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Overview

OneMap is an environment for constructing linkage maps in outcrossing plant species, using

full-sib families derived from two outbred (non-inbreeding) parent plants. It is implemented as a

package to be used under the freely distributed R software, which is a language and environment

for statistical computing (www.r-project.org).

Wu et al. (2002) proposed a methodology to construct the genetic maps in outcrossing

species, which allows the analysis of a mixed set of different marker types containing various

segregation patterns. Also, it allows the simultaneous estimation of linkage and linkage phases

between markers, and it was successfully applied in the analysis of a sugarcane data set (Garcia

et al., 2006). Actually, the analysis of this sugarcane data set motivated the implementation of

OneMap. It is strongly recommended to check Wu et al. paper before using OneMap.

This first version handles the two-point analysis between markers, performs the grouping

step and orders the markers in a linkage group using Rapid Chain Delineation - RCD (Doerge,
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1996). Subsequently, the three-point test should be used to refine the map distance between

adjacent markers.

OneMap is available as source code for Windows� and Unix. It is released under the GNU

General Public License, is open-source and the code can be changed freely. It comes with no

warranty.

To download the free software R, please visit the Comprehensive R Archive Network (cran.r-

project.org). The user of OneMap is supposed to have some experience with R, since the analysis

is done using the command line. R comes with a ‘getting started manual’ and various others

useful documents can be found on CRAN and by searching the web. This tutorial will not

discuss basic R usage and assumes that the user has some experience on it.

After installing R, OneMap can be installed by opening R and issueing the command

> install.packages("onemap")

OneMap can also be installed by downloading the approppriate files directly at the web site

above and following the instructions given in the section “6.3 Installing Packages” of the “R In-

stallation and Administration” manual (http://cran.r-project.org/doc/manuals/R-admin.pdf).
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Introduction to OneMap

OneMap is comprised by a small set of functions, which are listed below:

Function type Function name Function description

Input read.outcross Read data from an outcross

Data manipulation extract.group Set a linkage group ready for mapping

remove.marker Remove a marker from a linkage group

arbitr.rf.2pts Arbitrarily define linkage phase between markers

Genetic mapping est.rf.2pts Estimate recombination fractions (two points)

modify.rf.2pts Change criteria for two-point analysis

group Assign markers to linkage groups

map Order markers on a linkage group using RCD

make.map Arbitrarily define a linkage map

est.rf.3pts Estimate recombination fractions (three points)
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There are other functions used internally by the software. However, you do not need to use

them directly.

Getting started

The following example is intended to show the usage of all OneMap functions. With basic

knowledge of R syntax, one should have no big problems using it. It is assumed that the user

is running Windows�. Hopefully, these examples will be enough for any user to understand its

functionality.

1. Start R by double-clicking its icon.

2. Load OneMap:

> library(onemap)

3. To save your project anytime, type:

> save.image("C:/.../yourfile.RData")

or access the toolbar File → Save Workspace.

4. You can access the command lines of this tutorial by typing:

> file.show("C:/.../OneMapTour.R")

’OneMapTour.R’ is a file that comes when you download OneMap.

Creating the data file

This step can be quite difficult, since the data file is not very simple and many errors can occur

while reading it. The input file format is very similar to that used by MapMaker/EXP (Lander

et al., 1987), so experienced users of genetic analysis software should be familiarized with it.

Basically, the input file contains a first line indicating the number of individuals and the

number of markers. Then, the genotype information is included separately for each marker.

The character “*” indicates the beginning of information input for a new marker, followed by

the marker name. Next, there is a code indicating the marker type, according to Wu’s et al.

(2002) notation. Its value must be one of the following: A.1, A.2, A.3, A.4, B1.5, B2.6, B3.7,

C.8, D1.9, D1.10, D1.11, D1.12, D1.13, D2.14, D2.15, D2.16, D2.17 or D2.18. The letter and

the number before the dot indicate the segregation type (i.e., 1:1:1:1, 1:2:1, 3:1 or 1:1), while
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the number after the dot indicates the offspring observed bands. The paper cited above gives

a lot of detail with respect to the marker type; therefore, we will not discuss this here.

Finally, after each marker name, comes the genotype data for the segregating population.

