Figure 7).

> fxs <- structure.list(9,1ist(X1=c(1,2,3), X2 =c(4,5,6),X3 = ¢(7,8,9)))
> phi <- phi.list(4,list(Fl=c(4),F2=c(4),F3=c(4),F4=c(1,2,3)))
> fyx <- structure.list(3,list(Y=c(1,2,3)),"Y")

2.4.5 A hierarchical structure among the latent predictors.
Measures of intelligence and psychopathology frequently have a general factor as well as

multiple group factors. The general factor then is thought to predict some dependent latent
variable. Compare this with the previous model (see Figure 7).

These two models can be compared using structural modeling procedures (see below).

3 Exploratory functions for analyzing structure

Given correlation matrices such as those seen above for congeneric or bifactor models, the
question becomes how best to estimate the underlying structure. Because these data sets

17



> #plot.new()
> sg3 <- structure.diagram(fxs,phi,fyx)

Structural model

y3
X7

x8

x x
HIIIT
QO O
o
QO QO QD
3 [§ [=
N [

Figure 7: A symbolic structural model. Three independent latent variables are regressed
on a latent Y.
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fxh <- structure.list(9,list(X1=c(1:3),X2=c(4:6),X3=c(7:9),g=NULL))
fy <- structure.list(3,1list(Y=c(1,2,3)))

Phi <- diag(1,5,5)

Phi[4,c(1:3)] <- letters[1:3]

Phi[5,4] <- "r"

#plot.new()

hi.mod <-structure.diagram(fxh,Phi, fy)

V V V VvV Vv Vv Vv

Structural model

.

a

;
X5
X6

x
(o]

IIH\I{

x9

Figure 8: A symbolic structural model with a general factor and three group factors. The
general factor is regressed on the latent Y variable.
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were generated from a known model, the question becomes how well does a particular
model recover the underlying structure.

3.1 Exploratory simple structure models

The technique of principal components provides a set of weighted linear composites that
best aproximates a particular correlation or covariance matrix. If these are then rotated
to provide a more interpretable solution, the components are no longer the principal com-
ponents. The principal function will extract the first n principal components (default
value is 1) and if n>1, rotate to simple structure using a varimax, quartimin, or Promax
criterion.

> principal (congl$model)

Principal Components Analysis

Call: principal(r = congl$model)

Standardized loadings based upon correlation matrix
PC1 h2 u2

1 0.89 0.80 0.20

2 0.85 0.73 0.27

3 0.80 0.64 0.36

4 0.73 0.53 0.47

PC1
SS loadings 2.69
Proportion Var 0.67

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 6 and the objective function was
The degrees of freedom for the model are 2 and the objective function was 0.14

Fit based upon off diagonal values = 0.96

> fa(congi$model)

Factor Analysis using method = minres

Call: fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,
scores = scores, residuals = residuals, SMC = SMC, missing = FALSE,
impute = impute, min.err = min.err, max.iter = max.iter,
symmetric = symmetric, warnings = warnings, fm = fm, alpha = alpha)

Standardized loadings based upon correlation matrix

20
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MR1 h2 u2
Vi 0.9 0.81 0.19
V2 0.8 0.64 0.36
V3 0.7 0.49 0.51
V4 0.6 0.36 0.64

MR1
SS loadings 2.30
Proportion Var 0.57

Test of the hypothesis that 1 factor is sufficient.

The degrees of freedom for the null model are 6 and the objective function was

The degrees of freedom for the model are 2 and the objective function was

The root mean square of the residuals is O
The df corrected root mean square of the residuals is O

Fit based upon off diagonal values = 1
Measures of factor score adequacy

MR1
Correlation of scores with factors 0.94
Multiple R square of scores with factors 0.88

Minimum correlation of possible factor scores 0.77

It is important to note that although the principal components function does not exactly
reproduce the model parameters, the factor.pa function, implementing principal axes or
minimum residual (minres) factor analysis, does.

Consider the case of three underlying factors as seen in the bifact example above. Be-
cause the number of observations is not specified, there is no associated x> value. The
factor.congruence function reports the cosine of the angle between the factors.

