Poppr 1.0.3: An R package for genetic analysis of populations with
mixed (clonal/sexual) reproduction

Zhian N. Kamvar! and Niklaus J. Griinwald!2

1) Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR

2) Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR

August 12, 2013

Abstract

Poppr provides open-source, cross-platform tools for quick analysis of population genetic data enabling
focus on data analysis and interpretation. While there are a plethora of packages for population genetic
analysis, few are able to offer quick and easy analysis of populations with mixed reproductive modes.
Poppr’s main advantage is the ease of use and integration with other packages such as adegenet and vegan,
including support for novel methods such as clone correction, multilocus genotype analysis, calculation
of Bruvo’s distance and the index of association.

POPP

Population Genetics in

Contents

1 Introduction 3
1.1 Purpose oL e e 3
1.2 Imstallation e e 3

1.2.1 From CRAN . . . e 3
1.2.2 From Source L 4
1.2.3 From github. L 4
1.3 Quick start L e 5
1.4 Get out of my dreams and into my R {importing data into poppr} 7
1.4.1 Function: getfile e 7
1.4.2 Function: read.genalex L e 10
1.4.3 Genalex formatting shortcuts L o o 12
1.4.4 Other ways of importing data 13
1.4.5 Function: genind2genalex L L L 13
1.5 Getting to know adegenet’s genind object L L. 15
1.5.1 Theotherslot e 15
1.5.2 Setting the population factor {adegenet’s function: pop} 17
2 Data Manipulation 18
2.1 Inside the golden days of missing data {replace or remove missing data} 19
2.1.1 Function: missingno Lo 19
2.2 Can you take me hier(archy)? {population hierarchy construction} 22
2.2.1 Function: splitcombine L L 22
2.3 Divide (populations) and conquer (your analysis) {extract populations} 25
2.3.1 Function: popsub 26
2.4 Attack of the clone correction {clone-censor data sets} 27
2.4.1 Function: clonecorrect L 28
2.5 Every day I'm shuffling (data sets) {permutations and bootstrap resampling} 28
2.5.1 Function: shufflepop 29
2.6 Cut It Out! {removing uninformative loci} 30
2.6.1 Function: informloci 30
3 Multilocus Genotype Analysis 31
3.1 Just a peek {How many multilocus genotypes are in our data set?} 31
3.1.1 Function: mlg e 31
3.2 Clone-ing around {MLGs across populations}, 32
3.2.1 Function: mlg.crosspop Lo 32
3.3 Bringing something to the table {producing MLG tables and graphs} 33
3.3.1 Function: mlg.table 33
3.4 Getting into the mix {combining MLG functions} 35
3.4.1 Function: mlg.vector L 36
3.5 Do you see what I see? {alternative data visualization} 39
4 Index and Distance Calculations 40
4.1 The missing linkage disequilibrium {calculating the index of association, I4 and 74} 40
4.1.1 Function: ia oL e e 40
4.2 Going the distance {dissimilarity distance} L. 42
4.2.1 Function: diss.dist 42
4.3 Step by stepwise mutation {Bruvo’s distance} Lo Lo oL 43
4.3.1 Function: bruvo.dist 43
4.4 See the forest for the trees {visualizing distances with dendrograms and networks} 45

4.4.1 Function: bruvo.boot 45

4.4.2 Function: greycurveo e 46

4.4.3 Function: bruvo.msn 48

4.4.4 Function: poppramsno L o e e e e e e e e e e 50

5 I know what you did last summary table {diversity table} 52
5.1 Function: poppr L e e 52

6 Appendix 56
6.1 Algorithmic Details 56
6.1.1 Tgpand 7g . . . o o oo e 56

6.1.2 Bruvo’'sdistance 58

6.2 Exporting Graphics L 59
6.2.1 Basics e 59

6.2.2 Image Editors. 59

6.2.3 Exporting ggplot2 graphics Lo 60

6.2.4 Exporting any graphics Lo 60

6.3 Function calls oL 61

1 Introduction

1.1 Purpose

Poppr is an R package with convenient functions for analysis of genetic data with mixed modes of
reproduction including sexual and clonal reproduction. While there are many R packages in CRAN and
other repositories with tools for population genetic analyses, few are appropriate for populations with mixed
modes of reproduction. There are several stand alone programs that can handle these types of data sets, but
they are often platform specific and often only accept specific data types. Furthermore, a typical analysis
often involves switching between many programs, and converting data to each specific format.

Poppr is designed to make analysis of populations with mixed reproductive modes more streamlined and
user friendly so that the researcher using it can focus on data analysis and interpretation. Poppr allows anal-
ysis of haploid and diploid dominant/co-dominant marker data including microsattelites, Single Nucleotide
Polymorphisms (SNP), and Amplified Fragment Length Polymorphisms (AFLP). To avoid creating yet an-
other file format that is specific to a program, poppr was created on the backbone of the popular R package
adegenet and can take all the file formats that adegenet can take (Genpop, Gentix, Fstat, and Structure) and
newly introduces compatibility with GenAlEx formatted files (exported to CSV). This means that anything
you can analyze in adegenet can be further analyzed with poppr.

The real power of poppr is in the data manipulation and analytic tools. Poppr has the ability to define
multiple population hierarchies, clone-censor, and subset data sets. With poppr you can also quickly calculate
Bruvo’s distance, the index of association, and easily determine which multilocus genotypes are shared across
populations.

1.2 Installation

This manual assumes that you have already installed R. If you have not, please refer to The CRAN home
page at http://cran.r-project.org/. The author also recommends utilizing an R gui such as Rstudio
(http://www.rstudio.com/) for a better R experience.

1.2.1 From CRAN

To install poppr from CRAN is as simple as selecting “Package Installer” from the menu “Packages &
Data” in the gui or by typing in your command line:

http://cran.r-project.org/
http://www.rstudio.com/

> install.packages("poppr", dependencies=TRUE)

If everything is working perfectly, all the dependencies (adegenet, pegas, vegan, ggplot2, phangorn, ape and
igraph) should be installed. In the unfortunate case this does not work, consult http://cran.r-project.
org/doc/manuals/R-admin.html#Installing-packages.

1.2.2 From Source

The tarball for poppr can be from CRAN: http://cran.r-project.org/package=poppr, the Griinwald
Lab website: http://http://grunwaldlab.cgrb.oregonstate.edu/ under the RESOURCES tab, or github
at https://github. com/poppr/poppr.
Since poppr contains C code, it needs to be compiled, which means that you need a working C compiler.
If you are on Linux, you shouldn’t have to worry too much about that, but if you are on Windows or OSX,
you might need to download some special tools:

Windows Download Rtools: http://cran.r-project.org/bin/windows/Rtools/

OSX Download Xcode: https://developer.apple.com/xcode/
If you choose to install poppr from a source file, you should first make sure to install all of the dependencies
with the following command:
> install.packages(c("adegenet", "pegas", "vegan", "ggplot2", "phangorn", "ape", "igraph"))
If you want to install from github, you may skip to the next section.
After installing dependencies, download the package to your computer and then you can install it with:

> install.packages("/path/to/poppr.tar.gz", type="source", repos=NULL)

1.2.3 From github

Github is a repository where you can find all stable and development versions of poppr. Installing from
github requires a C compiler, so be sure to read the section above for instructions on how to obtain that if
you aren’t on a Linux system.

To install from github, you do not need to actually download the tarball since there is a package called
devtools that will download and install the package for you directly from github. After you have installed
all dependencies (see above section), you should download devtools:

> install.packages("devtools")

Now you can execute the command install_github with the user and repository name:

> library(devtools)
> install_github("poppr", "poppr")

If you are the adventurous type and are willing to test out unreleased versions of the package, you can
also install the development version:

> library(devtools)
> install_github("poppr", "poppr", ref = "devel")

Users who install this version do so at their own risk. Since it is a development version, documentation may
be rough or nonexistant for new functions.

http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages
http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages
http://cran.r-project.org/package=poppr
http://http://grunwaldlab.cgrb.oregonstate.edu/
https://github.com/poppr/poppr
http://cran.r-project.org/bin/windows/Rtools/
https://developer.apple.com/xcode/

1.3 Quick start

The author assumes that if you have reached this point in the manual, then you have successfully
installed R and poppr. Before proceeding, you should be aware that R is case sensitive. This means that
the words “Case” and “case” are different from R’s perspective. You should also know where your R package
Library is located.

WHAT OR WHERE IS MY R PACKAGE LIBRARY?

R is as powerful as it is through a community of people who submit extra code called
“Packages” to help it do specific things. These packages live in a certain place on
your computer called an R library. You can find out where this library is by typing
JibPaths()

Importing a file into R involves you knowing the path to your file and then typing that into R’s console.
getfile () will help provide a point and click interface for selecting a file. There are two steps: Before you
do anything, you’ll want to tell your computer to search R’s library to find the poppr and load the package:

> library (poppr)

After that, you can use getfile()

> x <- getfile()

At this point, a pop up window will appear like this':

Figure 1: A popup window as it appears in OSX (Mountain Lion).
Choose File

|« '~\m = |m| im || =~ || Cfiles ¥

rootrot.csv. simulated.dat

| New Folder | | Cancel | | Open |

HeEY! MY WINDOW DOESN’T LOOK LIKE THAT!

Now, this window will not match up to your window on your computer because you
will probably not be in the right directory. Remember the first path in .1ibPaths()?
Move to a folder called poppr in that path. In that folder, you will find another folder
called files. Move there and your window will match the one displayed.

IThis window sometimes appears behind your current session of R, depending on the GUI and you will have to toggle to
this window

We can navigate throughout your entire computer through this little window and tell R where to go.
The example I'm using goes to your R library directory. If you don’t know where that is, you can find it
by typing .1libPaths() into the R command line. Once we select a file, the file name and its path will be
stored in the variable, x. We can confirm what we selected by simply typing x into R’s command line.

> x

$files
[1] "/path/to/R/poppr/files/rootrot.csv"

$path
[1] "/path/to/R/poppr/files"

Here we can see that x is a list with two entries: $files giving you the files you selected and $path giving
you the path to those files.

NOT SURE WHAT I MEAN BY PATH OR WORKING DIRECTORY?

For anyone who has never used a command line, this is a new concept. You can
think of the path as an address. So instead of "/path/to/R", you could have
"/USA/Oregon/Corvallis". Or on your computer, it could be "C:/users/poppr-
user/R/win-library/2.15" on Windows (where "poppr-user” is your username)
or "/Library/Frameworks/R.framework/Versions/2.15/Resources/library" on
OSX. Each slash represents a folder that you would click through when you are using
the mouse.

A working directory is simply the folder that R is working in. It is where you can
access and write files. When you tell R to read a file, it will only look for that file in
your working directory. Note that you will not endanger your files by reading them
into R. R works by making a copy of the file into memory. This means that you can
manipulate the data in any way that you want without ever losing the content.

To find out your current working directory, type getwd () into the R console. Usually,
you will start off a session in your "home” directory, which will look like this: "~/".
The command setwd () will change your working directory to any place of your choice
on your computer as indicated by the path that you provide. For more information,
see Quick R at http://www.statmethods.net.

We will use x$files to access the file. The poppr() function provides a quick and convenient first
analysis of your data directly from the file on the your disk (For information on importing your data into R,
see section 1.4, Get out of my dreams and into my R).

> popdata <- poppr(x$files)

Athena_1
Athena_2
Athena_3
Athena_4
Athena_5
Athena_6
Athena_7
Athena_8
Athena_9
Athena_10
Mt. Vernon_1
Mt. Vernon_2
Mt. Vernon_3
Mt. Vernon_4
Mt. Vernon_5
Mt. Vernon_6
Mt. Vernon_7
Mt. Vernon_8
Total

The output of poppr() was assigned to the variable popdata, so let’s look at the data.

http://www.statmethods.net

> popdata

Pop N MLG eMLG SE H G Hexp E.5 Ia rbarD File
1 Athena_l 9 7 7.000 0.000 1.889 6.231 0.944 0.932 2.925 0.210 rootrot.csv
2 Athena_2 12 12 10.000 NaN 2.485 12.000 1.000 1.000 4.160 0.128 rootrot.csv
3 Athena_3 10 2 2.000 0.000 0.325 1.220 0.200 0.571 2.000 1.000 rootrot.csv
4 Athena 4 13 9 7.154 0.769 1.946 5.121 0.872 0.687 5.495 0.372 rootrot.csv
5 Athena 5 10 7 7.000 0.000 1.834 5.556 0.911 0.866 4.532 0.353 rootrot.csv
6 Athena 6 5 5 5.000 0.000 1.609 5.000 1.000 1.000 2.464 0.190 rootrot.csv
7 Athena 7 11 10 9.182 0.386 2.272 9.308 0.982 0.955 2.129 0.086 rootrot.csv
8 Athena 8 8 6 6.000 0.000 1.667 4.571 0.893 0.831 3.857 0.323 rootrot.csv
9 Athena_9 10 10 10.000 0.000 2.303 10.000 1.000 1.000 2.815 0.118 rootrot.csv
10 Athena_10 9 8 8.000 0.000 2.043 7.364 0.972 0.948 2.849 0.137 rootrot.csv
11 Mt. Vernon_1 10 9 9.000 0.000 2.164 8.333 0.978 0.952 7.132 0.276 rootrot.csv
12 Mt. Vernon_.2 6 6 6.000 0.000 1.792 6.000 1.000 1.000 20.649 0.492 rootrot.csv
13 Mt. Vernon.3 8 6 6.000 0.000 1.667 4.571 0.893 0.831 2.117 0.106 rootrot.csv
14 Mt. Vernon_4 12 8 6.833 0.665 1.814 4.500 0.848 0.681 3.008 0.255 rootrot.csv
15 Mt. Vernon 5 17 7 5.541 0.828 1.7568 5.070 0.853 0.848 2.677 0.340 rootrot.csv
16 Mt. Vernon_6 12 11 9.318 0.466 2.369 10.286 0.985 0.958 19.498 0.467 rootrot.csv
17 Mt. Vernon_ 7 12 9 7.818 0.649 2.095 7.200 0.939 0.870 1.208 0.153 rootrot.csv
18 Mt. Vernon 8 13 9 7.346 0.764 2.032 6.259 0.910 0.794 1.153 0.169 rootrot.csv
19 Total 187 119 9.612 0.612 4.558 68.972 0.991 0.720 14.371 0.271 rootrot.csv

The fields you see in the output include:
e Pop - Population name (Note that “Total” also means “Pooled”).
e N - Number of individuals observed.

e MLG - Number of multilocus genotypes (MLG) observed.

eMLG - The number of expected MLG at the smallest sample size > 10 based on rarefaction. [3]

SE - Standard error based on eMLG [7]

e H - Shannon-Wiener Index of MLG diversity. [10]

G - Stoddart and Taylor’s Index of MLG diversity. [18]
e Hexp - Nei’s 1978 genotypic diversity (corrected for sample size), or Expected Heterozygosity. [11]
e E.5 - Evenness, E5. [15][10][4]
e Ta - The index of association, I4. [2] [17] [1]
e rbarD - The standardized index of association, 7g. [1]
These fields are further described in section 5, I know what you did last summary table at the end of this

vignette.

1.4 Get out of my dreams and into my R {importing data into poppr}

There are several ways of reading data into R.

1.4.1 Function: getfile

getfile gives the user an easy way to point R to the directory in which your data is stored. It is only
meant for R GUIs such as Rstudio. Using this on the command line has very little advantage over setting
the working directory manually.

Default Command:
getfile(multi = FALSE, pattern = NULL, combine = TRUE)

e multi - This is normally set to FALSE, meaning that it will only grab the file you selected. If it’s TRUE,
it will grab all files within the directory, constrained only by what you type into the pattern field.

e pattern - A pattern that you want to filter the files you get. This accepts regular expressions, so you
must be careful with anything that is not an alphanumeric character.

e combine - This tells getfile to combine the path and all the files. This is set to TRUE by default so
that you can access your files no matter what working directory you are in.

This method works for a single file, but let’s say you had a lot of data sets you wanted to import. You
would have to do all of these one by one, right? Not so. getfile has a nice little flag called multi telling the
computer that you want to grab multiple files in the folder. You would use this with poppr.all to produce
a summary table for all of your files?:

> x <- getfile(multi=TRUE)

A window would pop up again, and you should navigate to the same directory as you had before, and select
any of the files in that directory.

> X

$files
[1] "/path/to/R/poppr/files/rootrot.csv" "/path/to/R/poppr/files/rootrot2.csv"
[3] "/path/to/R/poppr/files/simulated.dat"

$path
[1] "/path/to/R/poppr/files"

As you can see, now all of the files that existed in that directory are there! Now you can look at all those
files at once!

