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This vignette details how the power calculations are implemented in powerlmm. We will focus on the fully
nested three-level model, since the two- and partially nested three-level model are just reduced forms of the
three-level model. Thus, in standard multilevel notation the fully nested three-level model is

Level 1
Yii = Bojr + Brjrtije + Rijk
Level 2
Bojr = Yoor + Uojk
Bijr = 110k + Urjk
Level 3
Yook = 0000 + d001 T X, + Vor
Yok = 6100 + 61017 Xy + Vig

where we have i = 1,...,ny; equally spaced time points for subject j = 1,..., Na, where Ny is the total
number of subjects in the treatment arm. Furthermore, the subjects are nested within k = 1,.. ., n3 clusters,
where n3 is the total number of clusters in the treatment arm. To allow for varying cluster sizes we let each
cluster have j = 1,...,nyy) subjects, where ny[y) is the total number of subjects in cluster k.

The parameter of interest is d191, i.e. the mean difference in slopes between the two treatment groups. However,
in powerlmm the calculations are simplified by calculating the variance of the slope-coefficient separately for
each treatment group. Since the slopes in the treatment and control group are independent, the variance of
the interaction-term is simply

V(6101) = V(d100[t2] — 9100[¢]) = V(0100[t2]) + V(0100[c]),

where d100[¢z] and d1gg¢ are the fixed time effects in the treatment and control group respectively. In order
to calculate the variances we begin by formulating the three-level model for the complete data vector Y from
a single treatment arm,

Y = XZWgB + Xu+ XZv + ¢, (1)

where Y is the N7 x 1 outcome vector containing all the observations from all the subjects in the treatment
arm, X is a N7 X 2N matrix containing co-variate information for all N subjects in the treatment arm, X
is also used as the design matrix for the second-level random effects. Z is a 2ng x 2/N; matrix containing the
level-three random effects design matrices for each kth cluster in the treatment arm. W is a 2n3 X 2 matrix
relating the third-level to the overall effects 3, and here [ is simply a 2 x 1 vector with the population values
for the fixed intercept and slope effects. Lastly, u is a 2Ny X 1 vector with the level two random effects, v is
a 2ng X 1 vector with the third-level random effects, and € a N7 x 1 vector with the level one residuals.



The random effects and residuals are distributed as follows,

u NN(O, ‘112)7
v NN(O, ‘1’3),
e ~N(0,0%Iy,).

With the second and third level variance components being

2 2
uo up1 ’UO Vo1
Uy =1y, ® 2 |, ¥3=1,,® 2 s
Uup1 uy Vo1 (%

with ® denoting the Kronecker product. The co-variate matrix X is block-diagonal containing a sub-matrix
X i for each subject (level-two unit), thus

X, 0 0
0 X, 0

X = . .
0 0 Xy,

Since each subject can have a different number of observations due to dropout, each X;; will have dimension
ni[j) X 2, where n;[; is the total number of observations for subject j in cluster k,
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Z is a block-diagonal matrix containing the level-three design matrices for each cluster k,

Z, 0 ... 0
0 Zo --- 0
Z=| . . )
0 0 - Zns

With the sub-matrices Zj, being stacks of 2 x 2 matrices for each subject in cluster k,

1 0
Zk = 1n2[k] & (0 1> ’

thus the dimension of Zj will be ngpy X 2, where ngp) is the number of subjects in cluster k. This enables
power calculations for designs with varying number of subjects per cluster.

The matrix W, relates the cluster-level effects to the overall effects 3,

1 0
W—1n3®(0 1)’

and thus
XZW =15 ® Xjk.



Then we can calculate the marginal variance-covariance matrix for Y as

V(Y) = XWX + XZ8,Z X" + 2Ly,

and the variance of the population parameters in 8 as

V(B) = [(XZW) V(Y) 1XZW] L. (3)

The lower right corner of V() corresponds to the variance of the time-coefficient. As we noted earlier we can
use the slope variances to calculate the variance of the timeXxtreatment-interaction.