The coding for marker genotypes used by OneMap is also the same one proposed by Wu et al.

(2002) and the possible values vary according to the marker type. Missing data corresponds to

the character “-” and a comma separates the information for each individual.

Here is an example of such file for 10 individuals and 5 markers:

10 5

*M1 B3.7 ab,ab,-,ab,b,ab,ab,-,ab,b

*M2 D2.18 o,-,a,a,-,o,a,-,o,o

*M3 D1.13 o,a,a,o,o,-,a,o,a,o

*M4 A.4 ab,b,-,ab,a,b,ab,b,-,a

*M5 D2.18 a,a,o,-,o,o,a,o,o,o

The input file must be saved in text format, with extensions like “.txt”. It is a good idea to

open the text file called “example out.txt”, available with OneMap, to see how your file should

be.

Importing data

1. When the input file is created, data can be loaded into R. The function used to import

data is called read.outcross. Its usage is quite simple:

> example <- read.outcross("C:/workingdirectory", "example_out.txt")

The first argument is the directory where the input file is located and the second one is

the file name.

2. You can change the working directory in R using setwd() or the toolbar File → Change

dir. If you set your working directory to the one containing the input file, you can just

type:

> example <- read.outcross(file = "example_out.txt")

If no error has occurred, a message will display some basic information about the data,

such as number of individuals and number of markers.

3. Because this particular data set is distributed along with the package, you can load the

data simply typing
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> data(example_out)

4. Loading the data creates an object of class outcross, which will further be used in the

analysis. R command print recognizes objects of this class and, thus, if you type:

> example

you will see some information about the object.

Estimating two-point recombination fractions

1. To start the mapping analysis, the first step is estimating the recombination fraction

between all pairs of markers, using the two-point test:

> twopt <- est.rf.2pts(example)

This command uses default values for LOD score (3) and maximum recombination fraction

(0.35).

2. Different values for the criteria can be chosen using:

> twopt <- est.rf.2pts(example, LOD = 4, max.rf = 0.4)

3. Although the two-point test was implemented in C language, which is much faster, this

step can take quite some time, depending on the number of markers involved and their

segregation type. Besides, the results use a lot of memory and a rather powerful computer

is needed. The analysis of a real data set with 1741 markers (segregating 3:1 and 1:1)

took 2.8 hours, running under Windows� on a Pentium® 4 CPU 3.00 GHz with 1 GB

RAM memory.

4. When the two-point analysis is finished, an object of class rf.2pts is created. Typing:

> twopt

will show a message with the criteria used in the analysis and information about printing

details of this object.

5. If you want, for example, to see the results for markers M1 and M3, the command is:

> print(twopt, "M1", "M3")

Note: the column Posterior in the output shows the posterior probability of each as-

signment, according to equation (1) in Wu et al. (2002).
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6. You may possibly want to change the criteria used in the two-point analysis. This step is

faster than the previous one, since it uses the results generated by est.rf.2pts and just

changes the thresholds, but can also take a while. For example, the command:

> twopt <- modify.rf.2pts(twopt, LOD = 5)

updates the object twopt, changing the LOD threshold from 4 to 5. The object is still of

class rf.2pts, thus the print command works in the same way.

7. Checking the results for some markers, like M1 and M3 above, you should notice that

OneMap chooses the most probable linkage phase between two markers, based on the

defined criteria. In general, this will be enough to decide the best assignment for every

pair of markers. However, if you want to arbitrarily define the linkage phase for a given

pair of markers, this can be done with the function arbitr.rf.2pts, like follows:

> twopt <- arbitr.rf.2pts(twopt, "M1", "M3", "A1")

You can choose one of the four assignments: “A1”(coupling/coupling),“A2”(coupling/repulsion),

“A3” (repulsion/coupling) and “A4” (repulsion/repulsion). Additionally, the option “ns”

indicates that the two markers are not linked.

8. Again, type:

> print(twopt, "M1", "M3")

to see what arbitr.rf.2pts did.

9. If you want to set the best assignment back to the original one, the function arbitr.rf.2pts

can be used again, the same way:

> twopt <- arbitr.rf.2pts(twopt, "M1", "M3", "ns")

10. Moreover, you may want to let OneMap once again decide the most probable linkage

phases, using:

> twopt <- modify.rf.2pts(twopt, LOD = 3)

Note: this will change the best assignments for ALL pairs of markers!