> pc3 <- principal(bifact,3)
> pa3 <- fa(bifact,3,fm="pa")
> ml3 <- fa(bifact,3,fm="ml")
> pc3

Principal Components Analysis

Call: principal(r = bifact, nfactors = 3)

Standardized loadings based upon correlation matrix
RC1 RC3 RC2 h2 u2

Vi 0.82 0.29 0.22 0.80 0.20
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V2 0.82 0.23 0.18 0.75 0.25
V3 0.82 0.15 0.12 0.71 0.29
V4 0.32 0.68 0.13 0.58 0.42
V5 0.22 0.70 0.10 0.56 0.44
V6 0.08 0.77 0.08 0.60 0.40
V7 0.24 0.12 0.66 0.51 0.49
V8 0.16 0.08 0.68 0.50 0.50
V9 0.03 0.08 0.71 0.51 0.49

RC1 RC3 RC2
SS loadings 2.25 1.73 1.53
Proportion Var 0.25 0.19 0.17
Cumulative Var 0.25 0.44 0.61

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was
The degrees of freedom for the model are 12 and the objective function was 0.71

Fit based upon off diagonal values = 0.9
> pa3

Factor Analysis using method = pa
Call: fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,
scores = scores, residuals = residuals, SMC = SMC, missing = FALSE,
impute = impute, min.err = min.err, max.iter = max.iter,
symmetric = symmetric, warnings = warnings, fm = fm, alpha = alpha)
Standardized loadings based upon correlation matrix
PA1 PA3 PA2 h2 u2

Vi 0.9 0.0 0.00 0.81 0.19
V2 0.8 0.0 0.00 0.64 0.36
V3 0.7 0.0 0.00 0.49 0.51
V4 0.0 0.7 0.00 0.49 0.51
V5 0.0 0.6 0.00 0.36 0.64
V6 0.0 0.5 0.00 0.25 0.75
V7 0.0 0.0 0.59 0.36 0.64
V8 0.0 0.0 0.50 0.25 0.75
V9 0.0 0.0 0.40 0.16 0.84

PA1 PA3 PA2
S3S loadings 1.94 1.10 0.77
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Proportion Var 0.22 0.12 0.09
Cumulative Var 0.22 0.34 0.42

With factor correlations of
PA1 PA3 PA2

PA1 1.00 0.72 0.63

PA3 0.72 1.00 0.56

PA2 0.63 0.56 1.00

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was
The degrees of freedom for the model are 12 and the objective function was

The root mean square of the residuals is O
The df corrected root mean square of the residuals is O

Fit based upon off diagonal values = 1
Measures of factor score adequacy
PA1 PA3 PA2

Correlation of scores with factors 0.94 0.86 0.79
Multiple R square of scores with factors 0.88 0.73 0.63
Minimum correlation of possible factor scores 0.77 0.47 0.25
> ml3

Factor Analysis using method = ml

Call: fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,
scores = scores, residuals = residuals, SMC = SMC, missing = FALSE,
impute = impute, min.err = min.err, max.iter = max.iter,
symmetric = symmetric, warnings = warnings, fm = fm, alpha = alpha)

Standardized loadings based upon correlation matrix

ML1 ML2 ML3 h2 u2

Vi 0.9 0.0 0.0 0.81 0.19
V2 0.8 0.0 0.0 0.64 0.36
V3 0.7 0.0 0.0 0.49 0.51
V4 0.0 0.7 0.0 0.49 0.51
V5 0.0 0.6 0.0 0.36 0.64
V6 0.0 0.5 0.0 0.25 0.75
V7 0.0 0.0 0.6 0.36 0.64
V8 0.0 0.0 0.5 0.25 0.75
V9 0.0 0.0 0.4 0.16 0.84
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ML1 ML2 ML3
SS loadings 1.94 1.10 0.77
Proportion Var 0.22 0.12 0.09
Cumulative Var 0.22 0.34 0.42