> poppr.all(x$files)

File: rootrot.csv
Athena_1
Athena_2
Athena_3
Athena_4
Athena_5
Athena_6
Athena_7
Athena_8
Athena_9
Athena_10
Mt. Vernon_1
Mt. Vernon_2
Mt. Vernon_3
Mt. Vernon_4
Mt. Vernon_5
Mt. Vernon_6
Mt. Vernon_7

1

2

3

4

5

6

7

8

9

10

Total

File: simulated.dat

Total

Pop N MLG eMLG SE H G Hexp E.5 Ia rbarD File

1 Athena_1 9 7 7.000 0.000 1.889 6.231 0.944 0.932 2.925 0.210 rootrot.csv
2 Athena_2 12 12 10.000 NaN 2.485 12.000 1.000 1.000 4.160 0.128 rootrot.csv
3 Athena_3 10 2 2.000 0.000 0.325 1.220 0.200 0.571 2.000 1.000 rootrot.csv
4 Athena_4 13 9 7.154 0.769 1.946 5.121 0.872 0.687 5.495 0.372 rootrot.csv
5 Athena 5 10 7 7.000 0.000 1.834 5.556 0.911 0.866 4.532 0.353 rootrot.csv
6 Athena_ 6 5 5 5.000 0.000 1.609 5.000 1.000 1.000 2.464 0.190 rootrot.csv
7 Athena 7 11 10 9.182 0.386 2.272 9.308 0.982 0.955 2.129 0.086 rootrot.csv

2These files do not need to be similar in any way to do this analysis

8 Athena_8 8 6 6.000 0.000 1.667 4.571 0.893 0.831 3.857 0.323 rootrot.csv
9 Athena_9 10 10 10.000 0.000 2.303 10.000 1.000 1.000 2.815 0.118 rootrot.csv
10 Athena_10 9 8 8.000 0.000 2.043 7.364 0.972 0.948 2.849 0.137 rootrot.csv
11 Mt. Vernon_1 10 9 9.000 0.000 2.164 8.333 0.978 0.952 7.132 0.276 rootrot.csv
12 Mt. Vernon_2 6 6 6.000 0.000 1.792 6.000 1.000 1.000 20.649 0.492 rootrot.csv
13 Mt. Vernon_3 8 6 6.000 0.000 1.667 4.571 0.893 0.831 2.117 0.106 rootrot.csv
14 Mt. Vernon_4 12 8 6.833 0.665 1.814 4.500 0.848 0.681 3.008 0.255 rootrot.csv
15 Mt. Vernon_5 17 7 5.541 0.828 1.758 5.070 0.853 0.848 2.677 0.340 rootrot.csv
16 Mt. Vernon_6 12 11 9.318 0.466 2.369 10.286 0.985 0.958 19.498 0.467 rootrot.csv
17 Mt. Vernon_7 12 9 7.818 0.649 2.095 7.200 0.939 0.870 1.208 0.153 rootrot.csv
18 Mt. Vernon_8 13 9 7.346 0.764 2.032 6.259 0.910 0.794 1.153 0.169 rootrot.csv
19 Total 187 119 9.612 0.612 4.558 68.972 0.991 0.720 14.371 0.271 rootrot.csv
20 1 19 16 9.211 0.701 2.726 14.440 0.982 0.942 14.229 0.313 rootrot2.csv
21 2 18 18 10.000 0.000 2.890 18.000 1.000 1.000 9.143 0.194 rootrot2.csv
22 3 18 8 5.265 1.009 1.609 3.375 0.745 0.594 22.843 0.573 rootrot2.csv
23 4 25 17 7.887 1.124 2.575 9.615 0.933 0.710 18.488 0.415 rootrot2.csv
24 5 27 14 7.511 1.057 2.446 9.720 0.932 0.828 23.002 0.520 rootrot2.csv
25 6 17 15 9.338 0.633 2.670 13.762 0.985 0.949 17.778 0.410 rootrot2.csv
26 7 23 19 9.178 0.764 2.872 16.030 0.980 0.902 19.162 0.405 rootrot2.csv
27 8 21 15 8.273 0.981 2.558 10.756 0.952 0.820 24.313 0.543 rootrot2.csv
28 9 10 10 10.000 0.000 2.303 10.000 1.000 1.000 2.815 0.118 rootrot2.csv
29 10 9 8 8.000 0.000 2.043 7.364 0.972 0.948 2.849 0.137 rootrot2.csv
30 Total 187 119 9.612 0.612 4.558 68.972 0.991 0.720 14.371 0.271 rootrot2.csv
31 Total 100 6 6.000 0.000 1.235 2.790 0.648 0.735 0.050 0.061 simulated.dat

You've seen examples of how to use getfile to extract a single file and all the files in a directory, but
what if you wanted many files, but only wanted ones that were of a certain type or had a certain name?
This is what you would use the pattern argument for. A perfect use would be the example data contained
in the adegenet package. Let’s take a look at the names of these files.

For the rest of this section, remember that every time you invoke getfile(), a window
will pop up and you should select a file before hitting enter.

> getfile(multi=TRUE)

Navigate to the adegenet folder in your R library.

$files
[1] "/path/to/R/adegenet/files/AFLP.txt"
[2] "/path/to/R/adegenet/files/exampleSnpDat.snp"
[3] "/path/to/R/adegenet/files/mondatal.rda"
[4] "/path/to/R/adegenet/files/mondata2.rda"
[6] "/path/to/R/adegenet/files/nancycats.dat"
[6] "/path/to/R/adegenet/files/nancycats.gen"
[7]1 "/path/to/R/adegenet/files/nancycats.gtx"
[8] "/path/to/R/adegenet/files/nancycats.str"
[9] "/path/to/R/adegenet/files/pdH1N1-data.csv"
[10] "/path/to/R/adegenet/files/pdH1N1-HA.fasta"
[11] "/path/to/R/adegenet/files/pdH1N1-NA.fasta"
[12] "/path/to/R/adegenet/files/usflu.fasta"

$path
[1] "/path/to/R/adegenet/files"

We can see that we have a mix of files with different formats. If we tried to run all of these files using
poppr, we would have a problem because some of the file formats have no direct import into a genind object
(*.fasta, or *.snp), or just simply are not supported (eg. *.rda files). We want to be able to filter these files
out, and we will do so with the pattern argument. Let’s say we only wanted the files that have the word
“nancy” in them.

> getfile(multi=TRUE, pattern="nancy")

$files
[1] "/path/to/R/adegenet/files/nancycats.dat" "/path/to/R/adegenet/files/nancycats.gen"
[3] "/path/to/R/adegenet/files/nancycats.gtx" "/path/to/R/adegenet/files/nancycats.str"

$path
[1] "/path/to/R/adegenet/files"

Now, let’s exclude everything but gentix files (*.gtx).

> getfile(multi=TRUE, pattern="gtx")

$files
[11 "/path/to/R/adegenet/files/nancycats.gtx"

$path
[1] "/path/to/R/adegenet/files"

Now, let’s only get FSTAT files (*.dat)

> getfile(multi=TRUE, pattern="dat")

$files

[1] "/path/to/R/adegenet/files/mondatal.rda"
[2] "/path/to/R/adegenet/files/mondata2.rda"
[3] "/path/to/R/adegenet/files/nancycats.dat"
[4] "/path/to/R/adegenet/files/pdH1N1-data.csv"

$path
[1] "/path/to/R/adegenet/files"

Uh-oh. We've run into a problem. Three out of our four files are not FSTAT files. Why did this
happen? It happened because they happen to have "dat" within their name. This problem can be solved,
by using regular expressions. If you are unfamiliar with regular expressions, you can think of them as special
characters that you can use to make your search pattern more strict or more flexible. Since the topic of
regular expressions can take up several lectures, I will spare you the gory details. For this situation, the only
one you need to know is “$”. The dollar sign indicates the end of a word or string. If we want specific file
extensions all we have to do is add this to the end of the search term like so:

> getfile(multi=TRUE, pattern="dat$")

$files
[1]1 "/path/to/R/adegenet/files/nancycats.dat"

$path
[1] "/path/to/R/adegenet/files"

Now we have our FSTAT file!

1.4.2 Function: read.genalex

A very popular program for population genetics is GenAlEx (http://biology.anu.edu.au/GenAlEx/
Welcome.html) [14, 13]. GenAlEx runs within the Excel environment and can be very powerful in its
analyses. Poppr has added the ability to read *.CSV files® produced in the GenAlEx format. It can
handle data types containing regions and geographic coordinates, but currently it cannot import allelic
frequency data from GenAlEx. All the user has to do is to export a single sheet of GenAlEx data from
Excel into a *.CSV file, and the poppr function read.genalex will import it into adegenet’s genind object
(more information on that below). For ways of formatting a GenAlEx file, see the manual here: http:
//biology.anu.edu.au/GenAlEx/Download_files/GenAlEx%206.5%20Guide. pdf

Default Command:
read.genalex(genalex, ploidy = 2, geo = FALSE, region = FALSE)

e genalex - a *.CSV file exported from GenAlEx on your disk (For example: "my_genalex_file.csv").

e ploidy - a number indicating the ploidy for the data set (eg 2 for diploids, 1 for haploids).

3% CSV files are comma separated files that are easily machine readable.

10

http://biology.anu.edu.au/GenAlEx/Welcome.html
http://biology.anu.edu.au/GenAlEx/Welcome.html
http://biology.anu.edu.au/GenAlEx/Download_files/GenAlEx%206.5%20Guide.pdf
http://biology.anu.edu.au/GenAlEx/Download_files/GenAlEx%206.5%20Guide.pdf

e geo - GenAlEx allows you to have geographic data within your file. To do this for poppr, you will
need to follow the first format outlined in the GenAlEx manual and place the geographic data AFTER
all genetic and demographic data with one blank column separating it (See the GenAlEx Manual for
details). If you have geographic information in your file, set this flag to TRUE and it will be included
within the resulting genind object in the @other slot. (If you don’t know what that is, don’t worry. It
will be explained later in section 1.5.1).

e region - To format your GenAlEx file to include regions along with your populations, You can choose
to include a separate column for regional data, or, since regional data must be in contiguous blocks,
you can simply format it in the same way you would any other data (see the GenAlEx manual for
details). If you have your file organized in this manner, select this option and the regional information
will be stored in the resulting genind object in the @other slot.

IF YOU ARE UNFAMILIAR WITH EXPORTING DATA FROM EXCEL

1. Click the Microsoft Office Button in the top left corner of Excel. (Or go to the
File menu if you have an older version)

2. Click Save As...

3. In the “Save as type” drop down box, select CSV (comma delimited).

Note that regional data and geographic data are not mutually exclusive. You can have both in one file,
just make sure that they are on the same sheet and that the geographic data is always placed after all genetic
and demographic data.

We have a short example of genalex formatted data with no geographic or regional formatting. We will
first see where the data is using the command system.file()

> system.file("files/rootrot.csv", package="poppr")

[1] "/path/to/R/library/poppr/files/rootrot.csv"

Now import the data into poppr like so:

> rootrot <- read.genalex(system.file("files/rootrot.csv", package="poppr"))

Executing rootrot shows that this file is now in genind format (ie. the format required by poppr and adegenet).

> rootrot

Genind object
HERBHH RS
- genotypes of individuals -

S4 class: genind
@call: read.genalex(genalex = "rootrot.csv")

Q@tab: 187 x 56 matrix of genotypes

@ind.names: vector of 187 individual names

@loc.names: vector of 56 locus names

Q@loc.nall: NULL

@loc.fac: NULL

©@all.names: NULL

@ploidy: 2

Qtype: PA

Optionnal contents:

Q@pop: factor giving the population of each individual
@pop.names: factor giving the population of each individual

Qother: a list containing: population_hierarchy

11

1.4.3 Genalex formatting shortcuts

The GenAlEx format is a nice way to import data because it allows you to have geographic coordinates
and two hierarchical levels of sampling (Region and population). If you have multiple levels of hierarchy,
you will need to code them so that you combine multiple columns of hierarchy into one using a common
separator (For an example, see section 2.2.1 of this manual). A problem arises when it becomes more work
than it’s worth to do that since, for the GenAlEx format, you must provide the sizes of each population in
the header. Here, I’ll show you a simple way to circumvent that. First, let’s use the microbov data set from
adegenet (for details, type help("microbov") into your R console). It contains three demographic factors:
Country, Species and Breed contained within the @other slot (detailed in section 1.5.1). We will combine
these and save the file to our desktop. We will cover these functions later in this manual. For now, just know
they exist.

> library(poppr)

> data(microbov)

> microbov@other$population_hierarchy <- data.frame(list(Country = microbov@other$coun,
+ Species = microbov@other$spe, Breed = microbov@other$breed))

> microbov <- splitcombine(microbov, method=2, hier=c("Country", "Species", "Breed"))
> genind2genalex(microbov, file=""/Desktop/microbov.csv")

Extracting the table ... Writing the table to ~/Desktop/microbov.csv ... Done.

After we do this, we can open the file in our favorite spreadsheet editor and see the following image.

Figure 2: The first 15 individuals and 4 loci of the microbov data set. The first column contains the individual names, the
second column contains the population names, and each subsequent column represents microsatellite genetic data. Highlighted
in red is a list of populations and their relative sizes.

A [B c_] D | E | E | G | H | 1 | 1

1 30 7 15 50 50 9 30 50 50 4
2 |[Unmoedified Data AF Bl Borgou AF Bl Zebu AF BT Lagunaire AF BT NDama AF BT Somba FR BT Aubrac FR BT Bazadais
3 |[ind Pop INRAB3 INRAS ETH225 ILSTSS

4 |AFBIBOR9503 |AF_BI_Borgou 183 183 137 141 147 157 190 190
5 |AFBIBOR9504 |AF_BIl_Borgou 181 183 141 141 139 157 186 186
6 |AFBIBOR9505 |AF_BI_Borgou 177 183 141 141 139 139 104 194
7 |AFBIBORS506 |AF_BI_Borgou 183 183 141 141 141 147 184 190
8 |AFBIBORS507 |AF_BI_Borgou 177 183 141 141 133 157 184 186
9 |AFBIBORS9308 |AF_BI_Borgou 177 183 137 143 149 157 184 186
10 [AFBIBOR9309 |AF_BI_Borgou 177 181 139 141 147 157 184 190
11 |AFBIBORS510 |AF_BI_Borgou 183 183 139 141 195 157 184 186
12 |AFBIBORS511 |AF_BI_Borgou 177 183 139 141 139 143 182 190
153 |AFBIBORS512 |AF_BI_Borgou 183 183 141 141 157 159 186 186
14 |AFBIBOR9313 |AF_BI_Borgou 177 177| 141 141 147 157 184 190
15 |AFBIBEOR9314 |AF_Bl_Borgou 183 183 143 143 139 157 186 186
16 [AFBIBOR9515 |AF_BI_Borgou 183 183 137 137 143 157 0 0
17 |AFBIBOR9516 |AF_Bl_Borgou 177 183 137 143 139 157 182 184
18 |AFBIBOR9317 |AF_BI_Borgou 177 183 141 141 157 157 186 184

12

All that poppr needs from the first header row are the first three numbers (unless you are including
regional data, but it’s not terribly necessary with the hierarchical support poppr provides.), which represent
the number of loci, individuals, and populations, respectively. After that, you have counts of individuals
per population in each subsequent cell. For poppr, These cells don’t matter because we already have that
information in column 2.

If you have a large data set with many population levels, you can use the following shortcut by setting
the number in the third cell to 1. The number in cell 4 is arbitrary (but must be there). In the following
figure, it is set to the number of individuals in your data set, but can easily be replaced with any other
number (perhaps your favorite number?).

Figure 3: The first 15 individuals and 4 loci of the microbov data set. This is the same figure as above, however the populations
and counts have been removed from the header row and the third number in the header has been replaced by 1.

A | B c | D E | F | & [v [1 |
1 30 704 1 704]
2 |Example Modified Data ALL
3 |ind Pop TNRAGS NRAS ETH225 ILSTSS
4 |AFBIBOR9503 AF_BI_Borgou 183 183 137 141 147 157 190 190
5 |AFBIBOR9504 AF_BI_Borgou 181 183 141 141 139 157 186 186
6 |AFBIBOR9505 AF_BI_Borgou 177 183 141 141 139 139 194 194
7_|AFBIBOR9506 AF_BI_Borgou 183 183 141 141 141 147 184 190
8 |AFBIBOR3507 AF_BI_Borgou 177 183 141 141 153 157 184 186
9 |AFBIBORA508 AF_BI_Borgou 177 183 137 143 149 157 184 186
10 |AFBIBOR9509 |AF_BI_Borgou 177 181 139 141 147 157 184 190
11 |AFBIBOR9510 |AF_BI_Borgou 183 183 139 141 155 157 184 186
12 |AFBIBOR9511 |AF_BI_Borgou 177 183 139 141 139 143 182 190
13 |AFBIBOR9512 |AF_BI_Borgou 183 183 141 141 157 159 186 186
14 |AFBIBOR9513 |AF_BI_Borgou 177 177 141 141 147 157 184 190
15 |AFBIBOR9514 |AF_BI_Borgou 183 183 143 143 139 157 186 186
16 _|AFBIBOR9515 |AF_BI_Borgou 183 183 137 137 143 157 0 0
17 |AFBIBOR9516 |AF_BI_Borgou 177 183 137 143 139 157 182 184
18 |AFBIBOR9517 |AF_BI_Borgou 177 183 141 141 157 157 186 194

1.4.4 Other ways of importing data

Adegenet already supports the import of FSTAT, Structure, Genpop, and Gentix formatted files, so if
you have those formats, you can import them using the function import2genind. For sequence data, check if
you can use read.dna from the ape package to import your data. If you can, then you can use the adegenet
function DNAbin2genind. If you don’t have any of these formats handy, you can still import your data
using R’s read.table along with df2genind from adegenet. For more information, see adegenet’s “Getting
Started” vignette.

1.4.5 Function: genind2genalex

Of course, being able to export data is just as useful as being able to import it, so we have this handy
little function that will write a GenAlEx formatted file to wherever you desire.
WARNING: This will overwrite any file that exists with the same name.

Default Command:
genind2genalex(pop, filename = "genalex.csv", quiet = FALSE)

e pop - a genind object.

e filename - This is where you specify where you want the file to go. If you simply type the file name,
it will deposit the file in the directory R is currently in. If you don’t know what directory you are in,
you can type getwd () to find out.

13

e quiet - If this is set to FALSE, a message will be printed to the screen.

e geo - This is set to FALSE by default. If it is set to TRUE, then that means you have a data frame or
matrix in the @other slot of your genind object that contains geographic coordinates for all individuals
or all populations. Setting this to TRUE means that you want the resulting file to have two extra
columns at the end of your file with geographic coordinates.

e geodf - The name of the data frame or matrix containing the geographic coordinates. The default is
geodf = "xy".

First, a simple example for the rootrot data we demonstrated in section 1.4.2:

> genind2genalex(rootrot, "~/Desktop/rootrot.csv")

Extracting the table ... Writing the table to ~/Desktop/rootrot.csv ... Done.

Now here’s an example of exporting the nancycats data set into GenAlEx format with geographic infor-
mation. If we look at the nancycats geographic information, we can see it’s coordinates for each population,
but not each individual:

> data(nancycats)
> nancycats@other$xy

x y
PO1 263.3498 171.10939
P02 183.5028 122.40790
P03 391.1050 254.70148
PO4 458.6121 41.72336
PO5 182.7769 219.08398
PO6 335.2121 344.83557
PO7 359.1662 375.36486
P08 271.3345 67.89132
P09 256.8169 150.02964
P10 270.6086 17.00917
P11 493.4544 237.25618
P12 305.4510 85.33663
P13 462.9674 86.79040
P14 429.5768 291.04587
P15 531.2003 115.13903
P16 407.8003 99.87438
P17 345.3745 251.79393

And we can export it easily:

> genind2genalex(nancycats, "~/Desktop/nancycats_pop_xy.csv")

Extracting the table ... Writing the table to ~/Desktop/nancycats_pop_xy.csv ... Done.