Assigning markers to linkage groups

1. Once the recombination fractions and linkage phases for all pairs of markers have been

estimated, they can be assigned to linkage groups. This step is very simple and can be

done by using the function group:
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> LGs <- group(twopt)

No other options are allowed, since this function uses the criteria previously defined for

the object twopt. If you want to change the criteria used to group markers, then the

function modify.rf.2pts must be used first.

2. The previous command generates an object of class group and the command print for

such object has two options. If you simply type:

> LGs

you will get detailed information about the groups, i.e., all linkage groups will be printed,

displaying the names of markers in each group.

3. In case you just want to see some basic information (such as the number of groups, number

of linked markers and more), the command is:

> print(LGs, detailed = F)

4. You can notice that all markers are linked to some linkage group. If the LOD score

threshold is changed to a higher value, some markers are kept unassigned:

> twopt <- modify.rf.2pts(twopt, LOD = 6)

> LGs <- group(twopt)

> LGs

5. Changing back to the previous criteria, now setting the maximum recombination fraction

to 0.40:

> twopt <- modify.rf.2pts(twopt, LOD = 3, max.rf = 0.4)

> LGs <- group(twopt)

> LGs

Genetic mapping

1. When the marker assignment to linkage groups is finished, the mapping step can take

place. First of all, you must define which linkage group will be mapped. In other words, a

linkage group must be “extracted” from the object of class group, in order to be mapped.

This can be done using the following code, starting with the smaller group, which is group

3 in this example:

> LG3 <- extract.group(LGs, 3)
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The first argument (LGs) is an object of class group and the second is a number indicating

which linkage group will be extracted, according to the results present in object LGs. The

object LG3, generated by function extract.group, is of class extracted.group.

2. Next, to order the markers in linkage group 3 (LG3), the function map must be used:

> map(LG3, twopt)

The first argument is the extracted group LG3 and the second is the object of class rf.2pts

that was used to generate the linkage group (in this case, twopt). If the objects do not

match, an error message will be displayed. The object generated by function map is of

class map.

3. The ordering algorithm used by OneMap is Rapid Chain Delineation (Doerge, 1996).

In some cases, it makes use of random steps, thus the map may change if the same

linkage group is ordered more than once. These random steps may be necessary because

recombination fractions between various pairs of markers can be the same, resulting in

unsolvable ties. Therefore, it is recommended to use the map function a number of times,

checking if the order obtained is consistent:

> map(LG3, twopt)

> map(LG3, twopt)

> map(LG3, twopt)

> map(LG3, twopt)

4. In this case, it is noticed that the position of marker M7 is not certain. Thus, one may

want to remove it from the linkage group. This can be done typing:

> LG3 <- remove.marker(LG3, "M7")

5. Try to map this linkage group again:

> map(LG3, twopt)

> map(LG3, twopt)

> map(LG3, twopt)

> map(LG3, twopt)

The order is now consistent and does not change anymore.

6. Now, look at the recombination fractions between marker M7 and the others in that linkage

group:
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> print(twopt, "M7", "M18")

> print(twopt, "M7", "M8")

> print(twopt, "M7", "M13")

> print(twopt, "M7", "M22")

Notice that marker M7 is closer to marker M13 than to M8 and M18. Thus, the order could

be M18 - M8 - M13 - M7 - M22 or M18 - M8 - M13 - M22 - M7.

7. To check which one is the best option, you can arbitrarily define an order to the linkage

group. Do that with the commands:

> make.map(twopt, c("M18", "M8", "M13", "M7", "M22"))

> make.map(twopt, c("M18", "M8", "M13", "M22", "M7"))

The first argument is again the object of class rf.2pts, which contains the information

about recombination fractions. The second argument is a vector of class character,

defining the order of markers in the linkage group.

8. Recall that marker M22 is of type D1 and M7 is of type D2, so the recombinants between

them cannot be identified; thus, the distance between them cannot be estimated by the

two-point analysis and is shown as infinite (Inf).