With factor correlations of
ML1 ML2 ML3

ML1 1.00 0.72 0.63

ML2 0.72 1.00 0.56

ML3 0.63 0.56 1.00

Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 36 and the objective function was

The degrees of freedom for the model are 12 and the objective function was

The root mean square of the residuals is O
The df corrected root mean square of the residuals is O

Fit based upon off diagonal values = 1
Measures of factor score adequacy

ML1 ML2 ML3
Correlation of scores with factors 0.94 0.86 0.79
Multiple R square of scores with factors 0.89 0.73 0.63
Minimum correlation of possible factor scores 0.77 0.47 0.25

> factor.congruence(list(pc3,pa3,m13))

RC1 RC3 RC2 PA1 PA3 PA2 ML1 ML2 ML3

RC1 1.00 0.52 0.42 0.94 0.25 0.18 0.94 0.25 0.18
RC3 0.52 1.00 0.33 0.30 0.93 0.12 0.30 0.93 0.12
RC2 0.42 0.33 1.00 0.24 0.15 0.94 0.24 0.15 0.94
PA1 0.94 0.30 0.24 1.00 0.00 0.00 1.00 0.00 0.00
PA3 0.25 0.93 0.15 0.00 1.00 0.00 0.00 1.00 0.00
PA2 0.18 0.12 0.94 0.00 0.00 1.00 0.00 0.00 1.00
ML1 0.94 0.30 0.24 1.00 0.00 0.00 1.00 0.00 0.00
ML2 0.25 0.93 0.15 0.00 1.00 0.00 0.00 1.00 0.00
ML3 0.18 0.12 0.94 0.00 0.00 1.00 0.00 0.00 1.00

By default, all three of these procedures use the varimax rotation criterion. Perhaps it is
useful to apply an oblique transformation such as Promax or oblimin to the results. The
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Promax function in psych differs slightly from the standard promax in that it reports the
factor intercorrelations.

> ml3p <- Promax(ml3)
> ml3p

Call: NULL
Standardized loadings based upon correlation matrix
ML1 ML2 ML3 h2 u2

Vi 0.9 0.0 0.0 0.81 0.19
V2 0.8 0.0 0.0 0.64 0.36
V3 0.7 0.0 0.0 0.49 0.51
V4 0.0 0.7 0.0 0.49 0.51
V5 0.0 0.6 0.0 0.36 0.64
V6 0.0 0.5 0.0 0.25 0.75
V7 0.0 0.0 0.6 0.36 0.64
V8 0.0 0.0 0.5 0.25 0.75
V9 0.0 0.0 0.4 0.16 0.84

ML1 ML2 ML3
SS loadings 1.94 1.10 0.77
Proportion Var 0.22 0.12 0.09
Cumulative Var 0.22 0.34 0.42

With factor correlations of
ML1 ML2 ML3

ML1 1 0 0

ML2 0 1 0

ML3 0 0 1

3.2 Exploratory hierarchical models

In addition to the conventional oblique factor model, an alternative model is to consider the
correlations between the factors to represent a higher order factor. This can be shown either
as a bifactor solution Holzinger and Swineford (1937); Schmid and Leiman (1957) with a
general factor for all variables and a set of residualized group factors, or as a hierarchical
structure. An exploratory hierarchical model can be applied to this kind of data structure
using the omega function. Graphic options include drawing a Schmid - Leiman bifactor
solution (Figure 9) or drawing a hierarchical factor solution f(Figure 10).
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3.2.1 A bifactor solution

> om.bi <- omega(bifact)

Omega

Figure 9: An exploratory bifactor solution to the nine variable problem

The bifactor solution has a general factor loading for each variable as well as a set of residual
group factors. This approach has been used extensively in the measurement of ability and
has more recently been used in the measure of psychopathology (Reise et al., 2007). Data
sets included in the bifactor data include the original (Holzinger and Swineford, 1937)
data set (holzinger) as well as a set from Reise et al. (2007) (reise) and a nine variable
problem from Thurstone.