If we wanted to assign a geographic coordinate to each individual, we can simply use this little repetition
trick knowing that there are 17 populations in the data set:
> nan2 <- nancycats

> nan2@other$xy <- nan2Qother$xy[rep(1:17, table(pop(nan2))),]
> head(nan2@other$xy)

X
P01 263.3498 171.109X
PO1 263.3498 171.1094
PO1 263.3498 171.1094
PO1 263.3498 171.1094
PO1 263.3498 171.1094
P01 263.3498 171.1094

Now we can export it to a different file.

> genind2genalex(nan2, "~/Desktop/nancycats_inds_xy.csv")

Extracting the table ... Writing the table to ~/Desktop/nancycats_inds_xy.csv ... Done.

14

1.5 Getting to know adegenet’s genind object

Since poppr was built around adegenet’s framework, it is important to know how adegenet stores data
in the genind object, as that is the object used by poppr. To create a genind object, adegenet takes a data
frame of genotypes (rows) across multiple loci (columns) and converts them into a matrix of individual allelic
frequencies at each locus [9].

For example, if you had a data frame with 3 diploid individuals each with 3 loci that had 3, 4, and
5 allelic states respectively, the resulting genind object would contain a matrix that has 3 rows and 12

columns. Here’s the example data frame:
locusl 1locus2 locus3
1 101/101 201/201 301/302

2 102/103 202/203 301/303
3 102/102 203/204 304/305

And the resulting matrix after importing to genind.

Li1.1 L1.2 L1.3 L2.1 L2.2 L2.3 L2.4 L3.1 L3.2 L3.3 L3.4 L3.5
1 1 0.0 0.0 1 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0
2 0 0.5 0.5 0 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.0
3 0 1.0 0.0 0 0.0 0.5 0.5 0.0 0.0 0.0 0.5 0.5

The first three columns represent the alleles of locus 1, the next four represent locus 2, and the last five
represent locus 3.

Do you see what I mean when I say individual allele frequencies at each locus? For a diploid individual,
you only have three possible allele frequencies at each locus: 1, 0.5, or 0. Now, this is not the entire genind
object, but it is the main feature. The object also has various elements associated with it that give you
information about the population membership, the names of loci, individuals, and alleles among other things
that poppr uses to work [9]. If you wish to know more, see the adegenet “Getting Started” manual.

1.5.1 The other slot

The element that you as a poppr user needs to be concerned with is the “other” slot. No, I'm not trying
to be cryptic. If you look at an adegenet object, you will see that it has several “slots” (starting with “@”).
[9] Let’s start by recreating that data frame I showed you earlier.
df <- data.frame(list(locusl=c("101/101", "102/103", "102/102")

locus2=c("201/201", "202/203", "203/204");
locus3=c("301/302", "301/303“, "304/305")
)

VA4tttV

)
dfg <- df2genind(df, sep="/")

Next we will display the contents of the genind object dfg
> dfg

Genind obJect #iH#

- genotypes of individuals -

S4 class: genind
Qcall: df2genind(X = df, sep = "/")

Q@tab: 3 x 12 matrix of genotypes

@ind.names: vector of 3 individual names

@loc.names: vector of 3 locus names

@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 12 columns of Qtab

@all.names: list of 3 components yielding allele names for each locus
@ploidy: 2

Q@type: codom

Optionnal contents:

Qpop: - empty -

Qpop.names: - empty -

Qother: - empty -

15

The matrix containing our allelic frequencies is located in the @tab slot. All of the slots below that have
very specific properties related to the matrix in @tab, but the @other slot is more or less a grab bag, where
you can place anything you want, even if it doesn’t make sense!

Here, T'll give you an example of placing the genind object inside itself. Notice first, that the @other slot
is empty and pay attention to the commands I use, noting that you can use either “$” or “@Q” to access the
slots.

> # First off, how big is the object?

=N

> print(object.size(dfg), units="auto")

8.5 Kb

VvV Vv

dfg$other$dfg <- dfg
dfg # we can now see that the Qother slot is now filled.

Genind object

- genotypes of individuals -

S4 class: genind
Qcall: df2genind(X = df, sep = "/")

Q@tab: 3 x 12 matrix of genotypes

@ind.names: vector of 3 individual names

@loc.names: vector of 3 locus names

@loc.nall: number of alleles per locus

@loc.fac: locus factor for the 12 columns of Qtab

@all.names: list of 3 components yielding allele names for each locus
@ploidy: 2

Qtype: codom

Optionnal contents:

@pop: - empty -

Qpop.names: - empty -

Q@other: a list containing: dfg

> dfg$other$dfg

Genind object

- genotypes of individuals -

S4 class: genind
Qcall: df2genind(X = df, sep = "/")

Q@tab: 3 x 12 matrix of genotypes

Q@ind.names: vector of 3 individual names

Q@loc.names: vector of 3 locus names

@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 12 columns of Qtab

Q@all.names: list of 3 components yielding allele names for each locus
@ploidy: 2

Q@type: codom

Optionnal contents:
Qpop: - empty -
Qpop.names: - empty -

Qother: - empty -

> print(object.size(dfg), units="auto") # How big is it now?

17.2 Kb

16

WHAT IS THE # SIGN FOR?
This is called a comment. If you type something in R with the “#” sign in front of it,
R will not interpret it.

And we can continue to do this until we reach the limit of our available memory. Why am I showing
this silliness to you? For one thing I want to show you that you can stick anything you want into that slot
and the object will not be hurt in any way. It’s also important when considering how you are going to deal
with the population structure of your genind object. For the poppr functions clonecorrect (Section 2.4.1)
and splitcombine (Section 2.2.1) to work, a data frame of the population hierarchy must be present in the
@other slot and it must have the same number of rows as individuals in the data set. There are several ways
to go about this. If you know how to create a data frame or import data into R, the command is no more
difficult than obj$other$population_hierarchy <- df. If you do not know how to create a data frame or
import data into R, you can visit Quick R at http://www.statmethods.net/input/importingdata.html.

1.5.2 Setting the population factor {adegenet’s function: pop}

A genind object can contain several populations, and, if you have differing population structures, you
might want to switch among them for different analyses. The tools you as the user would need, are the
slot @pop.names and the adegenet function pop(). I'll use the H3N2 data set packaged with adegenet as an
example.

> data(H3N2)
> H3N2

Genind object

- genotypes of individuals -

S4 class: genind

@call: .local(x = x, i = i, j = j, drop = drop)
Q@tab: 1903 x 334 matrix of genotypes

@ind.names: vector of 1903 individual names
Q@loc.names: vector of 125 locus names

@loc.nall: number of alleles per locus

Q@loc.fac: locus factor for the 334 columns of Qtab
@all.names: list of 125 components yielding allele names for each locus
@ploidy: 1

Qtype: codom

Optionnal contents:

Qpop: - empty -

Q@pop.names: - empty -

Qother: a list containing: x xy epid
> pop (H3N2)

NULL

> H3N2$pop.names

NULL

Notice how both the pop and pop.names are empty. This means that the population information needs
to be set. Notice, however that there are 1903 individuals in the data set and that the @other slot is not
empty. Let’s investigate an object in this slot.

> head (H3N2$other$x)

17

http://www.statmethods.net/input/importingdata.html

accession length host segment subtype country year Virus name

AB434107 AB434107 1701 Human 4 (HA) H3N2 Japan 2002 Influenza Avirus
AB434108 AB434108 1701 Human 4 (HA) H3N2 Japan 2002 Influenza Avirus
AB438242 AB438242 827 Human 4 (HA) H3N2 Japan 2002 Influenza Avirus
AB438243 AB438243 827 Human 4 (HA) H3N2 Japan 2002 Influenza Avirus
AB438244 AB438244 827 Human 4 (HA) H3N2 Japan 2002 Influenza Avirus
AB438245 AB438245 827 Human 4 (HA) H3N2 Japan 2002 Influenza Avirus
Misc info Age Gender date usePreciseloc localisation
AB434107 (A/Morioka/34/2002(H3N2)) <NA> <NA> 2002/02/25 FALSE japan
AB434108 (A/Morioka/52/2002(H3N2)) <NA> <NA> 2002/03/01 FALSE japan
AB438242 (A/Niigata/F11/2002(H3N2)) <NA> <NA> 2002/01/22 FALSE japan
AB438243 (A/Niigata/F100/2002(H3N2)) <NA> <NA> 2002/02/18 FALSE japan
AB438244 (A/Niigata/F175/2002(H3N2)) <NA> <NA> 2002/02/25 FALSE japan
AB438245 (A/Niigata/F245/2002(H3N2)) <NA> <NA> 2002/03/04 FALSE japan
lon lat month
AB434107 137.2155 35.58418 2
AB434108 137.2155 35.58418 3
AB438242 137.2155 35.58418 1
AB438243 137.2155 35.58418 2
AB438244 137.2155 35.58418 2
AB438245 137.2155 35.58418 3

> nrow(H3N2$other$x)

[1] 1903

WHAT 1S HEAD()?

head() is a command that will show you only the top portion of an R object. By
default it will show you the first six elements (or rows of a data frame or matrix). This
is so that you can quickly check the contents of an object.

We can see that it’s a data frame containing a wealth of information that we could use to subset our
data. So, let’s start by setting the population structure by country. How do we do that? Well, the function
pop) will allow us to set that structure using a vector that is the same length as the number of individuals
in the data set. Since the number of rows in the data frame x meets that criteria, we can use any item in
that data frame. Let’s take a look.

> pop(H3N2) <- H3N2$other$x$country
> head (pop (H3N2))

[1] Japan Japan Japan Japan Japan Japan
37 Levels: Japan USA Finland China South Korea Norway Taiwan France ... Algeria

> H3N2$pop.names

[1] "Japan" "USA" "Finland" "China" "South Korea"
[6] "Norway" "Taiwan" "France" "Latvia" "Netherlands"
[11] "Bulgaria" "Turkey" "United Kingdom" "Denmark" "Austria"

[16] "Canada" "Italy" "Russia" "Bangladesh" "Egypt"

[21] "Germany" "Romania" "Ukraine" "Czech Republic" "Greece"

[26] "Iceland" "Ireland" "Sweden" "Nepal" "Saudi Arabia"
[31] "Switzerland" "Iran" "Mongolia" "Spain" "Slovenia"
[36] "Croatia" "Algeria"

Notice how useful the @other slot can be. We now have population structure in the data set and you now
know how to set the population factor. The other slot will become useful later on when we are talking about
multilocus genotypes.

2 Data Manipulation

One tedious aspect of population genetic analysis is the need for repeated data manipulation. Adegenet
has some functions for manipulating data that are limited to replacing missing data and dividing data into
populations, loci, or by sample size [9]. Poppr includes novel functions for clone-censoring your data sets or
sub-setting a genind object by specific populations.

18

2.1 Inside the golden days of missing data {replace or remove missing data}

A data set without missing data is always ideal, but often not achievable. Many functions in adegenet
cannot handle missing data and thus the function na.replace exists [9]. It will replace missing data with
with either “0” representing a mysterious extra allele in the data set resulting in more diversity or the mean
of allelic frequencies at the locus. There is no set method, however, for simply removing missing data from
analyses, which is why the poppr function missingno (see below) exists. If the name makes you uneasy
it’s because it should. Missing data can mean different things based on your data type. For microsatellites,
missing data might represent any source of error that could cause a PCR product to not amplify in gel
electrophoresis, which may or may not be biologically relevant. For a DNA alignment, missing data could
mean something as simple as an insertion or deletion, which is biologically relevant. The choice to exclude
or estimate data has very different implications for the type of data you have.

2.1.1 Function: missingno

missingno is a function that serves partially as a wrapper for adegenet’s na.replace to replace missing
data and as a way to exclude specific areas that contain systematic missing data.

Default Command:
missingno(pop, type = "loci", cutoff = 0.05, quiet = FALSE)

e pop - a genind object.
e type - This could be one of four options:

“mean” This replaces missing data with the mean allele frequencies in the entire data set.
“zero” or “0” This replaces missing data with zero, signifying a new allele.

“loci” This is to be used for a data set that has systematic problems with certain loci that contain
null alleles or simply failed to amplify. This will remove loci with a defined threshold of missing
data from the data set.

“geno” This is to be used for genotypes (individuals) in your data set where many null alleles are
present. Individuals with a defined threshold missing data will be removed.

e cutoff - This is a numeric value from 0 to 1 indicating the percent allowable missing data for either
loci or genotypes. If you have, for example, two loci containing missing 5% and 10% missing data,
respectively and you set cutoff = 0.05, missingno will remove the second locus. Percent missing
data for genotypes is considered the percent missing loci over number of total loci.

e quiet - When this is set to FALSE, the number of missing values replaced will be printed to screen if
the method is “zero” or “mean”. It will print the number of loci or individuals removed if the method
is “loci” or “geno”.

Of course, seeing is believing. Let’s take a look at what this does by focusing in on areas with missing
data. Note that I will be using some sub-setting functions here that are described in adegenet’s Getting
Started vignette. First, let’s take a look at what the missing data in R looks like as well as how many loci
and individuals the data set nancycats contains. We need to first tell R to look in its library for the package

boppr-
> library(poppr)

Next, we’ll initialize the adegenet data set nancycats and load it into memory.

> data(nancycats)

Now, we’ll take a quick look at the nancycats data set using adegenet’s summary () function:

19

> summary (nancycats)

Total number of genotypes: 237

Population sample sizes:
1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17
10 22 12 23 15 11 14 10 9 11 20 14 13 17 11 12 13

Number of alleles per locus:

L1 L2 L3 L4 L5 L6 L7 L8 L9

16 11 10 9 12 8 12 12 18

Number of alleles per population:

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
36 53 50 67 48 56 42 54 43 46 70 52 44 61 42 40 35

Percentage of missing data:
[1] 2.344116

Observed heterozyg051ty

L4 L5 L6 L7 L8 L9

0. 6682028 0. 6666667 0. 6793249 0.7083333 0.6329114 0.5654008 0.6497890 0.6184211 0.4514768

Expected heterozygosity:
L2

L4 L5 L6 L7 L8 L9
0.8657224 0.7928751 0.7953319 0.7603095 0.8702576 0.6884669 0.8157881 0.7603493 0.6062686

We can see here a lot of summary statistics about nancycats. Here we can see that there are 17 popula-
tions, 237 individuals, and 9 loci. Nancycats also has a little over 2.3% missing data. Let’s take a look at
the names of the loci and the structure of the data. In order to save space, I will only show you the first five
individuals (rows) and a portion of the alleles in the first locus (columns).

> nancycats$loc.names # Names of the loci

L1 L2 L3 L4 L5 L6 L7 L8 L9
"fca8" "fca23" "fca43" "fca4b" "fca77" "fca78" "fca90" "fca96" "fca37"

> nancycats$tab[1:5, 8:13]

L1.08 L1.09 L1.10 L1.11 L1.12 L1.13

001 NA NA NA NA NA NA
002 NA NA NA NA NA NA
003 0.0 0.5 0 0 0 0.5
004 0.5 0.5 0 0 0 0.0
005 0.5 0.5 0 0 0 0.0

When looking at this data set, recall how a genind object is formatted. You have a matrix of 0’s, 1’s and
0.5’s. For diploids, if you see 0.5, that means it is heterozygous at that allele, and a 1 means it’s homozygous.
Here we see three heterozygotes and two individuals with missing data (indicated by NA). Now, there are
more places with missing data in the data set, but I'm only showing a little bit at one locus so it’s easier to
digest. Let’s first replace it by zero and mean, respectively.

> nanzero <- missingno(nancycats, type = "zero")

Replaced 617 missing values
> nanmean <- missingno(nancycats, type = "mean"
Replaced 617 missing values

> nanzero$tab[1:5, 8:13]

20

L1.08 L1.09 L1.10 L1.11 L1.12 L1.13
001 0.0 0.0 0 0 0.0
002 0.0 0.0 0 0 0 0.0
003 0.0 0.5 0 0 0 0.5
004 0.5 0.5 0 0 0 0.0
005 0.5 0.5 0 0 0 0.0
> nanmean$tab[1:5, 8:13]
L1.08 L1.09 L1.10 L1.11 L1.12 L1.13
001 0.07603687 0.2419355 0.1912442 0.06221198 0.09447005 0.1013825
002 0.07603687 0.2419355 0.1912442 0.06221198 0.09447005 0.1013825
003 0.00000000 0.5000000 0.0000000 0.00000000 0.00000000 0.5000000
004 0.50000000 0.5000000 0.0000000 0.00000000 0.00000000 0.0000000
005 0.50000000 0.5000000 0.0000000 0.00000000 0.00000000 0.0000000

You notice how the values of NA changed, yet the basic structure stayed the same. These are the replacement
options from adegenet. Let’s look at the same example with the exclusion options (set to the default cutoff

of 5%).

> nanloci <- missingno(nancycats, "loci")

Found 617 missing values.

2 loci contained missing values greater than 5%.
Removing 2 loci : fca8 fca4b

> nangeno <- missingno(nancycats, "geno")

Found 617 missing values.

38 genotypes contained missing values greater than 5%.

Removing 38 genotypes : N215 N216 N188 N189 N190 N191 N192 N302 N304 N310

N195 N197 N198 N199 N200 N201 N206 N182 N184 N186 N298 N299 N300 N301 N303 N282
N283 N288 N291 N292 N293 N294 N295 N296 N297 N281 N289 N290

> nanloci$tab[1:5, 8:13]

L1.08 L1.09 L1.10 L1.11 L2.01 L2.02
0

001 0 0.5 0 0
002 0 1.0 0 0 0 0
003 0 0.5 0 0 0 0
004 0 0.0 0 0 0 0
005 0 0.5 0 0 0 0

Notice how we now see columns named “L2.01” and “L2.02”. This is showing us another locus because
we have removed the first. Recall from the summary table that the first locus had 16 alleles, and the second
had 11. Now that we’ve removed loci containing missing data, all others have shifted over.

Let’s look at the loci names and number of individuals.

> length(nanloci$ind.names) # Individuals
[1] 237
> nanloci$loc.names # Names of the loci

L1 L2 L3 L4 L5 L6 L7
"fca23" "fca43" "fca77" "fca78" "fca90" "fca96" "fca3T7"

You can see that the number of individuals stayed the same but the loci “fca8”, “fcadb”, and “fca96” were
removed.
Let’s look at what happened when we removed individuals.