9. One should also notice that marker M13 is closer to M22 than to M7 (9.89 cM against 19.55

cM, respectively, in Kosambi map distance). This suggests that the best order is M18 -

M8 - M13 - M22 - M7.

Refining the map with the three-point analysis

Finally, in order to obtain better estimates of the distances between adjacent markers, including

the non-informative pairings (D1 x D2), the three-point analysis can be used. Currently, this

step is quite manual and laborious, since there is not an implemented function that automati-

cally does these analyses for an entire linkage group. In the future, this will be improved.

1. The function est.rf.3pts is used as follows:

> est.rf.3pts(example, "M18", "M8", "M13")

The first argument is the object with the input data, of class outcross. Then, three

ordered markers are specified. This step can take quite some time for calculations, de-

pending on the computer being used.
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In this case, the assignments “A11”, “A12”, . . ., have similar meanings to those of the

two-point analysis: 1 means coupling/coupling, 2 is for coupling/repulsion, 3 is for re-

pulsion/coupling and 4 is for repulsion/repulsion. The first number is the linkage phase

between markers Mi and Mi+1, while the second number is the linkage phase between

markers Mi+1 and Mi+2.

2. Notice that the distances between markers M18 - M8 and M8 - M13 have changed a little

bit when compared with 2-point estimates. Also take a look at the default criteria used

by this function: LOD = 5, maximum recombination fraction between adjacent markers

= 0.35 and maximum recombination fraction between markers on the two ends = 0.55.

Considering, for example, three markers A - B - C, in that order, the last criterion indicates

the maximum recombination fraction acceptable between markers A and C. These values

are used by the software to decide the most probable assignment and can be changed by

the user:

> est.rf.3pts(example, "M18", "M8", "M13", LOD = 10, max.rf = 0.4)

> est.rf.3pts(example, "M18", "M8", "M13", max.rf = 0.4, max.nolink = 0.6)

The arguments max.rf and max.nolink correspond to the maximum recombination frac-

tion between adjacent markers and the maximum recombination fraction between markers

on the two ends, respectively.

3. Do this step for all triplets of markers in the linkage group:

> est.rf.3pts(example, "M18", "M8", "M13")

> est.rf.3pts(example, "M8", "M13", "M22")

> est.rf.3pts(example, "M13", "M22", "M7")

Notice that we are now refining the order that we got using RCD, but based on the

three-point likelihood, which is a superior criterion. For details, see Wu et al. (2002).

This last command line shows that, based on the likelihoods, the most likely order is now

M13 - M22 - M7, thus the best order for this linkage group is really M18 - M8 - M13 -

M22 - M7.

4. Note that if the order is defined incorrectly, OneMap will display a “warning” message.

For example, type:

> est.rf.3pts(example, "M13", "M7", "M22")

5. You can also try carrying out these analyses with several different criteria.
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These three-point analyses provide two different estimates of the recombination fraction

for the same interval, except for the ones at the two ends of the linkage group. Wu et al.

(2002) suggest combining these estimates using a weighted mean, with the weights being the

reciprocals of the variances of the two separate estimates. This is currently being implemented

and will be made available soon.

Genetic mapping of linkage group 2

1. Now let us map the markers in linkage group number 2. Again, “extract” that group from

the object LGs:

> LG2 <- extract.group(LGs, 2)

2. Use the map function various times to map the markers in that linkage group:

> map(LG2, twopt)

> map(LG2, twopt)

> map(LG2, twopt)

> map(LG2, twopt)

Notice the following consistent partial sub-order: M16 - M20 - M4 - M19 - M23 - M21.

Markers M24 and M29 appear to be linked to each other, but not to the rest of the group.

Marker M9 sometimes appears linked to M24 and sometimes it does not. Marker M27 seems

to be floating and apparently cannot be mapped.