3.2.2 A hierarchical solution
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> om.hi <- omega(bifact,sl=FALSE)

Omega

HEERE
| |©] |
AN

Vv

Figure 10: An exploratory hierarchical solution to the nine variable problem.
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Both of these graphical representations are reflected in the output of the omega function.
The first was done using a Schmid-Leiman transformation, the second was not. As will be
seen later, the objects returned from these two analyses may be used as models for a sem
analysis. It is also useful to examine the estimates of reliability reported by omega.

> om.bi

Omega

Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
digits = digits, title = title, sl sl, labels = labels,
plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option)

Alpha: 0.79
G.6: 0.79
Omega Hierarchical: 0.69
Omega H asymptotic: 0.84
Omega Total 0.82

Schmid Leiman Factor loadings greater than 0.2
g Flx F2x F3x h2 u2 p2

Vi 0.90 0.40 0.98 0.02 0.84
V2 0.80 0.32 0.73 0.27 0.86
V3 0.65 0.46 0.54 0.93
V4 0.50 0.47 0.47 0.53 0.53
V5 0.43 0.42 0.36 0.64 0.51
V6 0.36 0.35 0.25 0.75 0.51
V7 0.37 0.17 0.83 0.82
V8 0.32 0.12 0.88 0.81
V9 0.25 0.08 0.92 0.80
With eigenvalues of:

g Flx F2* F3%
2.74 0.13 0.58 0.17
general/max 4.73 max/min = 4.32

mean percent general = 0.73 with sd = 0.17 and cv of 0.23
The degrees of freedom are 12 and the fit is 0.07

The root mean square of the residuals is 0.03
The df corrected root mean square of the residuals is 0.07

Compare this with the adequacy of just a general factor and no group factors
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The degrees of freedom for just the general factor are 27 and the fit is

The root mean square of the residuals is 0.05
The df corrected root mean square of the residuals is 0.08

Measures of factor score adequacy

g Fix F2x F3*
Correlation of scores with factors 0.94 0.47 0.67 0.62
Multiple R square of scores with factors 0.88 0.22 0.45 0.39
Minimum correlation of factor score estimates 0.75 -0.55 -0.11 -0.22

Yet one more way to treat the hierarchical structure of a data set is to consider hierarchical
cluster analysis using the ICLUST algorithm (Figure 11). ICLUST is most appropriate for
forming item composites.

4 Confirmatory models

Although the exploratory models shown above do estimate the goodness of fit of the model
and compare the residual matrix to a zero matrix using a y? statistic, they estimate more
parameters than are necessary if there is indeed a simple structure, and they do not allow
for tests of competing models. The sem function in the sem package by John Fox allows
for confirmatory tests. The interested reader is referred to the sem manual for more detail
(Fox, 2009).

4.1 Using psych as a front end for the sem package

Because preparation of the sem commands is a bit tedious, several of the psych package
functions have been designed to provide the appropriate commands. That is, the functions
structure.list, phi.list, structure.diagram, structure.sem, and omega.graph may
be used as a front end to sem. Usually with no modification, but sometimes with just
slight modification, the model output from the structure.diagram, structure.sem, and
omega.graph functions is meant to provide the appropriate commands for sem.

4.2 Testing a congeneric model versus a tau equivalent model
The congeneric model is a one factor model with possibly unequal factor loadings. The

tau equivalent model model is one with equal factor loadings. Tests for these may be done
by creating the appropriate structures. The structure.graph function which requires
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Hierarchical cluster analysis of bifact data

Figure 11: A hierarchical cluster analysis of the bifact data set using ICLUST
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Rgraphviz, or structure.diagram or the structure.sem functions which do not may be
used.

