
Introduction to nloptr: an R interface to NLopt ∗

Jelmer Ypma

June 19, 2011

Abstract
This document describes how to use nloptr, which is an R interface

to NLopt. NLopt is a free/open-source library for nonlinear optimiza-
tion started by Steven G. Johnson, providing a common interface for a
number of different free optimization routines available online as well as
original implementations of various other algorithms. The NLopt library
is available under the GNU Lesser General Public License (LGPL), and
the copyrights are owned by a variety of authors.

1 Introduction

NLopt addresses general nonlinear optimization problems of the form:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0

h(x) = 0

xL ≤ x ≤ xU

where f(·) is the objective function and x represents the n optimization pa-
rameters. This problem may optionally be subject to the bound constraints
(also called box constraints), xL and xU . For partially or totally unconstrained
problems the bounds can take values −∞ or ∞. One may also optionally have
m nonlinear inequality constraints (sometimes called a nonlinear programming
problem), which can be specified in g(·), and equality constraints that can be
specified in h(·). Note that not all of the algorithms in NLopt can handle con-
straints.

This vignette describes how to formulate minimization problems to be solved
with the R interface to NLopt. If you want to use the C interface directly or
are interested in the Matlab interface, there are other sources of documentation
avialable. Some of the information here has been taken from the NLopt website1,
where more details are available. All credit for implementing the C code for the
different algorithms availalbe in NLopt should go to the respective authors. See
the website2 for information on how to cite NLopt and the algorithms you use.

∗This package should be considered in beta and comments about any aspect of the package
are welcome. This document is an R vignette prepared with the aid of Sweave, Leisch(2002).
Financial support of the UK Economic and Social Research Council through a grant (RES-589-
28-0001) to the ESRC Centre for Microdata Methods and Practice (CeMMAP) is gratefully
acknowledged.

1http://ab-initio.mit.edu/nlopt
2http://ab-initio.mit.edu/wiki/index.php/Citing_NLopt

1

2 Installation

This package is on CRAN and can be installed from within R using.

> install.packages("nloptr")

You should now be able to load the R interface to NLopt and read the help.

> library('nloptr')
> ?nloptr

3 Minimizing the Rosenbrock Banana function

As a first example we will solve an unconstrained minimization problem. The
function we look at is the Rosenbrock Banana function

f(x) = 100
(
x2 − x2

1

)2
+ (1− x1)

2
,

which is also used as an example in the documentation for the standard R
optimizer optim. The gradient of the objective function is given by

∇f(x) =

(
−400 · x1 · (x2 − x2

1)− 2 · (1− x1)
200 · (x2 − x2

1)

)
.

Not all of the algorithms in NLopt need gradients to be supplied by the user.
We will show examples with and without supplying the gradient. After loading
the library

> library(nloptr)

we start by specifying the objective function and its gradient

> ## Rosenbrock Banana function

> eval_f <- function(x) {

return(100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2)

}

> ## Gradient of Rosenbrock Banana function

> eval_grad_f <- function(x) {

return(c(-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),

200 * (x[2] - x[1] * x[1])))

}

We define initial values

> # initial values

> x0 <- c(-1.2, 1)

and then minimize the function using the nloptr command. This command
runs some checks on the supplied inputs and returns an object with the exit
code of the solver, the optimal value of the objective function and the solution.
Before we can minimize the function we need to specify which algorithm we
want to use

2

> opts <- list("algorithm"="NLOPT_LD_LBFGS",

"xtol_rel"=1.0e-8)

Here we use the L-BFGS algorithm (Nocedal, 1980; Liu & Nocedal, 1989). The
characters LD in the algorithm show that this algorithm looks for local minima
(L) using a derivative-based (D) algorithm. Other algorithms look for global (G)
minima, or they don’t need derivatives (N). We also specified the termination
criterium in terms of the relative x-tolerance. Other termination criteria are
available. We then solve the minimization problem using

> # solve Rosenbrock Banana function

> res <- nloptr(x0=x0,

eval_f=eval_f,

eval_grad_f=eval_grad_f,

opts=opts)

We can see the results by printing the resulting object.

> print(res)

Call:

nloptr(x0 = x0, eval_f = eval_f, eval_grad_f = eval_grad_f, opts = opts)

Minimization using NLopt version 2.2.4

NLopt solver status: 1 (NLOPT_SUCCESS: Generic success

return value.)