> nangeno$tab[1:5, 8:13]

21

L1.08 L1.09 L1.10 L1.11 L1.12 L1.13
0 0

001 0.0 0.5 0 0.5
002 0.5 0.5 0 0 0 0.0
003 0.5 0.5 0 0 0 0.0
004 0.0 0.5 0 0 0 0.5
005 0.0 1.0 0 0 0 0.0

> length(nangeno$ind.names) # Individuals

[1]1 199
> nangeno$loc.names # Names of the loci

L1 L2 L3 L4 L5 L6 L7 L8 L9
"fca8" "fca23" "fca43" "fcad4b" "fca77" "fca78" "fca90" "fca96" "fca37"

We can see here that the number of individuals decreased, yet we have the same number of loci. Notice
how the frequency matrix changes in both scenarios? In the scenario with “loci”, we removed several columns
of the data set, and so with our sub-setting, we see alleles from the second locus. In the scenario with “geno”,
we removed several rows of the data set so we see other individuals in our sub-setting.

2.2 Can you take me hier(archy)? {population hierarchy construction}

Remember all that fuss we made about the @other slot above in section 1.5.17 The way you can achieve
hierarchical analysis in poppr is through a data frame in that slot. Many of the file formats that adegenet
and poppr can import do not allow for more than two hierarchies. If you need more levels, you have a couple
of choices:

1. Import them into R as a data frame with each column being a separate hierarchical element.

2. Collapse them into a single population factor so that you can trick these file formats into taking
multiple population hierarchies (eg. instead of “Popl”, “Subpopl”, “Subsubpopl”, you would have
“Popl_Subpopl_Subsubpopl”).

Whichever choice you make, The poppr function splitcombine can help you divide and combine those
factors in any way you can think of.

2.2.1 Function: splitcombine

This function will allow you to combine your population hierarchies in ways meaningful to your data
without needing to know R programming. It can either split a vector of combined population hierarchies or
it can combine columns of a data frame containing population hierarchies (Note that it will only split the
first column of the data frame if you choose method = 1).

Default Command:
splitcombine(pop, method = 1, dfname = "population_hierarchy", sep = "_", hier = c(1),
setpopulation = TRUE, fixed = TRUE)

e pop - a genind object with a data frame in the @other slot.
e method - An integer indicating what you want to do on your data frame:

1. split Any populations combined using a common separator in your data frame. So, a population
hierarchy of “Popl_Subpopl_Subsubpopl” would be split into a data frame containing the columns
“Popl”, “Subpopl”, “Subsubpopl”. Since it will split the population factor, it needs only to be
used once.

22

2. combine If you have your population hierarchy split into a data frame, you can do the exact
opposite of method 1 and combine separate elements into one.

e dfname - This is the name of the data frame containing your population factor. Note that you are
not limited to one data frame in your genind object. If you do not have that data frame in the @other
slot, a warning will be returned and nothing will happen.

e sep - A separation factor you want to separate your populations with. Note, that you can choose
whatever you want, but be careful because some characters have special meanings (regular expressions)
in R and could give you incorrect results (“_” is the suggested default).

e hier - This can be a vector of words or numbers referring to what you want to name your population
hierarchies in method = 1, or specific column names in your data frame in method = 2.

e setpopulation - if TRUE (default), this will automatically set the population factor to either the
highest population factor (with method = 1, split) or the combined population hierarchy (with method
= 2, combine). if this is set to FALSE, the population factor will not be set.

e fixed - This is an option to be passed onto the base function strsplit. For those not familiar with
regular expressions, it will tell R whether or not the character in split should be treated as a special
character or not. If you don’t know regular expressions, don’t touch it.

Let’s give an example using AFLP data of different populations of A. euteiches collected in Washington
and Oregon. [5]

> Aeut <- read.genalex(system.file("files/rootrot.csv", package="poppr"))
> summary (Aeut)

Total number of genotypes: 187

Population sample sizes:

Athena_1 Athena_2 Athena_3 Athena_4 Athena_5 Athena_6
9 12 5
Athena_7 Athena_8 Athena_9 Athena_10 Mt. Vernon_1 Mt. Vernon_2
11 6

8 10 9 10
Mt. Vernon_3 Mt. Vernon_4 Mt. Vernon_5 Mt. Vernon_6 Mt. Vernon_7 Mt. Vernon_8
8

Percentage of missing data:
[1]1 o

DOES THIS SUMMARY SEEM A LITTLE LACKING?

The data that we have here is presence absence data. This means that many of the func-
tions that adegenet uses to calculate heterozygosity and number of alleles are slightly
useless in this regard.

Notice that we have 18 different “populations” here, but they are really a hierarchy. Let’s say we want to
analyze the diversity statistics of the two overall populations. Take a look at how the combined population
factor is kept in the data frame.

> head(Aeut$other$population_hierarchy)

Pop
Athena_1
Athena_1
Athena_1
Athena_1
Athena_1
Athena_1

B WN -

5
6

We'll use splitcombine to split that into a population and sub-population and set the population factor to
the population.

23

IMPORTANT POINT ABOUT SPLITCOMBINE

Ideally, method split should only be used once after you read in your data. The reason
for this is that when you select this method, it will look in the first column of your
data frame to choose the combined population factor to split. If you do not name your
hierarchy or if you attempt to give your hierarchy too many names, it will automatically
name the columns “h1”, “h2”; etc.

> Aeut.pop <- splitcombine(Aeut, method=1, dfname="population_hierarchy", hier=c("Pop", "Subpop"), setpopulation=TRUE)
> head(Aeut.pop$other$population_hierarchy)

Pop_Subpop Pop Subpop
Athena_1 Athena 1
Athena_1 Athena
Athena_1 Athena

_1 Athena

_1 Athena

Athena_1 Athena

U WN -

=

ot

(=2

o

=]

o

-
e e

> summary (Aeut.pop)

Total number of genotypes: 187
Population sample sizes:
Athena Mt. Vernon
97 90

Percentage of missing data:
[11 o

Now we can see that we have a data frame with all of our population factors separated, and we still have
our original combined hierarchy, but it is now called “Pop_Subpop”. This allows you to keep track of what
you named your population hierarchies. We can now run the function poppr to get a diversity analysis.

> poppr (Aeut.pop, quiet=TRUE)

Pop N MLG eMLG SE H G Hexp E.5 Ta rbarD File
1 Athena 97 70 65.981 1.246 4.063 42.193 0.986 0.721 2.906 0.072 rootrot.csv
2 Mt. Vernon 90 50 50.000 0.000 3.668 28.723 0.976 0.726 13.302 0.282 rootrot.csv
3 Total 187 119 68.453 2.989 4.558 68.972 0.991 0.720 14.371 0.271 rootrot.csv

It’s as simple as that. Now, let’s take a look at the same data set, except the input file is a GenAlEx file
that has been formatted with Regional data (See section 1.4.2 for details). First, let’s see how the data set
is laid out:

Figure 4: Part of the rootrot2.csv data set. Note the last two columns denoting the Regions and the number of individuals
per region.

A B C D E F G H | J K L M| N 0 P

1 56 187 10 19 18 18 25 27 17 23 21 10 9 2 97 Q0
2 1.2 3 4 5 6 7 8 9 10 Athena Mt. Vernon

3 |Ind Pop 1 2 3 4 5 6 7 8 9 10 11 12 13 14
4 1 110 10 1 0 0 1 1 0 1 1 1 0
5 2 110 1 0 0 0O 01T 1 1 1 1 1 0
6 3 110 1 0 0 0 0O 0 1 0 1 1 1 0
7 4 1 1 01 0 0 0 OO 1 0 1 1 1 0
8 5 110 1 0 0 0 0O 0 1 0 1 1 1 0

24

THE AMAZING DISAPPEARING OPTIONS!

Notice that I'm not writing in many of the options? This is because they have defaults.
Since the data frame in my @other slot is called “population hierarchy”, I don’t have
to specify that every time I do the function call, and that saves a lot of typing!

We’ll import our data using read.genalex and take a look at the population hierarchy.

> Aeut2 <- read.genalex(system.file("files/rootrot2.csv", package="poppr"), region=TRUE)
> head(Aeut2@other$population_hierarchy)

Pop Region
Athena
Athena
Athena
Athena
Athena
Athena

DU WN -
[l el el e e

> summary (Aeut2)

Total number of genotypes: 187

Population sample sizes:
1 2 3 45 6 7 8 910
19 18 18 25 27 17 23 21 10 9

Percentage of missing data:
[11 o

What we see is that we have both of the population factors, but the names have changed and they are
not combined. Note that since we specified “Athena” and “Mt. Vernon” as regions, the other level of the
hierarchy was set as the population factor. We’ll use splitcombine to combine both of these in the proper
order. Note that we can use the indexes of the data frame columns to index these.

> Aeut2.combine <- splitcombine(Aeut2, method=2, hier=2:1)
> head(Aeut2.combine@other$population_hierarchy)

Pop Region Region_Pop
1 1 Athena Athena_1l
2 1 Athena Athena_1
3 1 Athena Athena_1
4 1 Athena Athena_1
5 1 Athena Athena_1
6 1 Athena Athena_1

> summary (Aeut2.combine)

Total number of genotypes: 187

Population sample sizes:

Athena_1 Athena_2 Athena_3 Athena_4 Athena_5 Athena_6
9 12 10 13 10 5
Athena_7 Athena_8 Athena_9 Athena_10 Mt. Vernon_1 Mt. Vernon_2
11 8 9 6

Mt. Vernon_3 Mt. Vernon_4 Mt. Vernon_5 Mt. Vernon_6 Mt. Vernon_7 Mt. Vernon_8
8 12 17 12 12 13

Percentage of missing data:
[11 o

Having these hierarchies in your data set is important when it comes to clone-censoring your data set (see
section 2.4 Attack of the Clone Correction).
2.3 Divide (populations) and conquer (your analysis) {extract populations}

As I’ve mentioned before, adegenet has many ways of sub-setting the data, but you cannot easily subset
a genind object by population in an efficient way. Poppr allows sub-setting a population from a genind
object with one command.

25

2.3.1 Function: popsub

The command popsub is powerful in that it allows you to choose exactly what populations you choose to

include or exclude from your analyses. As with many R functions, you can easily use this within a function
to avoid creating a new variable to keep track of.

Default Command:
popsub(pop, sublist = "ALL", blacklist = NULL, mat = NULL)

pop - a genind object.

sublist - The vector of populations or integers representing the populations in your data set you
wish to retain. For example: sublist = c("pop_z", "pop_y") or sublist = 1:2.

blacklist - The vector of populations or integers representing the populations in your data set you
wish to exclude. This can take the same type of arguments as sublist, and can be used in conjunction
with sublist for when you want a range of populations, but know that there is one in there that you do
not want to analyze. For example: sublist = 1:15, blacklist = "pop_x". One very useful thing
about the blacklist is that it allows the user to be extremely paranoid about the data. You can set the
blacklist to contain populations that are not even in your data set and it will still work!

mat - (see section 3, Multilocus Genotype Analysis for more information) This is where you would put
a matrix that’s produced by mlg.table to be subsetted instead of the genind object. If you do this,
the matrix will return with only the rows equal to your populations and only the multilocus genotypes
(columns) pertaining to those populations.

To demonstrate this tool, let’s revisit the H3N2 data set. Let’s say we wanted to analyze only the data in
North America. To make sure we are all on the same page, we will reset the population factor to “country”.
Remember that this is located in a data frame in the @other slot called “x”.

> data(H3N2)
> pop(H3N2) <- H3N2$other$x$country
> H3N2$pop.names # Only two countries from North America.

[1]

(6]
[11]
[16]
[21]
[26]
[31]
[361]

"Japan" "USA" "Finland" "China" "South Korea"
"Norway" "Taiwan" "France" "Latvia" "Netherlands"
"Bulgaria" "Turkey" "United Kingdom" "Denmark" "Austria"
"Canada" "Italy" "Russia" "Bangladesh" "Egypt"
"Germany" "Romania" "Ukraine" "Czech Republic" "Greece"
"Iceland" "Ireland" "Sweden" "Nepal" "Saudi Arabia"
"Switzerland" "Iran" "Mongolia" "Spain" "Slovenia"
"Croatia" "Algeria"

> H.na <- popsub(H3N2, sublist=c("USA", "Canada"))
> H.na$pop.names

P1 P2

"USA" "Canada"

Since this is a larger data set, running the summary function might take a few seconds longer than we want
it to. If we want to see the population size, we can use the adegenet function nInd():

> nInd(H.na)

[1] 665

> nInd(H3N2)

26

[1] 1903

You can see that the population factors are correct and that the size of the data set is considerably smaller.
Let’s see the data set without the North American countries.

> H.minus.na <- popsub(H3N2, blacklist=c("USA", "Canada"))
> H.minus.na$pop.names

PO1 P02 P03 P04 P05
"Japan" "Finland" "China" "South Korea" "Norway"
P06 P07 P08 P09 P10
"Taiwan" "France" "Latvia" "Netherlands" "Bulgaria"
P11 P12 P13 P14 P15
"Turkey" "United Kingdom" "Denmark" "Austria" "Italy"
P16 P17 P18 P19 P20
"Russia" "Bangladesh" "Egypt" "Germany" "Romania"
P21 P22 P23 P24 P25
"Ukraine" "Czech Republic" "Greece" "Iceland" "Ireland"
P26 P27 P28 P29 P30
"Sweden" "Nepal" "Saudi Arabia" "Switzerland" "Iran"
P31 P32 P33 P34 P35
"Mongolia" "Spain" "Slovenia" "Croatia" "Algeria"

Let’s make sure that the number of individuals in both data sets added up equals the number of individuals
in our original data set:

> (nInd(H.minus.na) + nInd(H.na)) == nInd(H3N2)

[1] TRUE

Now we have data sets with and without North America. Let’s try something a bit more challenging.
Let’s say that we want The first 10 populations in alphabetical order, but we know that we still don’t want
any countries in North America. We can easily do this by using the base function sort.

> Hsort <- sort(H3N2$pop.names) [1:10]

> Hsort
[1] "Algeria" "Austria" "Bangladesh" "Bulgaria" "Canada"
[6] "China" "Croatia" "Czech Republic" "Denmark" "Egypt"

> H.alph <- popsub(H3N2, sublist=Hsort, blacklist=c("USA", "Canada"))
> H.alph$pop.names

P1 P2 P3 P4 P5
"China" "Bulgaria" "Denmark" "Austria" "Bangladesh"
P6 P7 P8
"Egypt" "Czech Republic" "Croatia" "Algeria"

And that, is how you subset your data with poppr!

2.4 Attack of the clone correction {clone-censor data sets}

Clone correction refers to the ability of keeping one observation per clone in a given population (or
sub-population). Clone correcting can be hazardous if its done by hand (even on small data sets) and it
requires a defined population hierarchy to get relevant results. Poppr has a clone correcting function that is
able to correct at the lowest level of any defined population hierarchy. Note that clone correction in poppr
is sensitive to missing data, as it treats all missing data as a single extra allele.

27

2.4.1 Function: clonecorrect

This function will return a clone corrected data set corrected for the lowest population level. Population
levels are specified with the hier flag. You can choose to combine the population hierarchy to analyze at
the lowest population level by choosing combine = TRUE.

Default Command:
clonecorrect(pop, hier = c(1), dfname = "population_hierarchy", combine = FALSE, keep
=1)

e pop - agenind object that has a population hierarchy data frame in the @other slot. Note, the genind
object does not necessarily require a population factor to begin with.

e hier - This can be a vector of words or numbers referring to specific column names in your data frame
in the @other slot.

e dfname - The name of a data frame you have in the @other slot with the population factors.

e combine - Do you want to combine the population hierarchy? If it’s set to FALSE (default), you will
be returned a genind object with the top most hierarchical level as a population factor.

e keep - This flag is to be used if you set combine = FALSE. This will tell clone correct to return
a specific combination of your hierarchy. For example, imagine a hierarchy that needs to be clone
corrected at three levels: Population by Year by Month. If you wanted to only run an analysis on the
Population level, you would set keep = 1 since Population is the first level of the hierarchy. On the
other hand, if you wanted to run analysis on Year by Month, you would set keep = 2:3 since those
are the second and third levels of the hierarchy.

Let’s look at ways to clone-correct our data. We’ll look at our A. euteichies data since that data set is
known to include clonal populations [5]. Notice that I am not including the options dfname and combine
because the default arguments suit my needs.

> data(Aeut)
> A.cc <- clonecorrect(Aeut, hier=c("Pop", "Subpop"), keep=1)
> poppr(A.cc, quiet=TRUE)

Pop N MLG eMLG SE H G Hexp E.5 Ta rbarD File
1 Athena 76 70 60.621 1.017 4.221 65.636 0.998 0.963 2.535 0.062 rootrot.csv
2 Mt. Vernon 65 50 50.000 0.000 3.796 36.739 0.988 0.821 14.310 0.298 rootrot.csv
3 Total 141 119 59.629 1.854 4.705 96.980 0.997 0.876 13.802 0.260 rootrot.csv

Now let’s compare the clone corrected analysis to the uncorrected data set:
> poppr (Aeut, quiet=TRUE)

Pop N MLG eMLG SE H G Hexp E.5 Ia rbarD File
1 Athena 97 70 65.981 1.246 4.063 42.193 0.986 0.721 2.906 0.072 rootrot.csv
2 Mt. Vernon 90 50 50.000 0.000 3.668 28.723 0.976 0.726 13.302 0.282 rootrot.csv
3 Total 187 119 68.453 2.989 4.558 68.972 0.991 0.720 14.371 0.271 rootrot.csv

As you can see from the summary tables, everything all sub-populations have been clone censored to the
sub population level with respect to the population hierarchy. Notice how the observed number of individuals
(N) decreases in the clone corrected data set.

2.5 Every day I’'m shuffling (data sets) {permutations and bootstrap resam-
pling}

A common null hypothesis for populations with mixed reproductive modes is panmixia, or to put it
simply: lots of sex. A handy way to test for that is permutation analysis to assess random linkage among
loci whereupon you randomly shuffle your data. Poppr uses randomly shuffled data sets in order to calculate
P-values for the index of association (I4 and 7g) [1]. Since there might be other tests where a permutation
analysis would be pertinent, a shuffler for genind objects was created with four shuffling schemes: two
schemes shuffling without replacement and two shuffling with replacement. Details below.