The following example tests the hypothesis (which is actually false) that the correlations
found in the cong data set (see 2.1) are tau equivalent. Because the variable labels in that
data set were V1 ... V4, we specify the labels to match those.

v

library(sem)

v

mod.tau <- structure.sem(c("a","a","a","a"),labels=paste("V",1:4,sep=""))
mod. tau #show it

v

Path Parameter StartValue
X1->V1l a

X1->V2 a

X1->V3 a

X1->V4 a

V1<->V1 xle

V2<->V2 x2e

V3<->V3 x3e

V4<->V4 x4e

X1<->X1 <fixed> 1

© 0 NO Ok W N -

v

sem.tau <- sem(mod.tau,cong,100)
summary (sem.tau,digits=2)

v

Model Chisquare = 6.6 Df = 5 Pr(>Chisq) = 0.25
Chisquare (null model) = 105 Df = 6
Goodness-of-fit index = 0.97

Adjusted goodness-of-fit index = 0.94

RMSEA index = 0.057 90% CI: (NA, 0.16)
Bentler-Bonnett NFI = 0.94

Tucker-Lewis NNFI = 0.98

Bentler CFI = 0.98

SRMR = 0.07

BIC = -16

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.03 -0.44 -0.25 -0.08 0.53 0.89

Parameter Estimates

Estimate Std Error z value Pr(>lz|)
a 0.69 0.064 10.8 0.0e+00 V1 <--- X1
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xle 0.43 0.082 5.2 1.8e-07 V1 <-—> V1

x2e 0.56 0.098 5.7 1.5e-08 V2 <--> V2

x3e 0.58 0.101 5.7 1.1e-08 V3 <--> V3

x4e 0.59 0.103 5.8 8.3e-09 V4 <--> V4
Iterations = 10

Test whether the data are congeneric. That is, whether a one factor model fits. Compare
this to the prior model using the anova function.

> mod.cong <- structure.sem(c("a","b","c","d"),labels=paste("V",1:4,sep=""))
> mod.cong #show the model

Path Parameter StartValue
X1->V1l a

X1->V2 b

X1->V3 ¢

X1->v4 d

V1<->V1 xle

V2<->V2 x2e

V3<->V3 x3e

V4<->V4 x4e

X1<->X1 <fixed> 1

©O© 0 NO Ok W N -

v

sem.cong <- sem(mod.cong,cong,100)
summary (sem.cong,digits=2)

v

Model Chisquare = 2.9 Df = 2 Pr(>Chisq) = 0.23
Chisquare (null model) = 105 Df = 6
Goodness-of-fit index = 0.99

Adjusted goodness-of-fit index = 0.93

RMSEA index = 0.069 90% CI: (NA, 0.22)
Bentler-Bonnett NFI = 0.97

Tucker-Lewis NNFI = 0.97

Bentler CFI = 0.99

SRMR = 0.03

BIC = -6.3

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.57 -0.07 0.03 0.01 0.16 0.54

Parameter Estimates
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Estimate Std Error z value Pr(>|z|)

a 0.83 0.098 8.4 0.0e+00 V1 <--- X1
b 0.66 0.100 6.6 3.4e-11 V2 <-—-- X1
c 0.63 0.102 6.2 6.4e-10 V3 <--- X1
d 0.59 0.105 5.7 1.5e-08 V4 <-—- X1
xle 0.31 0.101 3.1 2.1e-03 V1 <-—> V1
x2e 0.56 0.100 5.6 2.1e-08 V2 <--> V2
x3e 0.61 0.104 5.8 6.5e-09 V3 <--> V3
x4e 0.65 0.111 5.9 4.7e-09 V4 <--> V4
Iterations = 12

> anova(sem.cong,sem.tau) #test the difference between the two models

LR Test for Difference Between Models

Model Df Model Chisq Df LR Chisq Pr(>Chisq)
Model 1 2 2.9417
Model 2 5 6.5935 3 3.6518 0.3016

The anova comparison of the congeneric versus tau equivalent model shows that the change
in x? is significant given the change in degrees of freedom.

4.3 Testing the dimensionality of a hierarchical data set by creating the
model

The bifact correlation matrix was created to represent a hierarchical structure. Various
confirmatory models can be applied to this matrix.

The first example creates the model directly, the next several create models based upon
exploratory factor analyses. mod.one is a congeneric model of one factor accounting for
the relationships between the nine variables. Although not correct, with 100 subjects,
this model can not be rejected. However, an examination of the residuals suggests serious
problems with the model.