3. What should be done next? Type

> mrktype(twopt, "M21")

> mrktype(twopt, "M16")

to see that M21 and M16 (the two markers on the edges of the group) are of segregation

type D2 (the first argument is an object of class rf.2pts and the second is a marker

name). Then, type

> mrktype(twopt, "M9")

> mrktype(twopt, "M29")

> mrktype(twopt, "M27")

> mrktype(twopt, "M24")

to see that these markers that are difficult to order are of segregation type D1 (with the

exception of M24). Thus, the non-informative analysis between markers of type D1 and

D2 could be leading to this problem in ordering.
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4. So, it should be a good idea to remove one of the markers on the edge. Use

> LG2 <- remove.marker(LG2, "M21")

and again try to map this linkage group:

> map(LG2, twopt)

> map(LG2, twopt)

> map(LG2, twopt)

> map(LG2, twopt)

Notice now that the consistent sub-order is larger than the previous one: M16 - M20 -

M4 - M19 - M23 - M9 - M24 - M29. Marker M27 still could not be mapped.

5. Now, check the results of the two-point analysis between marker M27 and the others in

linkage group 2:

> print(twopt, "M27", "M16")

> print(twopt, "M27", "M20")

> print(twopt, "M27", "M4")

> print(twopt, "M27", "M19")

> print(twopt, "M27", "M23")

> print(twopt, "M27", "M9")

> print(twopt, "M27", "M24")

> print(twopt, "M27", "M29")

Marker M27 is significantly linked only to markers M20 and M4, and therefore probably

located somewhere in this region. Similarly to what has occurred in linkage group 3,

marker M27 is of segregation type D1, while M16 is of type D2; therefore, this pairwise

analyses is not informative and this makes it difficult to infer the correct position of

marker M27.

6. Type:

> print(twopt, "M27", "M20")

> print(twopt, "M27", "M4")

> print(twopt, "M4", "M20")

to notice that M27 is closer to M20 than to M4 (21.18 cM against 34.66 cM, respectively,

in Kosambi map distance), while M4 is closer to M20 than to M27 (12.77 cM against 34.66

cM). This suggests that M20 is located between M27 and M4. Thus, the correct global order

may be M16 - M27 - M20 - M4 - M19 - . . . or M27 - M16 - M20 - M4 - M19 - . . .
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7. Next, type:

> print(twopt, "M20", "M16")

> print(twopt, "M20", "M27")

and you will see that M20 is closer to M16 than to M27, so that the correct order is probably:

M27 - M16 - M20 - M4 - M19 - M23 - M9 - M24 - M29.

8. Marker M21 still needs to be mapped. Check the results of the two-point analysis between

marker M21 and all the others:

> print(twopt, "M21", "M27")

> print(twopt, "M21", "M16")

> print(twopt, "M21", "M20")

> print(twopt, "M21", "M4")

> print(twopt, "M21", "M19")

> print(twopt, "M21", "M23")

> print(twopt, "M21", "M9")

> print(twopt, "M21", "M24")

> print(twopt, "M21", "M29")

Notice that M21 is closer to M19 and M23.

9. Use the three-point analysis for this triplet:

> est.rf.3pts(example, "M19", "M23", "M21")

> est.rf.3pts(example, "M19", "M21", "M23")

> est.rf.3pts(example, "M21", "M19", "M23")

It seems that M21 is located to the left of M19. However, if you type:

> est.rf.3pts(example, "M4", "M21", "M19")

you will see that the above result is inconsistent with the global best order.

This happens because M19 and M23 are linked on repulsion phase and M23 is of segregation

type C.8 (it segregates 3:1). Thus, the recombination fraction between these two markers

may be greatly underestimated, which would force them to stay together on the three-

point analysis.

10. Finally, it must be noticed that if you add marker M21 back to the linkage group, it will

result in a lot of ordering problems. Therefore, perhaps the most coherent idea would be

to keep M21 as an accessory marker.
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11. When you run the three-point analysis for all triplets of markers in the linkage group, a

problem appears: one of the sub-orders may be wrong, since it does not meet the criteria

under any assignment:

> est.rf.3pts(example, "M27", "M16", "M20")

> est.rf.3pts(example, "M16", "M20", "M4")

> est.rf.3pts(example, "M20", "M4", "M19")

> est.rf.3pts(example, "M4", "M19", "M23")

> est.rf.3pts(example, "M19", "M23", "M9")

> est.rf.3pts(example, "M23", "M9", "M24")

> est.rf.3pts(example, "M9", "M24", "M29")

All analyses show that the order is correct, except for the first one, between makers M27,

M16 and M20.