28

2.5.1 Function: shufflepop

Default Command:
shufflepop(pop, method = 1)

e pop - a genind object.

e method - a number indicating the method of sampling you wish to use. The following methods are
available for use:

1. Multilocus permutation This is called Multilocus permutation because it does the same thing
as the permutation analysis in the program multilocus by Paul Agapow and Austin Burt [1]. This
will shuffle the genotypes at each locus. For example, a single diploid locus with four alleles (1,
2, 3, 4) with the frequencies of 0.1, 0.2, 0.3, and 0.4, respectively:

[Ji[ﬂi

W
WN W

might become:

) [,1]1 [,2]
[1,] 3 '3
[2,] 4 1
[3,] 2 2
[4,] 4 4
5,] 4 3

Note that you have the same genotypes after shuffling, so at each locus, you will maintain the
same allelic frequencies and heterozygosity. So, in this sample, you will only see a homozygote
with allele 2. This also ensures that the P-values associated with I4 and 74 are exactly the same
(for an explanation, see the end of section 4.1.1 of this manual). Unfortunately, if you are trying to
simulate a sexual population, this does not make much biological sense as it assumes that alleles
are not independently assorting within individuals.

2. Permute Alleles This is a sampling scheme that will permute alleles within the locus. So, using
our example above, our resampling might become:

[,1] [,2]
[1,] 3 2
[2,] 2 4
[3,] 1 3
[4,] 4 3
[5,] 4 4

As you can see, The heterozygosity has changed, yet the allelic frequencies remain the same.
Overall this would show you, for example, what would happen if the sample you had underwent
panmixis within this sample itself.

3. Parametric Bootstrap The previous two schemes reshuffled the observed sample, but the para-
metric bootstrap uses the allelic frequencies as estimates of what the true allelic frequencies are
and uses those as probabilities for each allele when resampling the data with replacement. Here

are two samples to show you what I mean.
First Sample

[,11 [,2]
[1,] 13
[2,] 3 3
[3,] 3 2
[4,] 4 4
[5,] 4 2

Second Sample

i [,1] [,2]
[1,] 3 4
[2,] 2 3
[3,] 4 2
[4,] 4 4
[5,1] 4 2

29

Notice how the heterozygosity has changed along with the allelic frequencies. The frequencies for
alleles 3 and 4 have switched in the first data set, and we’ve lost allele 1 in the second data set
purely by chance! This type of sampling scheme attempts to show you what the true population
would look like if it were panmictic and your original sample gave you a basis for estimating
expected allele frequencies. Since estimates are made from the observed allele frequencies, small
samples will produce skewed results.

4. Non-Parametric Bootstrap The final method is sampling with replacement, but with no as-
sumption about the distribution of the alleles.

[,1]1 [,2]
[1,] 1 3
[2,] 3 3
[3,] 3 1
[4,] 2 2
[5,1] 3 1

Again, heterozygosity and allele frequencies are not maintained, but now all of the alleles have a
1 in 4 chance of being chosen.

These shuffling schemes have been implemented for the index of association, but there may be other summary
statistics you can use shufflepop for. All you have to do is use the function replicate. Let’s use I4 as an
example:

> data(nancycats)

> nanl <- popsub(nancycats, 1)
> ja(nanl)

Ia rbarD
0.16564272 0.02105965

> replicate(10, ia(shufflepop(nanl, method = 3), quiet=TRUE))

[,1] [,2] [,3] [,4] [,5] [,6] [,71
Ia -0.29112163 -0.053843659 -0.17996769 0.14010641 0.30063966 0.21221103 -0.22694841
rbarD —0.036?155)3 -0.006%45]724 —0.02[2733945 0.01789136 0.03811873 0.02683328 -0.02906914
8 .9 ,10

Ia 0.40814607 -0.24815362 -0.40796307
rbarD 0.05292946 -0.03176451 -0.05222284

You could use this method to replicate the resampling 999 times and then create a histogram to visualize a
distribution of what would happen under different assumptions of panmixia.

2.6 Cut It Out! {removing uninformative loci}

Phylogenetically uninformative loci are those that have only one sample differentiating from the rest.
This can lead to biased results when using multilocus analyses such as the index of association (See 4.1 and
5). These nuisance loci can be removed with the following function.

2.6.1 Function: informloci

Default Command:
informloci(pop, cutoff = 2/nInd(pop), quiet = FALSE)

e pop - a genind object.

e cutoff - this represents the minimum fraction of individuals needed for a locus to be considered
informative. The default is set to 2/n with n being the number of individuals in the data set (represented
by the adegenet function nInd). Essentially, this means that any locus with fewer than 2 observations
differing will be removed. The user can also specify a fraction of observations for the cutoff (eg. 0.05).

30

e quiet - if TRUE, nothing will be printed to the screen, if FALSE, the cutoff value in percentage and
number of individuals will be printed as well as the names of the uninfomrative loci found.
Here’s a quick example.
> data(H3N2)

> H.five <- informloci(H3N2, cutoff = 0.05)

cutoff value: 5 percent (95 individuals).

47 uninfomative loci found: 157

177 233 243 262 267 280 303 313 327 357 382 384 399 412 418 424 425 429 433 451
470 529 546 555 557 564 576 592 595 597 602 612 627 642 647 648 654 658 663 667
681 717 806 824 837 882

Now what happens when you have all informative loci:

> data(nancycats)
> naninform <- informloci(nancycats, cutoff = 0.05)

cutoff value: 5 percent (12 individuals).
No sites found with fewer than 12 different individuals.

3 Multilocus Genotype Analysis

In populations with mixed sexual and clonal reproduction, it is not uncommon to have multiple samples
from the same population have the same genotype across multiple loci (multilocus genotype, MLG). Here,
we introduce tools for tracking MLGs within and across populations in genind objects from the adegenet
package. We will be using SNP data from isolates of the H3N2 virus from 2002 to 2006.

3.1 Just a peek {How many multilocus genotypes are in our data set?}

First, let’s take a quick look at how many Multilocus Genotypes are present within the H3N2 data set
using the mlg function. This will tell us if any MLG analysis is needed.
3.1.1 Function: mlg

The function mlg allows for the counting of the number of MLGs in a genind object. This is a very
simple command for quick reference to determine if your data set needs further multilocus genotype analysis.

Default Command:
mlg(pop, quiet = FALSE)

e pop - a genind object.

e quiet - if TRUE, the number of individuals and multilocus genotypes will be printed to the screen, if
FALSE, nothing will be printed to the screen and the number of multilocus genotypes will be reported.

> data(H3N2)
> mlg(H3N2, quiet=FALSE)

Number of Individuals: 1903
Number of MLG: 752

[1] 752

We can see that since the number of individuals exceeds the number of multilocus genotypes, this data set
contains clones. Let’s take a look at where those clones are with respect to populations.

31

3.2 Clone-ing around {MLGs across populations}

Since you have the ability to change the population structure of your data set freely, it is quite possible
to see some of the same MLGs across different populations. Tracking them by hand can be a nightmare with
large data sets. Luckily, mlg.crosspop has you covered in that regard.

3.2.1 Function: mlg.crosspop

Analyze the MLGs that cross populations within your data set. This has three output modes. The
default one gives a list of MLGs, and for each MLG, it gives a named numeric vector indicating the abundance
of that MLG in each population. Alternate outputs are described with indexreturn and df.

Default Command:
mlg.crosspop(pop, sublist = "ALL", blacklist = NULL, mlgsub = NULL, indexreturn =
FALSE, df = FALSE, quiet = FALSE)

e pop - a genind object.
e sublist - see mlg.table, Section 3.3.1. Analyze specified populations.
e blacklist - see mlg.table, Section 3.3.1. Do not include specified populations.

e mlgsub - see mlg.table, Section 3.3.1. Only analyze specified MLGs. The vector for this flag can be
produced by this function as you will see later in this vignette.

e indexreturn - return a vector of indices of MLGs. (You can use these in the mlgsub flag, or you can
use them to subset the columns of an MLG table).

e df - return a data frame containing the MLGs, the populations they cross, and the number of copies
you find in each population. This is useful for making graphs in ggplot2.

e quiet - TRUE or FALSE. Should the populations be printed to screen as they are processed? (will print
nothing if indexreturn is TRUE)

We can see what Multilocus Genotypes cross different populations and then give a vector that shows how
many populations each multi-population MLG crosses.

> pop(H3N2) <- H3N2$other$x$country
> H.dup <- mlg.crosspop(H3N2, quiet=TRUE)

Here is a snippet of what the output looks like when quiet is FALSE. It will print out the MLG name, the
total number of individuals that make up that MLG, and the populations where that MLG can be found.

MLG.3: (12 inds) USA Denmark

MLG.9: (16 inds) Japan USA Finland Denmark

MLG.31: (9 inds) Japan Canada

MLG.75: (23 inds) Japan USA Finland Norway Denmark Austria Russia Ireland
MLG.80: (2 inds) USA Denmark

MLG.86: (7 inds) Denmark Austria

MLG.95: (2 inds) USA Bangladesh

MLG.97: (8 inds) USA Austria Bangladesh Romania
MLG.104: (3 inds) USA France
MLG.110: (16 inds) Japan USA China

The output of this function is a list of MLGs, each containing a vector indicating the number of copies in
each population. We'll count the number of populations each MLG crosses using the function sapply with
length.

> head (H.dup)

32

$MLG.3
USA Denmark

$MLG.9
Japan USA Finland Denmark
1 13 1 1
$MLG.31
Japan Canada
2
$MLG.75
Japan USA Finland Norway Denmark Austria Russia Ireland
2 8 2 1 6 2 1 1
$MLG. 80

USA Denmark
1 1

$MLG.86
Denmark Austria
4

> H.num <- sapply(H.dup, length) # count the number of populations each MLG crosses.
> H.num

MLG.3 MLG.9 MLG.31 MLG.75 MLG.80 MLG.86 MLG.95 MLG.97 MLG.104 MLG.110 MLG.119

2 4 2 8 2 2 2 4 2 3 2
MLG.149 MLG.158 MLG.163 MLG.205 MLG.206 MLG.207 MLG.210 MLG.213 MLG.221 MLG.224 MLG.227
2 6 2 2 3 2 2 4 2 3 3
MLG.234 MLG.241 MLG.244 MLG.246 MLG.252 MLG.253 MLG.258 MLG.274 MLG.277 MLG.283 MLG.285
6 3 2 10 2 9 2 5 3 3 2
MLG.290 MLG.291 MLG.314 MLG.315 MLG.317 MLG.321 MLG.325 MLG.326 MLG.334 MLG.344 MLG.350
3 2 2 3 3 2 2 2 2 2 2
MLG.368 MLG.370 MLG.381 MLG.401 MLG.405 MLG.417 MLG.439 MLG.453 MLG.461 MLG.471 MLG.508
3 2 3 3 3 5 2 2 3 2 3
MLG.529 MLG.530 MLG.540 MLG.548 MLG.552 MLG.556 MLG.570 MLG.578 MLG.580 MLG.582 MLG.589
5 3 3 2 2 2 2 2 2 2 2
MLG.597 MLG.605 MLG.611 MLG.615 MLG.619 MLG.620 MLG.621
2 3 2 2 2 4 2

3.3 Bringing something to the table {producing MLG tables and graphs}

We can also create a table of multilocus genotypes per population as well as bar graphs to give us a visual
representation of the data. This is achieved through the function mlg.table

3.3.1 Function: mlg.table

Produce a matrix containing counts of MLGs (columns) per population (rows). If there is no population
structure to your data set, a vector will be produced instead.

Default Command:
mlg.table(pop, sublist = "ALL", blacklist = NULL, mlgsub = NULL, bar = TRUE, total
= FALSE, quiet = FALSE)

e pop - a genind object.

e sublist - a vector indicating which specific populations you want to produce a table for. This can
be a numeric or character vector. See section 2.3.1 for details.

e blacklist - a vector indicating which specific populations you do not want to include in your table.
This can be a numeric or character vector, and does not necessarily have to be the same type as
sublist. eg. sublist=1:10, blacklist="USA". See section 2.3.1 for details.

e mlgsub - a vector containing the indices of MLGs you wish to subset your table with.

33

e bar - TRUE or FALSE. If TRUE, a bar plot will be printed for each population with more than one
individual.

e total - TRUE or FALSE. Should the entire data set be included in the table? This is equivalent to
evoking colSums on the table.

e quiet - TRUE or FALSE. When bar is TRUE, should the populations be printed to screen as they are
processed?

> H.tab <- mlg.table(H3N2, quiet=TRUE, bar=TRUE)
> H.tab[1:10, 1:10] # Showing the first 10 columns and rows of the table.

MLG.1 MLG.2 MLG.3 MLG.4 MLG.5 MLG.6 MLG.7 MLG.8 MLG.9 MLG.10

Japan 0 0 0 0 0 1 2 1

USA 0 2 4 1 1 0 0 0 13 0
Finland 0 0 0 0 0 0 0 0 1 0
China 0 0 0 0 0 0 0 0 0 0
South Korea 0 0 0 0 0 1 0 0 0 0
Norway 1 0 0 0 0 0 0 0 0 0
Taiwan 0 0 0 0 0 0 0 0 0 0
France 0 0 0 0 0 0 0 0 0 0
Latvia 0 0 0 0 0 0 0 0 0 0
Netherlands 0 0 0 0 0 0 0 0 0 0

Figure 5: An example of a bar-chart produced by mlg.table. Note that this data set would produce several such charts.

Population: Norway
N =38 MLG = 27

count
3.0

25
20

count

15
1.0

SO ECE
S e s,

MLG

34

The MLG table is not restricted for use with just Poppr. One of the main advantages of the function
mlg.table is that it allows easy access to diversity functions present in the package vegan [12]. One very
simple example is to create a rarefaction curve for each population in your data set giving the number of
expected MLGs for a given sample size. For more information, type help("diversity", package="vegan")
in your R console.

For the sake of a simple example, instead of drawing a curve for each of the 37 countries represented in
this sample, let’s change the population structure to be the different years of the epidemics.
> H.year <- H3N2

> pop(H.year) <- H.year$other$x$year
> summary (H.year) # Check the data to make sure it's correct.

Total number of genotypes: 1903

Population sample sizes:
2002 2003 2004 2005 2006
1568 415 399 469 462

Number of alleles per locus:

L001 LOO2 LOO3 LO0O4 LOO5 L006 LOO7 LOO8 LO0O9 LO10 LO11 LO12 LO13 LO14 LO15 LO16 LO17 L018
3 3 4 2 4 2 3 2 4 4 2 4 2 2

L019 L020 LO21 L022 L023 L024 L025 L026 L027 L028 L029 L030 L031 L032 L033 L034 L035 L036

2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 4 4 3
L037 L0O38 L039 L040 LO41 L042 L043 L044 L045 L046 L047 L048 L049 LO50 LO51 LO52 LO53 L054
3 3 4 2 2 2 4 3 2 3 4 2 3 2 3 2 2 2
L055 LO56 L057 LO58 LO59 L060 LO61 L062 L063 L064 L065 L066 L067 LO68 L069 LO70 LO71 LO72
4 2 2 2 2 2 2 2 4 4 4 3 3
L073 LO74 LO75 LO76 LO77 LO78 LO79 L080 LO81 L0O82 L083 L084 L085 L086 L087 L088 L0889 L090

3 3 3 3 2 3 2 4 2 3 2 2 3 3 3 3 2 2
L091 L092 L093 L094 LO95 L096 L0O97 L098 L099 L100 L101 L102 L103 L104 L105 L106 L107 L108
2 2 2 2 2 2 2 2 2

3 2 3 3 3 3 3 3
L109 L110 L111 L112 L113 L114 L115 L116 L117 L118 L119 L120 L121 L122 L123 L124 L125
2 3 3 3 2 2 3 3 3 3 4 2 3 3 4 3 2

Number of alleles per population:
1 2 3 4 b5
203 255 232 262 240

Percentage of missing data:
[1] 2.363426

Observed heterozygosity:
[1]1 o

Expected heterozygosity:
[11 o

> H.year <- mlg.table(H.year, bar=FALSE)
> rarecurve(H.year, ylab="Multilocus genotypes expected", sample=min(rowSums(H.year)))

The minimum value from the base function rowSums () of the table represents the minimum common
sample size of all populations. Setting the “sample” flag draws the horizontal and vertical lines you see on
the graph. The intersections of these lines correspond to the numbers you would find if you ran the function
poppr on this data set (under the column “eMLG”).

3.4 Getting into the mix {combining MLG functions}

Alone, the different functionalities are neat. Combined, we can create interesting data sets. Let’s say
we wanted to know which MLGs were duplicated across the regions of the United Kingdom, Germany,
Netherlands, and Norway. All we have to do is use the sublist flag in the function:

> UGNN.list <- c("United Kingdom", "Germany", "Netherlands", "Norway")
> UGNN <- mlg.crosspop(H3N2, sublist=UGNN.list, indexreturn=TRUE)

OK, the output tells us that there are three MLGs that are crossing between these populations, but we do
not know how many are in each. We can easily find that out if we subset our original table, H.tab.

> UGNN # Note that we have three numbers here. This will index the columns for us.

35

Figure 6: An example of a rarefaction curve produced using a MLG table.

o 2005

7 2003
8
2 84
(9] —
Q.
X
]
1]
[}
5
g 8 -
@ -
o
1)
2 /o)
k=]
3 8-

o -

T T T T 1
0 100 200 300 400
Sample Size

MLG.315 MLG.317 MLG.620
315 317 620

> UGNN.list # And let's not forget that we have the population names.

[1] "United Kingdom" "Germany" "Netherlands" "Norway"

> H.tab[UGNN.list, UGNN]

MLG.315 MLG.317 MLG.620

United Kingdom 1 0
Germany 0 1 1
Netherlands 0 0 0
Norway 2 3 1

Now we can see that Norway has a higher incidence of nearly all of these MLGs. We can go even further
and subset the original data set to only give us those MLGs by utilizing the function mlg.vector:

3.4.1 Function: mlg.vector

This function is the backbone for mlg.table and mlg.crosspop, and is The function that determines
what your MLGs are. This is quite useful for sub-setting the data set to only contain the MLGs of interest.
The numbers in the vector correspond to the number of columns in a matrix produced by mlg.table. It is
important to remember that this is also sensitive to missing data and will treat it as a single extra allele.

Default Command:
mlg.vector (pop)

e pop - a genind object.

> H.vec <- mlg.vector (H3N2)

> H.sub <- H3N2[H.vec %in% UGNN,]
> mlg.table(H.sub, bar=FALSE)

36

MLG.1 MLG.2 MLG.3
Austria 0 0 7
Germany 0 1 1
Greece 0 0 1
Norway 2 3 1
Japan 4 1 0
United Kingdom 1 0 0

You can also do the same thing using the mlgsub flag.