> mod.one <- structure.sem(letters[1:9],labels=paste("V",1:9,sep=""))
> mod.one #show the model

Path Parameter StartValue
1 X1->V1 a
2 X1->V2 b
3 X1->V3 ¢
4 X1->V4 d
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5 X1->V5 e
6 X1->V6 f
7 X1->V7 g
8 X1->V8 h
9 X1->V9 i

10 V1<->V1 xle
11 V2<->V2 x2e
12 V3<->V3 x3e
13 V4<->V4 x4e
14 V5<->V5 xbe
15 V6<->V6 x6e
16 V7<->V7 xTe
17 V8<->V8 x8e
18 V9<->V9 x9e
19 X1<->X1 <fixed> 1

> sem.one <- sem(mod.one,bifact,100)
> summary(sem.one,digits=2)

Model Chisquare = 19 Df = 27 Pr(>Chisq) = 0.88
Chisquare (null model) = 235 Df = 36
Goodness-of-fit index = 0.96

Adjusted goodness-of-fit index = 0.93

RMSEA index = 0  90% CI: (NA, 0.04)
Bentler-Bonnett NFI = 0.92

Tucker-Lewis NNFI = 1.1

Bentler CFI = 1

SRMR = 0.053

BIC = -106

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.27 -0.18 0.00 0.14 0.12 1.61

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

a 0.88 0.084 10.5 0.0e+00 V1 <--- X1
b 0.80 0.088 9.1 0.0e+00 V2 <--- X1
c 0.70 0.092 7.6 3.8e-14 V3 <--- X1
d 0.54 0.099 5.5 4.9e-08 V4 <-—— X1
e 0.47 0.101 4.6 3.5e-06 V5 <--- X1
f 0.39 0.103 3.8 1.3e-04 V6 <-—— X1
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g 0.40 0.103 3.9 8.3e-05 V7 <--- X1
h 0.34 0.104 3.3 1.1e-03 V8 <-—- X1
i 0.27 0.105 2.6 9.1e-03 V9 <--- X1
xle 0.23 0.061 3.7 2.4e-04 V1 <-—> V1
x2e 0.36 0.069 5.3 1.1e-07 V2 <--> V2
x3e 0.51 0.084 6.1 1.0e-09 V3 <-—> V3
x4e 0.71 0.107 6.6 4.1e-11 V4 <--> V4
x5e 0.78 0.116 6.7 1.6e-11 V5 <--> V5
x6e 0.84 0.123 6.8 7.5e-12 V6 <--> V6
x7e 0.84 0.122 6.8 7.9e-12 V7 <-—> V7
x8e 0.88 0.128 6.9 5.0e-12 V8 <--> V8
x9%e 0.92 0.133 7.0 3.5e-12 V9 <--> V9
Iterations = 14

> round(residuals(sem.one),2)

Vi V2 V3 Va V5 V6 V7 V8 V9

vi 0.00 0.02 0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01
v2 0.02 0.00 0.00 -0.03 -0.03 -0.03 -0.02 -0.02 -0.02
V3 0.02 0.00 0.00 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02
v4 -0.02 -0.03 -0.02 0.00 0.17 0.14 0.02 0.01 0.01
V6 -0.02 -0.03 -0.03 0.17 0.00 0.11 0.01 0.01 0.01
V6 -0.02 -0.03 -0.02 0.14 0.11 0.00 0.01 0.01 0.00
V7 -0.02 -0.02 -0.02 0.02 0.01 0.01 0.00 0.16 0.13
v8 -0.02 -0.02 -0.02 0.01 0.01 0.01 0.16 0.00 0.11
ve9 -0.01 -0.02 -0.02 0.01 0.01 0.00 0.13 0.11 0.00

4.4 Testing the dimensionality based upon an exploratory analysis

Alternatively, the output from an exploratory factor analysis can be used as input to the
structure.sem function.