Accounting for dropout

Dropout is accounted for by defining a dropout vector D = (p1,...,p,,) ', where p; is the proportion of
participants that have dropped out at time point ¢, for the 4,...,n; scheduled time points, and py = 0 and
pi < pir1. The default in powerlmm is to treat the values in D as known, i.e. exactly p; subjects will have
dropped out at time ¢. This is done by randomly sample which p; No participants should drop out a time
i, then adjusting their design matrices X,;; to be of size (i — 1) x 2, thus their last time point will be ¢ — 1.
Since, it is random which subjects will dropout, the power calculations will differ slightly each time. It is
also possible to treat D as random (using the option deterministic_dropout = FALSE), then dropout will
be sampled from a multinomial distribution, by converting the elements of D to the probability p; that a
subject will have exactly ¢ measurements. This approach is similar to Galbraith, Stat, and Marschner (2002),
and Verbeke and Lesaffre (1999) who presents power calculations for two-level models with missing data.

Speeding up the computation of V(Y)!

Doing the matrix inversion of V(Y), which is of dimension Ny x Ny, can be extremely slow for some designs.
De Leeuw and Kreft (1986) (where they credit Swamy (1971)) noted a more computationally efficient
formulation, adopting it to the three-level formulation in Equation 1, lets us write

VYY) =0 Iy, - X(X'X)"' X+ X(XTX)TTATH (X TX) X,
where,
A7 = [0(XTX) T 4 Wy + ZWSZT ).

Here A of size 2N3 X 2N3. However, since A is block-diagonal, with each block for cluster k being of size nap,
the computation done in powerlmm, takes advantage of the sparse matrix functions from the Matrix-package.
By using sparse matrix algebra the speed of computing A~" will depend greatly on the number of subjects
per cluster. In most cases this solution is dramatically faster then directly solving V(Y)~!. For instance,
calculating V() for a study with ny = 10, ny = 30, n3 = 20 is approximately 50 times faster using this
method.

Power
To make the power calculations accurate for small samples sizes, power is calculated using the ¢ distribution.
Thus, we can define the power function as,
1- ﬁ = P(tl/,)\ > tu,l—a/Z) + P(tu,)\ < tu,a/2)7
where A is the non-centrality parameter,

A =6101/v/V(d101),

and v is the appropriate degrees of freedom of the ¢ distribution. For the fully nested three-level model, the
degrees of freedom are N3 — 2, where N3 is the total number of clusters in both treatment arms.



Partially nested designs

For the partially nested designs V(d100[z) is calculated as above, and V(d100[¢) by setting the cluster-level
random effects to zero. Degrees of freedom for this model is trickier, and currently 2n3 — 2 i used, where
ng is the number of clusters in the treatment group only. This is not exact, but works better than doing a
normal approximation.

Two-level designs

For the two-level designs, V(d101) can be calculated using the three-level formulas with the cluster-level
random effects set to zero. Deleting these terms reduces the model to the classical two-level formulation.
Degrees of freedom for this model is No — 2, where N5 is the total number of subjects in both treatment arms.

Standardized formulation

If there’s no missing data and the clusters sizes are balanced, the variance of the slope can be calculated
more simply as
o +nyoz V(T) +ningos V(T)

nlng’IZ3V(T) ’

V(d100) =

with,

V(T) = S, (& — ).
By defining the amount of slope variance at the cluster-level as ps = 031 (o2 LT o2 ,) and the variance ratio
as ry = (031 + 012“) /o2 we can then rewrite the formula using the relative parameters p, and 7,

V((S*) _ 1+ an(T)(nQpSTT + (1 - pl)rT)
! n1n2n3V(T) ’
which will yield the same non-centrality parameters as long as the interaction-coefficient corresponds to the
same standardized value, e.g. Cohen’s d. Thus, we see that power depends on nl, n2, n3, the duration of the

study, the amount of slope variance at the third level and the variance ratio.
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