> mlg.table(H3N2, mlgsub=UGNN, bar=TRUE)

MLG.315 MLG.317 MLG.620
4 1 0

Japan

Norway 2 3 1
United Kingdom 1 0 0
Austria 0 0 7
Germany 0 1 1
Greece 0 0 1

And we can see where exactly these three MLGs fall within our data set.

Figure 7: An example of the same bar-chart as Figure 1, but focusing on three MLGs.

Population: Norway
N=6MLG =3

count
3.0

25

count

20
15
1.0

37

Now, you might notice that the MLG vector no longer matches up with our data after we subset it.

> H.vec[1:22]

[[1% 605 605 672 675 674 673 670 671 670 678 678 678 678 582 615 580 581 570 615 582 582
22] 592

> mlg.vector (H.sub)

[1] 3333333333211221211112

Well, this is unfortunate because it means that we can’t compare any subsetted data with non-subsetted
data. Luckily, there’s a little trick we can do using our old friend, the @other slot. If we place the MLG
vector in the @other slot of our original data set, it will be subsetted along with the data.

> H3N2@other$MLG.vector <- H.vec

> H.sub <- H3N2[H.vec %in% UGNN,]
> H.sub@other$MLG.vector

[[1% 620 620 620 620 620 620 620 620 620 620 317 315 315 317 317 315 317 315 315 315 315
22] 317

Magic!

So, we've gotten this far, yet we haven’t actually seen what the genotypes look like! For analyses where
the genotypic signature is important, this is a crucial identification step. Lucky for us, the genind object
retains all of the genotypic information and can be accessed using the genind2df function. Let’s take a look
at the three genotypes we specified above utilizing the vector of MLGs we created above, H.vec.

> H.df <- genind2df (H3N2)
> H.df[H.vec %inj, UGNN, 1:15] # Showing only 15 columns becaus it is a large dataset.

> H.df <- genind2df (H3N2[, loc=names(H3N2@loc.names) [1:15]])
> H.df[H.vec %inJ, UGNN, 1:15] # Showing only 15 columns becaus it is a large dataset.

Notice that there seems to be a clear separation between the SNPs of the first 10 isolates and the rest? This
is no coincidence. Take a look at the output of our sub-setting.

> UGNN

MLG.315 MLG.317 MLG.620
315 317 620

> H.vec[H.vec %in% UGNN]

[[1% 620 620 620 620 620 620 620 620 620 620 317 315 315 317 317 315 317 315 315 315 315
22] 317

We have the MLGs 315, 317, and 620, and the result of the sub-setting shows us that 620 occurs earlier
in our data set, and that MLGs 315 and 317 are mixed in together. The reason why we do not see a mixture
of three different sets of SNP calls in our little window is because mlg.vector creates the MLGs by first
concatenating and then sorting the genotypes. This way, the closer two MLG indexes are to each other, the
fewer differences they will have between one another.

38

3.5 Do you see what I see? {alternative data visualization}

The graphs that are output by poppr are simply aids for the user to make data analysis easier. We want
to better visualize how these MLGs cross populations by MLG or population. We also want to see exactly
what MLGs are in which populations, and how prevalent they are. As the package ggplot2 is based on data
frames, we have to give ourselves a data frame to work with. We can do this using the df = TRUE flag.

> df <- mlg.crosspop(H3N2, df=TRUE, quiet=TRUE)
> names (df)

[1] "MLG" "Population" "Count"

Now that we have our data frame, we can do a couple of things. We can first see where the most omnipresent
MLG occurs. After that, we will plot the top ten MLGs using ggplot2.

> H.max <- names(sort(H.num, decreasing=TRUE)[1:10])

> # Showing the data frame by the largest MLG complex.
> df [Af$MLG %in% H.max[1],]

MLG Population Count

76 MLG.246 Japan 3
77 MLG.246 USA 8
78 MLG.246 China 4
79 MLG.246 Norway 1
80 MLG.246 Austria 6
81 MLG.246 Russia 1
82 MLG.246 Egypt 1
83 MLG.246 Iceland 1
84 MLG.246 Nepal 15
85 MLG.246 Switzerland 1

And now we can visualize the largest ten MLG complexes using ggplot2’s gqplot function.

Figure 8: An example of the versatility of the MLG information.

> df2 <- df [df$MLG %in% H.max,]

> library(ggplot2)

> gplot(y=MLG, x=Population, data=df2, color=Count, size=Count) +

+ theme (axis.text.x = element_text(size = 10, angle = -45, hjust = 0))

MLG.97- o -
MLG.9 - . . . °
MLG.75- * « . - ! A L
Count
1 ® 10
MLG.529 - . ° . .
@ 20
o MLG.417 = - T T T | Count
.
MLG.274- e 20
MLG.253- -« . . c e . . - e 10
MLG.246- . !) L !) .
MLG.234 - - @ . . .
MLG.158 - .
N T A T T R A S S A A
PR X,
ok R Q/%&%@oo%ﬁ%:{? 0(:/%%’2%?@%‘5 L‘//f) %%O\%
N R N A)
s, ? %
% &%

Population

39

4 Index and Distance Calculations

4.1 The missing linkage disequilibrium {calculating the index of association, I,
and 74}

The index of association was originally developed as a measure of multilocus linkage disequilibrium
[2] and was found to be able to detect signatures of sexual reproduction and population structure [2, 17].
Unfotunately, 14 was found to increase with the number of loci, and was not suitable to comparisons across
studies [1]. To remedy this, 7y was developed that corrects for this scaling and forces the index to lie
between 0 (linkage equilibrium) and 1 (full disequilibrium). I4 has previously been implemented in a couple
of programs including multilocus [1] and LIAN [6], but these are programs that are no longer well supported,
can be difficult to install and do not run in batch mode.

It is important to note that for this algorithm, all missing values are treated in the same way as multilocus
in that all missing alleles are imputed to be the same as the alleles they are being compared to. Depending
on the percent missing data in your data set, this might influence the statistic. If you have a lot of missing
data, consider using the missing flag in this function.

4.1.1 Function: ia

This function is a quick look at a single data set. It can do almost everything that poppr can do except
for sorting through populations.

Default Command:
ia(pop, sample = 0, method = 1, quiet = "minimal", missing = "ignore", hist = TRUE)

e pop - a genind object.

e sample - You should use this flag whenever you want to reshuffle your data set. Indicate how many
times you want to reshuffle your data set to obtain a P-value.

e method - a number from 1 to 4 indicating the sampling method:

1. multilocus style permutation [1].
2. permutation over alleles.
3. parametric bootstrap.

4. non-parametric bootstrap.
The methods are detailed in section 2.5.1 of this manual.

e quiet - This has three settings, TRUE, FALSE, and "noisy". If set to TRUE, nothing will be printed to
the screen as the sampling progresses. If FALSE and if there is sampling, a single dot for each sampling
replicate will be printed to the screen to show the progress of the sampling. Choosing "noisy" is not
recommended for the average user as it is meant for debugging. It will print the values of I4 and 74 to
the screen as they are produced.

e missing - This will preprocess your missing values. It is set to ignore missing data, so that they do
not contribute to the distance measure. It can also be set to "loci", "geno", "zero", or "mean".
For details, see section 2.1.1 of this manual.

e hist - This will produce a pair of histograms for each population showing the distribution of I4 and
74 across the sampled data sets, and plot the observed value as a single vertical line.

Running the analysis is as simple as this:

> ia(nancycats)

40

Ia rbarD
0.17207262 0.02178965

We can use popsub to subset for specific populations. Here, we’ll also demonstrate the sampling flag and
show you what the histogram looks like.

> set.seed(1001)
> ia(popsub(nancycats, 5), sample=999)

Ia p-Ia rbarD p.rD
-0.047539953 0.589000000 -0.006004254 0.589000000

This analysis produced the histograms you see below. What these histograms represent are 999 resam-
plings of the data under the null hypothesis (Hy) of sexual reproduction. The way that Hy is created is
determined by the sampling method chosen. In this case, the method was to shuffle genotypes at each locus
to simulate unlinked loci. Since the P = 0.589, we would fail to reject Hy and we therefore might conclude
that this population is sexually reproducing [2] [17] [1].

Note that both of the P-values are exactly the same. This is what you would obtain with the default
sampling scheme because the variances within loci do not change. When you change the sampling scheme,
however, the P-values can end up being different. That’s why there are two fields for P-values. Let’s look at
what happens to the P-values once we change the sampling scheme to a parametric bootstrap.

> set.seed(1001)
> ja(popsub(nancycats, 5), sample=999, method=3, quiet=TRUE, hist=FALSE)

Ia p.Ila rbarD p.rD
-0.047539953 0.589000000 -0.006004254 0.596000000

There, is, of course one little caveat that needs to be mentioned. The P-values are calculated by comparing
how many permuted values are greater than or equal to the observed value. This includes the observed value
(which is why setting the randomizations to 999 will give you a round P-value) which means that the lowest
P-value you will ever have is 1/(n + 1) where n is the number of permutations you select. Take for example
this population of a clonal root rot pathogen, Aphanomyces euteiches:

> data(Aeut)

> set.seed(1001)
> ja(popsub(Aeut, 1), sample=999, method=3, quiet=TRUE, hist=FALSE)

Ia p.Ia rbarD p.rD
2.90602921 0.00100000 0.07237008 0.00100000

If you want to be able to report P < 0.001 in this situation, then you can simply increase the number in
sample: sample = 1999

41

Figure 9: Histograms of 999 values of I 4 and 74 calculated from 999 resamplings of population 5 from the data set “nancycats”.
The observed values of 4 and 74 are represented as vertical blue lines overlaid on the distributions. The ticks at the bottom
of each histogram represent individual observations.

Population: 5; N: 15
Permutations: 999
File: nancycats

Ia M4

bserved
—value: 0.589)

count

4.2 Going the distance {dissimilarity distance}

Since poppr is still in its infancy, the number of distance measures it can offer are few. Bruvo’s distance is
well supported and allows you to quickly visualize your data, but it only allows for microsatellites. The index
of association, above, utilizes a discreet dissimilarity distance matrix. It is with this matrix that we have
constructed a relative dissimilarity distance where the distance is the ratio of the number of dissimilarities to
the number of dissimilarities possible. The number of dissimilarities possible is the number of loci multiplied
by the ploidy, so if you have 10 loci from a diploid population, then there are 20 dissimilarities possible. For
details, see equations (2) and (3) in section 6.1.1.

4.2.1 Function: diss.dist

Use this function to calculate relative dissimilarity between individuals and return a distance matrix for
use in creating cladograms or minimum spanning networks. A note: missing alleles will be imputed to be
the same as the challenging allele, decreasing the distance between some individuals. If you want to consider
all missing data as special alleles, treat your data with missingno(pop, type = "zero") beforehand.

Default Command:
diss.dist (pop)

e pop - a genind object.

Since we have a data set that we know is very clonal, let’s analyze the A. euteiches data set [5] and create
a heatmap to visualize the degree of difference between populations.

> data(Aeut)
> A.dist <- diss.dist(Aeut)
> heatmap(as.matrix(A.dist), symm=TRUE)

42

Figure 10: Heatmap representation of a dissimilarity distance for the data set “Aeut”

4.3 Step by stepwise mutation {Bruvo’s distance}

Bruvo’s distance is a genetic distance measure for microsatellite markers utilizing a stepwise mutation
model that allows for differing ploidy levels [3]. As adegenet’s genind object has an all or none approach
to missing data, any genotypes not exhibiting full ploidy will be treated as missing. This means that only
non-special cases will be considered for the calculation and missing data will be ignored [3]. It is important
to note that this is a distance between individuals, not populations, unlike Nei’s 1978 distance [11]. For
distances between populations, see the adegenet function dist.genpop

4.3.1 Function: bruvo.dist

Bruvo’s distance requires knowledge of the repeat lengths of each locus, so take care to read the descrip-
tion below.

Default Command:
bruvo.dist(pop, replen = c(2))

e pop - a genind object.

e replen - This is a vector of numbers indicating the repeat length for each locus in your sample. If
you have two dinucleotide repeats and five tetranucleotide repeats, you would put c(2,2,4,4,4,4,4)
in this field. If you have imported data where that represents the raw number of steps, all you would
have to type is rep(1, n), replacing n with the number of loci in your sample. It is important that
you place something in this field because this function will attempt to estimate the repeat length based
on the minimum difference of the alleles represented; with variability of position calls, relying on this
estimation is NOT recommended.

This function will return a distance matrix (displaying the smallest population in the data set “nancycats”):

> dist9 <- bruvo.dist(popsub(nancycats, 9), replen=rep(1,9))
> dist9

43

N104 N105 N106 N107 N108 N109 N111 N112

N105 0.5778800

N106 0.4008213 0.4563124

N107 0.2202691 0.5093036 0.1805522

N108 0.3270365 0.5533719 0.2352431 0.2178786

N109 0.4016376 0.2760247 0.3192139 0.3330612 0.4294671

N111 0.6150004 0.8707648 0.5533278 0.6167331 0.5219014 0.7330560

N112 0.5492079 0.4086363 0.4391785 0.3289388 0.3886142 0.4528936 0.8037448
0. 0

N113 0.5925835 0.6227587 0.6203071 0.6585558 0.6186252 0.6099514 0.5060450 0.7026198

You can visualize this better with a simple heatmap:

Figure 11: Heatmap representation of Bruvo’s distance for population 9 of the data set “nancycats”

> heatmap(as.matrix(dist9), symm=TRUE)

— N113
; N111
N112
N109
N105
N104
N108
N107
N106

Let’s take a closer look at the two individuals, N113 and N111. They seem to have large distances between
everyone else and themselves. The names and columns of the matrix contain the names of individuals, but
not the population information. We can make a comparison of Bruvo’s distance across populations easier
by editing the “Labels” attribute of the distance object. Let’s take a look at the labels attribute using the
attr() command.
> attr(dist9, "Labels")

N113
N111
N112
N109
N105
N104
N108
N107
N106

1 2 3 4 5 6 7 8 9
"N104" "N105" "N106" "N107" "N108" "N109" "N111" "N112" "N113"

Remember that they all came from population 9, so let’s append that to each label using the paste()
command.

> dist9.attr <- attr(dist9, "Labels")
> attr(dist9, "Labels") <- paste(rep("P09", 9), dist9.attr)

> dist9
P09 N104 P09 N105 P09 N106 P09 N107 P09 N108 P09 N109 P09 N1i1 P09 N112
P09 N105 0.5778800
P09 N106 0.4008213 0.4563124
P09 N107 0.2202691 0.5093036 0.1805522
P09 N108 0.3270365 0.5533719 0.2352431 0.2178786
P09 N109 0.4016376 0.2760247 0.3192139 0.3330612 0.4294671
P09 N111 0.6150004 0.8707648 0.5533278 0.6167331 0.5219014 0.7330560
P09 N112 0.5492079 0.4086363 0.4391785 0.3289388 0.3886142 0.4528936 0.8037448
P09 N113 0.5925835 0.6227587 0.6203071 0.6585558 0.6186252 0.6099514 0.5060450 0.7026198

44

Now we can see that all of the labels are corresponding to population 9. Let’s calculate Bruvo’s distance
between populations 8 and 9.

dist9to8 <- bruvo.dist(popsub(nancycats, 8:9), replen=rep(1,9))
dist9to8.attr <- attr(dist9to8, "Labels")

nan9to8pop <- nancycats@pop[nancycats@pop %in% c("P08", "P09")]
attr(dist9to8, "Labels") <- paste(nan9to8pop, dist9to8.attr)
heatmap(as.matrix(dist9to8), symm=TRUE)

VvV VVVYV

Figure 12: Heatmap representation of Bruvo’s distance for populations 8 and 9 of the data set “nancycats”

P09 N112
P09 N109
P09 N105
P09 N104
P09 N107
P09 N106
P09 N108
P08 N92
P08 N96
P08 N94
P08 N100
P08 N99
P09 N111
P09 N113
P08 N98
P08 N97
P08 N95
P08 N93
P08 N43

Remember N113 and N111? Take a look at where they fall on the heatmap. They don’t cluster together
with population 9 anymore, but somewhere in population 8.

P09 N112
P09 N109
P09 N105
P09 N104
P09 N107
P09 N106
P09 N108
P08 N92
P08 N96
P08 N94
P08 N100
P08 N99
P09 N111
P09 N113
P08 N98
P08 N97
P08 N95
P08 N93
P08 N43

4.4 See the forest for the trees {visualizing distances with dendrograms and
networks}

Staring at a raw distance matrix might be able to tell you something about your data, but it also might
be able to ruin your eyesight. In this section, we present functions to display this data in trees and networks.

4.4.1 Function: bruvo.boot

This function provides the ability to draw a dendrogram based on Bruvo’s distance including bootstrap
support.

Default Command:
bruvo.boot (pop, replen = c(2), B = 100, tree = "upgma", showtree = TRUE, cutoff =
NULL, quiet = FALSE)

e pop - a genind object.
e replen - see bruvo.dist, above.

e sample - How many bootstraps do you want to perform?

45

e tree - Two trees are available, Neighbor-Joining "nj" or UPGMA "upgma".
e showtree - if TRUE, a tree will be plotted automatically.

e cutoff - Thisis a number between 0 and 100 indicating the cutoff value for the bootstrap nodelables.
If you only wanted to see the the boostrap values for nodes that were present more than 75% of the
time, you would use cutoff = 75. If you don’t put anything for this parameter, all values will be
shown.

e quiet -if quiet = TRUE, no standard messages will be printed to screen. If quiet = FALSE (default),
then a progress bar and standard message will be printed to the screen.
For this example, let’s set the cutoff to 50%.

> set.seed(1001)
> nan9tree <- bruvo.boot(popsub(nancycats, 8:9), replen=rep(1,9), sample=1000, cutoff=50)

| 100%

Bootstrapping... (note: calculation of node labels can take a while even after the progress bar is full)

Figure 13: UPGMA Tree of Bruvo’s distance for population 9 of the data set “nancycats” with 1000 Bootstrap Replicates.
Node labels represent percentage of bootstrap replicates that contained that node.

0.3 0.2 0.1 0
|] |

NT113

N111

N107
N106
66 bmog

N93
’—‘7] N43
N95

4.4.2 Function: greycurve

Use this function to display a gradient of grey values based on user-defined parameters. The following
functions will display a minimum spanning network that utilize a grey scale to display the weight of the lines
(referred to as “edges”) that connect two or more individuals. The darker the line the closer the distance.
Since this is based off of a linear grey scale, what happens when you have a distance matrix comprised of
values all below 0.2 or all above 0.87

With linear grey scaling, it becomes very difficult to detect the differences in these ranges. The following
function allows you to visualize and manipulate a gradient from black to white so that you can use it in
poppr’s msn functions below to maximize the visual differences in your data.