> f1 <- factanal (covmat=bifact,factors=1)
> mod.f1 <- structure.sem(f1)

> sem.f1 <- sem(mod.f1,bifact,100)

> sem.f1

Model Chisquare = 18.72871 Df = 27

Vi V2 V3 V4 V5 V6 v7 V8
0.8801449 0.7978613 0.6986695 0.5401625 0.4691098 0.3944311 0.4036073 0.3400459
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V9 xle x2e x3e x4e xbe x6e x7e
0.2742160 0.2253461 0.3634188 0.5118600 0.7082243 0.7799344 0.8444243 0.8371012
x8e x9e
0.8843691 0.9248059

Iterations = 14

The answers are, of course, identical.

4.5 Specifying a three factor model

An alternative model is to extract three factors and try this solution. The fa factor
analysis function (using the minimum residual algorithm) is used to detect the structure.
Alternatively, the factanal could have been used.

> f3 <-fa(bifact,3)

> mod.f3 <- structure.sem(f3)

> sem.f3 <- sem(mod.f3,bifact,100)
> summary(sem.f3,digits=2)

Model Chisquare = 38 Df = 27 Pr(>Chisq) = 0.071
Chisquare (null model) = 235 Df = 36
Goodness-of-fit index = 0.9

Adjusted goodness-of-fit index = 0.84

RMSEA index = 0.065 90% CI: (NA, 0.11)
Bentler-Bonnett NFI = 0.84

Tucker-Lewis NNFI = 0.92

Bentler CFI = 0.94

SRMR = 0.15

BIC = -86

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 0.0 1.1 1.1 2.0 3.4

Parameter Estimates
Estimate Std Error z value Pr(>|zl)

Fa2vi1 1.02 NaN NaN NaN V1 <--- MR1
F3v2 0.80 0.091 8.8 0.0e+00 V2 <--- MR3
F3v3 0.70 0.094 7.5 7.le-14 V3 <--- MR3
Fiv4 0.70 0.110 6.4 1.7e-10 V4 <-—- MR2
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F1vs  0.60 0.110 5.5 4.3e-08 V5 <--- MR2
Fivé 0.50 0.111 4.5 7.2e-06 V6 <--- MR2
xle -0.04 NaN NaN NaN V1 <--> V1
x2e 0.36 0.080 4.5 7.1e-06 V2 <-—> V2
x3e 0.51 0.087 5.9 3.8e-09 V3 <-—> V3
x4e 0.51 0.118 4.3 1.5e-05 V4 <--> V4
x5e 0.64 0.117 5.5 4.3e-08 V5 <-—> V5
x6e 0.75 0.122 6.1 8.6e-10 V6 <--> V6
xTe 1.00 0.142 7.0 2.0e-12 V7 <-—> V7
x8e 1.00 0.142 7.0 2.0e-12 V8 <--> V8
x9e 1.00 0.142 7.0 2.0e-12 V9 <--> V9
rF2F1 0.64 NaN NaN NaN MR2 <--> MR1
rF3F1 0.72 0.104 6.9 5.1e-12 MR2 <--> MR3
rF3F2 0.88 NaN NaN NaN MR1 <--> MR3
Iterations = 18

Aliased parameters: F2V1 xle rF2F1 rF3F2
> round(residuals(sem.f3),2)

Vi v2 V3 Vv4 V65 Ve V7 V8 V9

Vi 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.28 0.23
V2 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.25 0.20
V3 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.22 0.18
V4 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.20 0.16
V5 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.17 0.13
V6 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.14 0.11
V7 0.34 0.30 0.26 0.24 0.20 0.17 0.00 0.30 0.24
V8 0.28 0.25 0.22 0.20 0.17 0.14 0.30 0.00 0.20
V9 0.23 0.20 0.18 0.16 0.13 0.11 0.24 0.20 0.00

The residuals show serious problems with this model. Although the residuals within each
of the three factors are zero, the residuals between groups are much too large.