12. Check it again, very carefully:

> est.rf.3pts(example, "M27", "M16", "M20")

Notice that, under assignment A11, theta12 (recombination fraction between M27 and

M16) and theta13 (recombination fraction between M27 and M20) are almost the same.

This seems to be common when markers of segregation types D1 and D2 are included in

a three-point analysis. Thus, the user has two options: keep the above order, which is

coherent with the two-point analysis, or remove marker M27 from the linkage group and

make it an accessory marker. Either one seems feasible.

13. You can also check the results of the three-point analysis and notice that the recombination

fraction between M19 and M23 changes greatly when comparing the two triplets where this

couple appears. This is the usual case when a marker of type C.8 (3:1) is linked in repulsion

phase.

14. The results of this analysis showed that the problem of ordering markers in linkage groups

for outcrossing species is a complicated one and more efficient algorithms are required.

Genetic mapping of linkage group 1

1. At last, linkage group 1 (the large one) can be mapped. Extract it and try to map it

some times:

> LG1 <- extract.group(LGs, 1)

> map(LG1, twopt)
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> map(LG1, twopt)

> map(LG1, twopt)

> map(LG1, twopt)

Although this is the largest linkage group, and therefore supposed to lead to more ordering

problems, there is a very consistent order: M12 - M30 - M3 - M14 - M2 - M1 - M10 -

M17 - M28 - M26 - M6 - M15 - M5 - M25 - M11. This order does not change running

RCD several times, despite some large gaps between markers M28 - M26 and M6 - M15.

2. The function map also makes use of thresholds for minimum LOD score and maximum

recombination fraction: estimates of recombination fraction for pairs of markers that do

not meet these criteria are replaced by the value 0.5 (no linkage). If many cases like this

occur in a single linkage group, ordering can be a problem, because of the random steps

made by RCD when there are ties.

By default, the thresholds found in the object of class rf.2pts (second argument) are

used. To change them, simply type

> map(LG1, twopt, LOD = 1.5, max.rf = 0.5)

Lower values for LOD and higher values for max.rf may be desirable, because this should

reduce the number of 0.5 values. Besides, after the assignment of markers to linkage

groups has been done, all markers in the same group are assumed to be linked.

On the other hand, higher values for LOD and lower values for max.rf can lead to many

false-negatives. For example, try the command

> map(LG1, twopt, LOD = 5, max.rf = 0.3)

It is important to note that the rf.2pts object is not changed.

3. To finish the analysis, use the three-point function to refine the map:

> est.rf.3pts(example, "M12", "M30", "M3")

> est.rf.3pts(example, "M30", "M3", "M14")

> est.rf.3pts(example, "M3", "M14", "M2")

> est.rf.3pts(example, "M14", "M2", "M1")

> est.rf.3pts(example, "M2", "M1", "M10")

> est.rf.3pts(example, "M1", "M10", "M17")

> est.rf.3pts(example, "M10", "M17", "M28")

> est.rf.3pts(example, "M17", "M28", "M26")

> est.rf.3pts(example, "M28", "M26", "M6")
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> est.rf.3pts(example, "M26", "M6", "M15")

> est.rf.3pts(example, "M6", "M15", "M5")

> est.rf.3pts(example, "M15", "M5", "M25")

> est.rf.3pts(example, "M5", "M25", "M11")

The order is apparently correct and no further analyses are required.

4. Finally, sometimes it may be interesting to present the map with cumulative distances.

For instance, some softwares used to draw chromosomes require this kind of presentation.

This can be done like follows:

> final_LG1 <- map(LG1, twopt)

> print(final_LG1, cumulative = TRUE)

Final comments

At this point it should be clear that any potential OneMap user must have some knowledge

about genetic mapping, the methods presented by Wu et al. (2002) and also the R language,

since the analysis is not done with only one mouse click. In the future, we expect to make this

software a lot easier to use, especially for the three-point analysis. Any suggestions and critics

are welcome.

Currently, there is not a graphical facility included in OneMap, but because the distances

and the linkage phases are estimated, map figures could be easily done. Also, there are several

softwares that can be used to draw the linkage groups, such as MapChart (Voorrips, 2002).
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