46

Default Command:
greycurve(glim = c(0, 0.8), gadj = 3, gweight = 1)

This function does not return any values. It will print a visual gradient from black to white horizontally.
On this gradient, it will plot the adjustment curve (in opposing grey values), yellow horizontal lines bounding
the maximum and minimum values, and the equation used to calculate the correction in red. Keep in mind
that this is plotting values from zero to one.

First, we’ll see what happens when we change the weight parameter.

Figure 14: Default for greycurve (), weighted for small

values. Figure 15: weighting for large values.
> greycurve() > greycurve(gweight = 2)
Grey adjustment Grey adjustment
min: 0 max: 0.8 adjust: 3 min: 0 max: 0.8 adjust: 3

o _ e

— —

o | @]

° f o
o o
g 31 g 3
= =
=] =]
< <
9_>>\ < 9_>" <
g o 7| g o 7

N N]

o o

o o

o o

I T T T T 1 I T T T T 1
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Observed Value Observed Value

Now, we’ll see what happens when we change the adjustment parameter (affects the shape of the curve)
and the upper and lower limits of the grey scale.

47

Figure 16: Setting the lower and upper limits and Figure 17: Same as the figure on the left, but weighting

weighting the curve heavily toward smaller values. heavily toward larger values.
> greycurve(glim = c(0.2, 0.9), gadj=15) > greycurve(glim = c(0.2, 0.9), gadj=15, gweight=2)
Grey adjustment Grey adjustment
min: 0.2 max: 0.9 adjust: 15 min: 0.2 max: 0.9 adjust: 15

Grey Adjusted

1.0
1.0

0.8
Il

RL(x)* O
[0.777777870)

0.8
1

0.6
0.6

0.4
Grey Adjusted

0.4

0.2
Il

0.0
L
P
0.2
L

I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

[T T T T 1

Observed Value Observed Value

4.4.3 Function: bruvo.msn

This function will automatically draw a minimum spanning network of MLGs based on Bruvo’s distance.

It’s important to note that this will recalculate Bruvo’s distance each time it is run, but the amount of time
it takes to run is on the order of seconds. It will return a list containing the network, the populations and
the related colors in the network so you can export or redraw it with the legend if you wanted to using the
package igraph (type help("plot.igraph") for details).

Default Command:

bruvo.msn(pop, replen = c(1), palette = topo.colors, sublist = "All",
blacklist = NULL, vertex.label = "MLG", gscale = TRUE, glim = c(0, 0.8),
gadj = 3, gweight = 1, wscale = TRUE, ...)

e pop - a genind object.
e replen - see bruvo.dist, above.

e palette - thisis a function definining a color palette to use. The default is topo.colors. There are

different palettes, which you can search by typing ?rainbow. If you want a custom color palette, an
easy way is to use the function colorRampPalette.

e sublist - The populations you wish to analyze. This defaults to “All”. See section 2.3.1 for details.
e blacklist - Populations you do not want to include in the graph. See section 2.3.1 for details.

e vertex.label - This is an option that is passed on to igraph’s plot function. Poppr has added two

arguments specific to poppr. If you want to label the graph with the multilocus genotypes from the
whole data set, use the argument vertex.label = "mlg". If you want to display the representative
individual names, you can use the argument vertex.label = "inds". I say representative individual
names because, only one representative from each MLG will be present in the clone corrected data set
used to calculate the distance. For no labels, you can choose vertex.label = NA.

48

e gscale - If this is set to TRUE, the edge color will be converted to greyscale based on Bruvo’s distance.
If two nodes are closely related, the edge will appear darker. The limits of the scale can be set by the
argument glim. If this is set to FALSE, all edge colors will be black.

e glim - This is a vector of numbers between 0 and 1. This lets you set the limits of the grey scaling
based on R’s internal grey function. For example, if you wanted a maximum of 50% white saturation
(for use if you have distantly related nodes) and a minimum of 1%, you would use glim = c(0.01,
0.5).

e gadj - This is an integer greater than zero used to adjust the scaling factor for the grey curve. Since
very small changes in the grey scale are not easily precieved, it’s useful to be able to adjust the grey
scale to be able to show you the weights of each edge. For example, a population with most weights
less than 0.3, you might want to set gadj = 10 to exaggerate the grey scale.

o gweight - If gweight = 1, the grey scale adjustment will be weighted towards separating out smaller
values of Bruvo’s distance. If gweight = 2, the grey scale ajustment will be weighted towards sepa-
rating out larger values of Bruvo’s distance.

e wscale - If this is set to TRUE, edge widths will be displayed corresponding to Bruvo’s distance in that
thicker edges will represent a smaller distance between nodes. If this is set to FALSE, all edges will be
set to a width of 2.

e ... - This is a placeholder for any other arguments that you want to supply to igraph. Useful
arguments are vertex.label.cex to adjust the size of the labels, vertex.label.dist to adjust the
position of the labels, and vertex.label.color to adjust the color of the labels.

Often, minimum spanning networks are the preferred way to visualize Bruvo’s distance. Poppr offers
an easy way to plot these. For a demonstration, let’s analyze a simulated data set of 50 individuals from
populations that reproduce at a 99.9% rate of clonal reproduction.

> data(partial_clone)

> set.seed(9005)

> pc.msn <- bruvo.msn(partial_clone, replen=rep(l, 10), vertex.label.cex=0.7,

+ vertex.label.dist=-0.5, palette=colorRampPalette(c("blue", "yellow")))

Note that the thickness of the edges (the lines that are connecting the dots) is representative of relatedness
between individuals, but the lengths do not necessarily mean anything due to the fact that with a larger data
sets, displaying lengths proportional to relatedness would be impossible to draw on a 2D surface. Interpreting
these data would show that MLG 9 has 5 individuals from all four populations and that it is most closely
related to MLG 7, whereas the most distantly related connection exists between MLG 25 and MLG 26.

49

Figure 18: Minimum Spanning Network representing 4 simulated populations. Each node represents a different multi locus
genotype (MLG). Node sizes and colors correspond to the number of individuals and population membership, respectively.
Edge thickness and color are proportional to Bruvo’s distance. Edge lengths are arbitrary.

Populations
1

OoEm

2
3
4

MLG.26

M LG%

4.4.4 Function: poppr.msn

Use this function to draw a minimum spanning network from your data set and a distance matrix derived
from your data set. Since there are hundreds of distances that can be calculated for genetic data, and since
I want to be able to graduate at some point in this decade, functions to automatically calculate distances
and draw the minimum spanning networks will be few and far between. This function is an attempt to meet
the user halfway and draw a minimum spanning network provided that the user has supplied two things:

1. A distance matrix over all individuals.
2. The original data set containing demographic information.

That’s it. For the most part, this function is functionally the same as bruvo.msn, except that instead of
being exclusive to microsatellite markers, you can now visualize distances in any marker type provided that
you have the two items listed above.

Default Command:
poppr .msn(pop, distmat, palette = topo.colors, sublist = "All",

50

blacklist = NULL, vertex.label = "MLG", gscale = TRUE, glim = c(0, 0.8),
gadj = 3, gweight = 1, wscale = TRUE, ...)

e pop - a genind object.
e distmat - a dissimilarity distance matrix derived from your data with distances between zero and one.

e palette - thisis a function definining a color palette to use. The default is topo.colors. There are
different palettes, which you can search by typing ?rainbow. If you want a custom color palette, an
easy way is to use the function colorRampPalette.

e sublist - The populations you wish to analyze. This defaults to “All”.
e blacklist - Populations you do not want to include in the graph.

e vertex.label - This is an option that is passed on to igraph’s plot function. Poppr has added two
arguments specific to poppr. If you want to label the graph with the multilocus genotypes from the
whole data set, use the argument vertex.label = "mlg". If you want to display the representative
individual names, you can use the argument vertex.label = "inds". I say representative individual
names because, only one representative from each MLG will be present in the clone corrected data set
used to calculate the distance. For no labels, you can choose vertex.label = NA.

e gscale - If this is set to TRUE, the edge color will be converted to greyscale based on the distance. If
two nodes are closely related, the edge will appear darker. The limits of the scale can be set by the
argument glim. If this is set to FALSE, all edge colors will be black.

e glim - This is a vector of numbers between 0 and 1. This lets you set the limits of the grey scaling
based on R’s internal grey function. For example, if you wanted a maximum of 50% white saturation
(for use if you have distantly related nodes) and a minimum of 1%, you would use glim = c(0.01,
0.5).

e gadj - This is an integer greater than zero used to adjust the scaling factor for the grey curve. Since
very small changes in the grey scale are not easily precieved, it’s useful to be able to adjust the grey
scale to be able to show you the weights of each edge. For example, a population with most weights
less than 0.3, you might want to set gadj = 10 to exaggerate the grey scale.

o gweight - If gweight = 1, the grey scale adjustment will be weighted towards separating out smaller
values of the distance. If gweight = 2, the grey scale ajustment will be weighted towards separating
out larger values of Bruvo’s distance.

e wscale - If this is set to TRUE, edge widths will be displayed corresponding to Bruvo’s distance in that
thicker edges will represent a smaller distance between nodes. If this is set to FALSE, all edges will be
set to a width of 2.

e ... - This is a placeholder for any other arguments that you want to supply to igraph. Useful
arguments are vertex.label.cex to adjust the size of the labels, vertex.label.dist to adjust the
position of the labels, and vertex.label.color to adjust the color of the labels.

Since we have the ability, let’s visualize the A. euteiches data set [5].

data(Aeut)

A.dist <- diss.dist(Aeut)

set.seed(9005)

A.msn <- poppr.msn(Aeut, A.dist, vertex.label=NA, palette=rainbow, gadj=15)

51

Figure 19: Minimum Spanning Network representing 4 simulated populations. Each node represents a different multi locus
genotype (MLG). Node sizes and colors correspond to the number of individuals and population membership, respectively.
Edge thickness and color are proportional to Bruvo’s distance. Edge lengths are arbitrary.

Populations

B Athena
O Mt Vernon

5 I know what you did last summary table {diversity table}

Remember the summary function that you used to get all the diversity statistics in section 1.37 In this
section, we will flesh out all that you can do with this function. This was the very first function that was
written for poppr to make it easy for the user to manipulate and summarize the data in one function.

5.1 Function: poppr

This function is quite daunting with all its possibilities. You have the option to subset your data for
specific populations, correct for missing data, and clone correct. With each of these possibilities, comes the
need to provide all the arguments for their various functions.

Default Command:

poppr (pop, total = TRUE, sublist = c("ALL"), blacklist = c(NULL), sample = O,
method = 1, missing = "ignore", cutoff = 0.05, quiet = "minimal",
clonecorrect = FALSE, hier = c(1), dfname = "population_hierarchy",

52

hist = TRUE, minsamp = 10)
e pop - A genind object.

e total - This is also a synonym for “pooled”. This will calculate all diversity statistics on the entire
data set if set to TRUE or if there is no population structure.

e popsub functions: See section 2.3

sublist - A list of populations you want to include in your analysis.
blacklist - A list of populations you want to exclude from your analysis.
e shufflepop functions: See section 2.5
Note that this only affects the calculation for I4 and 74.
sample - The number of samples you desire (eg. 999)
method - Which sampling method? 1: multilocus, 2: permute, 3: parametric bootstrap, 4: non-

parametric bootstrap.

e missingno functions: See Section 2.1
Note that all analyses in this function ignore/impute missing data by default.
missing - How to deal with missing data. This feeds into the type flag of missingno.
cutoff - Allowable percentage of missing data per genotype or locus.

e quiet - This has three settings, TRUE, FALSE, and "noisy". If set to TRUE, nothing will be printed to
the screen as the sampling progresses. If FALSE and if there is sampling, a single dot for each sampling
replicate will be printed to the screen to show the progress of the sampling. Choosing "noisy" is not

recommended for the average user as it is meant for debugging. It will print the values of I4 and 74 to
the screen as they are produced.

e clonecorrect functions: See section 2.4

clonecorrect - if this is set to TRUE, then you will need to set the next two parameters.
hier - A list of the population hierarchy, or names of columns in the data frame noted below.

dfname - A data frame in the @other slot of the genind object containing all of the population factors
in different columns. For an example, see sections 2.2 and 2.4.

keep - A vector of integers as indexes for the hier flag indicating which levels of the hierarchy you
want to analyze. See section 2.4 for details.

e hist - if TRUE, a histogram of distributions of I4 and 74 will be displayed with each population if
there is sampling.

e minsamp - The minimum number of individuals you want to use to calculate the expected number of
MLGs. The default is set to 10.

This function produces a table that contains the population name, number of individuals observed,
number of MLGs observed, number of MLGs expected at the lowest common sampling size within the

data set [8] [7], the Shannon-Wiener index [16], Stoddart and Taylor’s index for expected MLGs [18], Nei’s
1987 genotypic diversity [11], evenness [15][10][1], the index of association [2][17], the standardized index of
association [1], and the file name. Most of these indices are calculated by converting the population into

an MLG table with m1g.table (see section 3.3) and using the vegan package’s diversity function (To see
details, type ?vegan: :diversity into the R console).
To begin, let’s revisit our example data set of Aphanomyces euteiches [5)].

53

> data(Aeut)
> poppr (Aeut)

Athena
Mt. Vernon
Total

Pop N MLG eMLG SE H G Hexp E.5 Ta rbarD File
1 Athena 97 70 65.981 1.246 4.063 42.193 0.986 0.721 2.906 0.072 rootrot.csv
2 Mt. Vernon 90 50 50.000 0.000 3.668 28.723 0.976 0.726 13.302 0.282 rootrot.csv
3 Total 187 119 68.453 2.989 4.558 68.972 0.991 0.720 14.371 0.271 rootrot.csv

OK, so we were able to get a table out of this. Now let’s see what happens when we do some sampling to see
if this is reproducing clonally or not (for simplicity’s sake, we will stick with the default multilocus sampling
method). We will turn quiet on and the histogram off to save space.

> poppr (Aeut, sample=999, hist=FALSE, quiet=TRUE)

Pop N MLG eMLG SE H G Hexp E.5 Ia p.Ia rbarD p.rD
1 Athena 97 70 65.981 1.246 4.063 42.193 0.986 0.721 2.906 0.001 0.072 0.001
2 Mt. Vernon 90 50 50.000 0.000 3.668 28.723 0.976 0.726 13.302 0.001 0.282 0.001
3 Total 187 119 68.453 2.989 4.558 68.972 0.991 0.720 14.371 0.001 0.271 0.001
File
1 rootrot.csv
2 rootrot.csv
3 rootrot.csv

From now on, we’ll set quiet = TRUE to save space on our vignette. Let’s clone correct at different levels to
see if that affects the index of association. First, we’ll clone correct at the sub population level.

> poppr (Aeut, sample=999, clonecorrect=TRUE, hier=c("Pop","Subpop"),

+ dfname="population_hierarchy", quiet=TRUE, hist=FALSE)
Pop N MLG eMLG SE H G Hexp E.5 Ta p.Ia rbarD p.rD
1 Athena 76 70 60.621 1.017 4.221 65.636 0.998 0.963 2.535 0.001 0.062 0.001
2 Mt. Vernon 65 50 50.000 0.000 3.796 36.739 0.988 0.821 14.310 0.001 0.298 0.001
3 Total 141 119 59.629 1.854 4.705 96.980 0.997 0.876 13.802 0.001 0.260 0.001
File
1 rootrot.csv
2 rootrot.csv
3 rootrot.csv

And at the population level.

> poppr(Aeut, sample=999, clonecorrect=TRUE, hier="Pop",
+ dfname="population_hierarchy", quiet=TRUE, hist=FALSE)

Pop N MLG eMLG SE H G Hex

p E.5 Ia p.Ia rbarD p.rD
Athena 70 70 50.000 0.000 4.248 70.000 1

1

1

1.000 2.438 0.001 0.060 0.001
1.000 13.856 0.001 0.285 0.001
0.995 12.497 0.001 0.234 0.001

1

2 Mt. Vernon 50 50 50.000 0.000 3.912 50.000

3 Total 120 119 49.828 0.377 4.776 118.033
File

1 rootrot.csv

2 rootrot.csv

3 rootrot.csv

As you can see, clone correction doesn’t always have to involve creation of new data sets!
You might notice that the P-values for both I4 and 74 are often equal to each other. This is due to the
default sampling method [1]. Here, we show examples where they are not equal.

> set.seed(2001)
> poppr (nancycats, sublist=5:6, total=FALSE, sample=999, method=3, quiet=TRUE, hist=FALSE)

Pop N MLG eMLG SE H G Hexp E.5 Ia p.Ia rbarD p.rD File
1 515 15 11 0 2.708 15 1 1 -0.048 0.599 -0.006 0.599 truenames(nancycats)$tab
2 611 11 11 0 2.398 11 1 1 0.334 0.064 0.043 0.065 truenames(nancycats)$tab

The reason why the P-values would be different is described at the end of section 4.1.1. The differences in
P-values are normally not very far off. It’s important to note this because of what can happen in extremely
clonal populations. You can end up with a large enough sample size consisting of very few MLGs. Upon
shuffling, you find that there are very few values of I4 and 74 that can be obtained. Observe with this
simulated data set:

54

> set.seed(2004)
> poppr(system.file("files/simulated.dat", package="poppr"), sample=999, method=1, quiet=TRUE)

Pop N MLG eMLG SE H G Hexp E.5 Ta p.Ia rbarD p.rD File
1 Total 100 6 6 0 1.235 2.79 0.648 0.735 0.05 0.09 0.061 0.09 simulated.dat

Figure 20: Output of multilocus-style sampling. Note the multi-modal distribution.

Population: Total; N: 100
Permutations: 999
File: simulated.dat

N Iy

pserved
(p-vajue: 0.09);

pserved

07 (p-vajlie: 0.09)

2004

count

1004

55

Take a look a these two histograms. The number of ways you can recombine the data with the default
sampling method is very small. Other sampling methods could give a more theoretical distribution. Let’s
try the parametric bootstrap (For details, see section 2.5).

Figure 21: Output for parametric bootstrap sampling.