4.6 Allowing for an oblique solution
That solution is clearly very bad. What would happen if the exploratory solution were

allowed to have correlated (oblique) factors? This analysis is done on a sample of size 100
with the bifactor structure created by sim.hierarchical.
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> set.seed(42)

> bifact.s <- sim.hierarchical() #create the data, use the sample correlation matrix
> £f3 <-fa(bifact.s,3) #extract three factors and do an oblique rotation

> mod.f3p <- structure.sem(f3.p) #create the sem model

> mod.f3p  #show it

Path Parameter StartValue

1 MR1->V1 F2v1

2 MR2->V2 F3V2

3 MR1->V3 F2V3

4 MR3->V4 F1v4

5 MR3->V5 F1V5

6 MR3->V6 F1V6

7 Vi<->V1 xle

8 V2<->V2 x2e

9 V3<->V3 x3e

10 V4<->V4 x4e

11 Vb<->V5 xbe

12 V6<->V6 x6e

13 V7<->V7 xTe

14 V8<->V8 x8e

15 V9<->V9 x9e

16 MR3<->MR3 <fixed> 1
17 MR1<->MR1 <fixed> 1

18 MR2<->MR2 <fixed> 1

Unfortunately, the model as created automatically by structure.sen is not identified and
would fail to converge if run. The problem is that the covariances between items on different
factors is a product of the factor loadings and the between factor covariance. Multiplying
the factor loadings by a constant can be compensated for by dividing the between factor
covariances by the same constant. Thus, one of these paths must be fixed to provide a
scale for the solution. That is, it is necessary to fix some of the paths to set values in
order to properly identify the model. This can be done using the edit function and hand
modification of particular paths. Set one path for each latent variable to be fixed.

e.g.,
mod.adjusted <- edit(mod.f3p)

Alternatively, the model can be adjusted by specifying the changes directly.
When this is done
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mod.f3p.adjusted <- mod.f3p
mod.f3p.adjusted[c(1,4),2] <- NA
mod.f3p.adjusted[c(1,4),3] <- "1"

sem.f3p.adjusted <-sem(mod.f3p.adjusted,bifact.s,100)
summary (sem.f3p.adjusted,digits=2)

vV V Vv Vv Vv

Model Chisquare = 111 Df = 32 Pr(>Chisq) = 1.2e-10
Chisquare (null model) = 169 Df = 36
Goodness-of-fit index = 0.75

Adjusted goodness-of-fit index = 0.65

RMSEA index = 0.16  90% CI: (NA, NA)

Bentler-Bonnett NFI = 0.34

Tucker-Lewis NNFI = 0.33

Bentler CFI = 0.41

SRMR = 0.22

BIC = -36

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.5 1.3 2.0 1.9 2.6 5.6

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

F3V2 1.0e+00 5.03 2.0e-01 8.4e-01 V2 <--- MR2
F2V3 4.8e-01 0.11 4.3e+00 1.7e-05 V3 <--- MR1
F1V5 4.6e-01 0.13 3.5e+00 4.4e-04 V5 <--- MR3
F1V6 3.8e-01 0.13 3.0e+00 2.5e-03 V6 <--- MR3
xle 1.3e-06 0.14 8.9e-06 1.0e+00 V1 <--> V1
x2e 6.1e-07 10.06 6.0e-08 1.0e+00 V2 <--> V2
x3e 7.7e-01 0.11 6.7e+00 1.6e-11 V3 <--> V3
x4e 8.0e-02 0.17 4.6e-01 6.5e-01 V4 <--> V4
x5e 8.0e-01 0.13 6.4e+00 1.5e-10 V5 <--> V5
x6e 8.6e-01 0.13 6.7e+t00 2.7e-11 V6 <--> V6
x7e 1.0e+00 0.14 7.0e+00 2.0e-12 V7 <--> V7
x8e 1.0e+00 0.14 7.0e+00 2.0e-12 V8 <--> V8
x9e 1.0e+00 0.14 7.0e+00 2.0e-12 V9 <--> V9
Iterations = 21

The structure being tested may be seen using structure.graph
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Figure 12: A three factor, oblique solution.
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4.7 Extract a bifactor solution using omega and then test that model
using sem

A bifactor solution has previously been shown (Figure 9). The output from the omega
function includes the sem commands for the analysis. As an example of doing this with
real rather than simulated data, consider 9 variables from Thurstone. For completeness,
the std.coef from sem is used as well as the