Population: Total; N: 100
Permutations: 999
File: simulated.dat ~

N g

Observed:

count

02 -01
Value

As you can see, the distribution is much closer to a distribution we would expect if this were a small
sample of a larger population.

6 Appendix

6.1 Algorithmic Detalils
6.1.1 I, and 74

The index of association was originally developed by A.H.D. Brown analyzing population structure
of wheat [2]. It has been widely used as a tool to detect clonal reproduction within populations [17].
Populations whose members are undergoing sexual reproduction, whether it be selfing or out-crossing, will
produce gametes via meiosis, and thus have a chance to shuffle alleles in the next generation. Populations
whose members are undergoing clonal reproduction, however, generally do so via mitosis. This means that
the most likely mechanism for a change in genotype is via mutation. The rate of mutation varies from
species to species, but it is rarely sufficiently high to approximate a random shuffling of alleles. The index
of association is a calculation based on the ratio of the variance of the raw number of differences between
individuals and the sum of those variances over each locus [17]. You can also think of it as the observed
variance over the expected variance. If they are the same, then the index is zero after subtracting one (from
Maynard-Smith, 1993 [17]):

Ipa=—-1 (1)
Since the distance is more or less a binary distance, any sort of marker can be used for this analysis. In

the calculation, phase is not considered, and any difference increases the distance between two individuals.
Consider the genotypes of the dummy data frame we created earlier:

56

locusl 1locus2 locus3
1 101/101 201/201 301/302
2 102/103 202/203 301/303
3 102/102 203/204 304/305

Now, consider the first locus represented in the genind object:

L1.1 L L

OO
ROOK
OUION
QOO
QUIoWw

1
2
3

Remember that each column represents a different allele and that each entry in the table represents the
fraction of the genotype made up by that allele at that locus. Notice also that the sum of the rows all equal
one. Poppr uses this to calculate distances by simply taking the sum of the absolute values of the differences
between rows.

The calculation for the distance between two individuals at a single locus with a allelic states and a ploidy
of k is as follows*:

d= 521 | inda; — indp; | (2)

> abs(dfg@tab[1, 1:3] - dfg@tab[2, 1:3])

O
oW

e
o
O
anN

> abs(dfg@tab[1, 1:3] - dfg@tab[3, 1:3])

> abs(dfg@tab[2, 1:3] - dfg@tab[3, 1:3])

L L L

1.1 L1.2 L1.3
0.0 0.5 0.5

As you can see, these values of d at locus one add up to 2, 2, and 1, respectively.

To find the total number of differences between two individuals over all loci, you just take d over m loci,
a value we’ll call D:

D=4 (3)

These values are calculated over all possible combinations of individuals in the data set, (g) after which
you end up with (g) -m values of d and (Z) values of D. Calculating the observed variances is fairly
straightforward (modified from Agapow and Burt, 2001) [1]:

m QD)

2 D=~
Vo = =t 2 4
o ® W

4Individuals with Presence / Absence data will have the k/2 term dropped.

57

Calculating the expected variance is the sum of each of the variances of the individual loci. The calculation
at a single locus, j is the same as the previous equation, substituting values of D for d [1]:

()

m Qd)

Y A=
(3)

var; = = — 5
) ®)

(S

The expected variance is then the sum of all the variances over all m loci [1]:

Vg = Z var,; (6)
j=1

Now you can plug the sums of equations (4) and (6) into equation (1) to get the index of association. Of
course, Agapow and Burt showed that this index increases steadily with the number of loci, so they came
up with an approximation that is widely used, 74 [1]. For the derivation, see the manual for multilocus. The
equation is as follows, utilizing equations (4), (5), and (6) [1]:

4= (7)

6.1.2 Bruvo’s distance

Bruvo’s distance between two individuals calculates the minimum distance across all combinations of
possible pairs of alleles at a single locus and then averaging that distance across all loci [3]. The distance
between each pair of alleles is calculated as [3]:

my = 2717 (8)

de =1—my 9)

Where z is the number of steps between each allele. So, let’s say we were comparing two haploid (k = 1)
individuals with alleles 228 and 244 at a locus that had a tetranucleotide repeat pattern (CATG)". The
number of steps for each of these alleles would be 228/4 = 57 and 244/4 = 61, respectively. The number
of steps between them is then | 57 — 61 |= 4. Bruvo’s distance at this locus between these two individuals
is then 1 — 27% = 0.9375. For samples with higher ploidy (k), there would be k such distances of which we
would need to take the sum [3].

k
S; = Zda (10)
a=1

Unfortunately, it’s not as simple as that since we do not assume to know phase. Because of this, we need
to take all possible combinations of alleles into account. This means that we will have k2 values of d,, when
we only want k. How do we know which £ distances we want? We will have to invoke parsimony for this
and attempt to take the minimum sum of the alleles, of which there are k! possibilities [3]:

)
d; = k (11)

58

Finally, after all of this, we can get the average distance over all loci [3].

l

D d

D= Lll (12)

This is calculated over all possible combinations of individuals and results in a lower triangle distance
matrix over all individuals.

6.2 Exporting Graphics

R has the ability to produce nice graphics from most any type of data, but to get these graphics into a
report, presentation, or manuscript can be a bit challenging. It’s no secret that the R Documentation pages
are a little difficult to interpret, so I will give the reader here a short example on how to export graphics from
R. Note that any code here that will produce images will also be present in other places in this vignette.
The default installation of the R GUI is quite minimal, and for an easy way to manage your plots and code,
I strongly encourage the user to use Rstudio http://www.rstudio.com/.

6.2.1 Basics

Before you export graphics, you have to ask yourself what they will be used for. If you want to use the
graphic for a website, you might want to opt for a low-resolution image so that it can load quickly. With
printing, you’ll want to make sure that you have a scalable or at least a very high resolution image. Here, I
will give some general guidelines for graphics (note that these are merely suggestions, not defined rules).

¢ What you see is not always what you get I have often seen presentations where the colors were
too light or posters with painfully pixellated graphs. Think about what you are going to be using a
graphic for and how it will appear to the intended audience given the media type.

e > 300 dpi unless its for a web page For any sort of printed material that requires a raster based
image, 300dpi (dots per inch) is the absolute minimum resolution you should use. For simple black
and white line images, 1200dpi is better. This will leave you with crisp, professional looking images.

e If possible, save to SVG, then rasterize Raster images (bmp, png, jpg, etc...) are based off of the
number of pixels or dots per inch it takes to render the image. This means that the raster image is
more or less a very fine mosaic. Vector images (SVG) are built upon several interconnected polygons,
arcs, and lines that scale relative to one another to create your graphic. With vector graphics, you can
produce a plot and scale it to the size of a building if you wanted to. When you save to an SVG file
first, you can also manipulate it in programs such as Adobe Illustrator or Inkscape.

e Before saving, make sure the units and dimensions are correct Unless you really wanted to
save a graph that’s over 6 feet wide.
6.2.2 Image Editors

Often times, fine details such as labels on networks need to be tweaked by hand. Luckily, there are a
wide variety of programs that can help you do that. Here is a short list of image editors (both free and for
a price) that you can use to edit your graphics.

e Bitmap based editors (for jpeg, bmp, png, etc...)

THE GIMP Free, cross-platform. http://wuw.gimp.org
PAINT.NET Free, Windows only. http://www.getpaint.net

ADOBE PHOTOSHOP Pricey, Windows and Mac. http://www.adobe.com/products/photoshop.html

59

http://www.rstudio.com/
http://www.gimp.org
http://www.getpaint.net
http://www.adobe.com/products/photoshop.html

e Scalable Vector Graphics based editors (for svg, pdf)

INKSCAPE Free, cross-platform http://inkscape.org

ADOBE ILLUSTRATOR Pricey, Windows and Mac. http://www.adobe.com/products/illustrator.html

6.2.3 Exporting ggplot2 graphics

ggplot2 is a fantastic package that poppr uses to produce graphs for the mlg.table, poppr, and ia
functions. Saving a plot with ggplot2 is performed with one command after your plot has rendered:
> data(nancycats) # Load the data set.

> poppr(nancycats, sublist=5, sample=999) # Produce a single plot.
> ggsave("nancy5.pdf")

Note that you can name the file anything, and ggsave will save it in that format for you. The details are
in the documentation and you can access it by typing help("ggsave") in your R console. The important
things to note are that you can set a width, height, and unit. The only downside to this function is that
you can only save one plot at a time. If you want to be able to save multiple plots, read on to the next
section.

6.2.4 Exporting any graphics

Some of the functions that poppr offers will give you multiple plots, and if you want to save them all,
using ggsave will require a lot of tedious typing and clicking. Luckily, R has Functions that will save any
plot you generate in nearly any image format you want. You can save in raster images such as png, bpm,
and jpeg. You can also save in vector based images such as svg, pdf, and postscript. The important thing
to remember is that when you are saving in a raster format, the default units of measurement are “pixels”,
but you can change that by specifying your unit of choice and a resolution.

For raster images and svg files, you can only save your plots in multiple files, but pdf and postscript plots
can be saved in one file as multiple pages. All of these functions have the same basic form. You call the
function to specify the file type you want (eg. pdf ("myfile.pdf")), create any graphs that you want to
create, and then make sure to close the session with the function dev.off (). Let’s give an example saving
to pdf and png files.

data(H3N2)

pop(H3N2) <- H3N2$other$x$country

#i###

png("H3N2_barchart’%02d.png", width = 14, height = 14, units = "in", res = 300)
H.tab <- mlg.table(H3N2)

dev.off ()

#it##

VVVVVVYV

Since this data set is made up of 30 populations with more than 1 individual, this will save 30 files to
your working directory named “H3N2_barchart01.png...H3N2_barchart30.png”. The way R knows how to
number these files is because of the %02d part of the command. That’s telling R to use a number that is two
digits long in place of that expression. All of these files will be 14x14” and will have a resolution of 300 dots
per inch. If you wanted to do the same thing, but place them all in one file, you should use the pdf option.

> pdf ("H3N2_barcharts.png", width = 14, height = 14, compress = FALSE)
> H.tab <- mlg.table(H3N2)
> dev.off ()

Remember, it is important not to forget to type dev.off () when you are done making graphs. Note
that I did not have to specify a resolution for this image since it is based off of vector graphics.

60

http://inkscape.org
http://www.adobe.com/products/illustrator.html

6.3

Re
[1]

(2]

(3]

Function calls

Here is a list of all the default function calls for poppr. Details can be found in the above sections.

getfile(multi = FALSE, pattern = NULL, combine = TRUE) (Section 1.4.1)
read.genalex(genalex, ploidy = 2, geo = FALSE, region = FALSE) (Section 1.4.2)

genind2genalex(pop, filename = "genalex.csv", quiet = FALSE, geo = FALSE, geodf = "xy") (Section
1.4.5)

missingno(pop, type = "loci", cutoff = 0.05, quiet = FALSE) (Section 2.1.1)

splitcombine(pop, method = 1, dfname = "population_hierarchy", sep = "_", hier = c(1), setpopu-
lation = TRUE, fixed = TRUE) (Section 2.2.1)

popsub(pop, sublist = "ALL", blacklist = NULL, mat = NULL) (Section 2.3.1)

clonecorrect(pop, hier = c(1), dfname = "population_hierarchy", combine = FALSE, keep = 1) (Sec-

tion 2.4.1)
shufflepop(pop, method = 1) (Section 2.5.1)
2/nInd(pop), quiet = FALSE) (Section 77)

informloci(pop, cutoff
mlg(pop, quiet = FALSE) (Section 3.1.1)

mlg.crosspop(pop, sublist = "ALL", blacklist = NULL, mlgsub = NULL, indexreturn = FALSE, df = FALSE,
quiet = FALSE) (Section 3.2.1)

mlg.table(pop, sublist = "ALL", blacklist = NULL, mlgsub = NULL, bar = TRUE, total = FALSE, quiet
= FALSE) (Section 3.3.1)

mlg.vector(pop) (Section 3.4.1)

ia(pop, sample = O, method = 1, quiet = "minimal", missing = "ignore", hist = TRUE) (Section 4.1.1)
diss.dist(pop) (Section 4.2.1)

bruvo.dist(pop, replen = c(2)) (Section 4.3.1)

bruvo.boot (pop, replen = c(2), sample = 100, tree = "upgma", showtree = TRUE, cutoff = NULL, quiet

= FALSE, ...) (Section 4.4.1)

greycurve(glim = c(0, 0.8), gadj = 3, gweight = 1) (Section 4.4.2)

bruvo.msn(pop, replen = c(1), palette = topo.colors, sublist = "All", blacklist = NULL, vertex.label
= "MLG", gscale = TRUE, glim = c(0, 0.8), gadj = 3, gweight = 1, wscale = TRUE, ...) (Section 4.4.3)
poppr .msn(pop, distmat, palette = topo.colors, sublist = "All", blacklist = NULL, vertex.label =
"MLG", gscale = TRUE, glim = c(0, 0.8), gadj = 3, gweight = 1, wscale = TRUE, ...) (Section 4.4.4)

poppr (pop, total = TRUE, sublist = c("ALL"), blacklist = c(NULL), sample = O, method = 1, miss-
ing = "ignore", cutoff=0.05, quiet = "minimal", clonecorrect = FALSE, hier = c(1), keep = 1, df-
name = "population_hierarchy", hist = TRUE, minsamp = 10) (Section 5.1)

poppr.all(filelist, ...) (Sections 1.4.1 and 5.1)
ferences
Paul-Michael Agapow and Austin Burt. Indices of multilocus linkage disequilibrium.

Molecular Ecology Notes, 1(1-2):101-102, 2001.

A.H.D. Brown, M.W. Feldman, and E. Nevo. Multilocus structure of natural populations
of hordeum spontaneum. Genetics, 96(2):523-536, 1980.
Ruzica Bruvo, Nicolaas K. Michiels, Thomas G. D’Souza, and Hinrich Schulenburg. A

simple method for the calculation of microsatellite genotype distances irrespective
of ploidy level. Molecular Ecology, 13(7):2101-2106, 2004.

61

(4]

(5]

(6]

(7]

(8l

(o]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Niklaus J. Griinwald, Stephen B. Goodwin, Michael G. Milgroom, and William E. Fry.
Analysis of genotypic diversity data for populations of microorganisms. Phytopathol-
ogy, 93(6):738-46, 2003.

N.J. Griinwald and G. Hoheisel. Hierarchical analysis of diversity, selfing, and
genetic differentiation in populations of the oomycete aphanomyces euteiches. Phy-
topathology, 96(10):1134-1141, 2006.

Bernhard Haubold and Richard R. Hudson. Lian 3.0: detecting linkage disequilibrium
in multilocus data. Bioinformatics, 16(9):847-849, 2000.

Kenneth L.Jr. Heck, Gerald van Belle, and Daniel Simberloff. Explicit calculation
of the rarefaction diversity measurement and the determination of sufficient sample
size. Ecology, 56(6) :pp. 1459-1461, 1975.

S H Hurlbert. The nonconcept of species diversity: a critique and alternative pa-
rameters. Ecology, 52(4):577-586, 1971.

Thibaut Jombart. adegenet: a r package for the multivariate analysis of genetic
markers. Bioinformatics, 24(11):1403-1405, 2008.

J.A. Ludwig and J.F. Reynolds. Statistical Ecology. A Primer on Methods and Comput-
tng. New York USA: John Wiley and Sons, 1988.

Masatoshi Nei. Estimation of average heterozygosity and genetic distance from a
small number of individuals. Genetics, 89(3):583-590, 1978.

Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R.
Minchin, R. B. 0’Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, and
Helene Wagner. wvegan: Community Ecology Package, 2012. R package version 2.0-5.

R. Peakall and P. E. Smouse. GENALEX 6: genetic analysis in excel. population ge-
netic software for teaching and research. Molecular Ecology Notes, 6(1):288-295+,
2006.

Rod Peakall and Peter E. Smouse. Genalex 6.5: genetic analysis in excel. population
genetic software for teaching and research--an update. Bioinformatics, 28(19):2537-
2539, 2012.

E.C. Pielou. Ecologtical Diversity. Wiley, 1975.

Claude Elwood Shannon. A mathematical theory of communication. Bell Systems Techni-
cal Journal, 27:379-423,623-656, 1948.

J M Smith, N H Smith, M O0’Rourke, and B G Spratt. How clonal are bacteria? Proceed-
ings of the National Academy of Sciences, 90(10):4384-4388, 1993.

J.A. Stoddart and J.F. Taylor. Genotypic diversity: estimation and prediction in
samples. Genetics, 118(4):705-11, 1988.

62

	Introduction
	Purpose
	Installation
	From CRAN
	From Source
	From github

	Quick start
	Get out of my dreams and into my R {importing data into poppr}
	Function: getfile
	Function: read.genalex
	Genalex formatting shortcuts
	Other ways of importing data
	Function: genind2genalex

	Getting to know adegenet's genind object
	The other slot
	Setting the population factor {adegenet's function: pop}

	Data Manipulation
	Inside the golden days of missing data {replace or remove missing data}
	Function: missingno

	Can you take me hier(archy)? {population hierarchy construction}
	Function: splitcombine

	Divide (populations) and conquer (your analysis) {extract populations}
	Function: popsub

	Attack of the clone correction {clone-censor data sets}
	Function: clonecorrect

	Every day I'm shuffling (data sets) {permutations and bootstrap resampling}
	Function: shufflepop

	Cut It Out! {removing uninformative loci}
	Function: informloci

	Multilocus Genotype Analysis
	Just a peek {How many multilocus genotypes are in our data set?}
	Function: mlg

	Clone-ing around {MLGs across populations}
	Function: mlg.crosspop

	Bringing something to the table {producing MLG tables and graphs}
	Function: mlg.table

	Getting into the mix {combining MLG functions}
	Function: mlg.vector

	Do you see what I see? {alternative data visualization}

	Index and Distance Calculations
	The missing linkage disequilibrium {calculating the index of association, IA and d}
	Function: ia

	Going the distance {dissimilarity distance}
	Function: diss.dist

	Step by stepwise mutation {Bruvo's distance}
	Function: bruvo.dist

	See the forest for the trees {visualizing distances with dendrograms and networks}
	Function: bruvo.boot
	Function: greycurve
	Function: bruvo.msn
	Function: poppr.msn

	I know what you did last summary table {diversity table}
	Function: poppr

	Appendix
	Algorithmic Details
	IA and d
	Bruvo's distance

	Exporting Graphics
	Basics
	Image Editors
	Exporting ggplot2 graphics
	Exporting any graphics

	Function calls