Number of Iterations....: 56

Termination conditions: xtol_rel: 1e-08

Number of inequality constraints: 0

Number of equality constraints: 0

Current value of objective function: 7.35727226897802e-23

Current value of controls: 1 1

Sometimes the objective function and its gradient contain common terms. To
economize on calculations, we can return the objective and its gradient in a list.
For the Rosenbrock Banana function we have for instance

> ## Rosenbrock Banana function and gradient in one function

> eval_f_list <- function(x) {

common_term <- x[2] - x[1] * x[1]

return(list("objective" = 100 * common_term^2 + (1 - x[1])^2,

"gradient" = c(-400 * x[1] * common_term - 2 * (1 - x[1]),

200 * common_term)))

}

which we minimize using

3

> res <- nloptr(x0=x0,

eval_f=eval_f_list,

opts=opts)

> print(res)

Call:

nloptr(x0 = x0, eval_f = eval_f_list, opts = opts)

Minimization using NLopt version 2.2.4

NLopt solver status: 1 (NLOPT_SUCCESS: Generic success

return value.)

Number of Iterations....: 56

Termination conditions: xtol_rel: 1e-08

Number of inequality constraints: 0

Number of equality constraints: 0

Current value of objective function: 7.35727226897802e-23

Current value of controls: 1 1

This gives the same results as before.

4 Minimization with inequality constraints

This section shows how to minimize a function subject to inequality constraints.
This example is the same as the one used in the tutorial on the NLopt website.
The problem we want to solve is

min
x∈Rn

√
x2

s.t. x2 ≥ 0

x2 ≥ (a1x1 + b1)3

x2 ≥ (a2x1 + b2)3,

where a1 = 2, b1 = 0, a2 = −1, and b2 = 1. In order to solve this problem, we
first have to re-formulate the constraints to be of the form g(x) ≤ 0. Note that
the first constraint is a bound on x2, which we will add later. The other two
constraints can be re-written as

(a1x1 + b1)3 − x2 ≤ 0

(a2x1 + b2)3 − x2 ≤ 0.

First we define R functions to calculate the objective function and its gradi-
ent

> # objective function

> eval_f0 <- function(x, a, b){

return(sqrt(x[2]))

}

> # gradient of objective function

4

> eval_grad_f0 <- function(x, a, b){

return(c(0, .5/sqrt(x[2])))

}

If needed, these can of course be calculated in the same function as before. Then
we define the two constraints and the jacobian of the constraints

> # constraint function

> eval_g0 <- function(x, a, b) {

return((a*x[1] + b)^3 - x[2])

}

> # jacobian of constraint

> eval_jac_g0 <- function(x, a, b) {

return(rbind(c(3*a[1]*(a[1]*x[1] + b[1])^2, -1.0),

c(3*a[2]*(a[2]*x[1] + b[2])^2, -1.0)))

}

Note that all of the functions above depend on additional parameters, a and
b. We have to supply specific values for these when we invoke the optimization
command. The constraint function eval_g0 returns a vector with in this case
the same length as the vectors a and b. The function calculating the jacobian
of the constraint should return a matrix where the number of rows equal the
number of constraints (in this case two). The number of columns should equal
the number of control variables (two in this case as well).

After defining values for the parameters

> # define parameters

> a <- c(2,-1)

> b <- c(0, 1)

we can minimize the function subject to the constraints with the following com-
mand

> # Solve using NLOPT_LD_MMA with gradient information supplied in separate function

> res0 <- nloptr(x0=c(1.234,5.678),

eval_f=eval_f0,

eval_grad_f=eval_grad_f0,

lb = c(-Inf,0),

ub = c(Inf,Inf),

eval_g_ineq = eval_g0,

eval_jac_g_ineq = eval_jac_g0,

opts = list("algorithm" = "NLOPT_LD_MMA",

print_level = 2),

a = a,

b = b)

[1] "No termination criterium specified, using default (relative x-tolerance = 1e-4)"

iteration: 1

f(x) = 2.382855

g(x) = (9.354647,-5.690813)

iteration: 2

f(x) = 2.356135

g(x) = (-0.122989,-5.549587)

5

iteration: 3

f(x) = 2.245864

g(x) = (-0.531886,-5.038655)

iteration: 4

f(x) = 2.019102

g(x) = (-3.225104,-3.931194)

iteration: 5

f(x) = 1.740934

g(x) = (-2.676260,-2.761137)

iteration: 6

f(x) = 1.404206

g(x) = (-1.674056,-1.676216)

iteration: 7

f(x) = 1.022295

g(x) = (-0.748790,-0.748792)

iteration: 8

f(x) = 0.685203

g(x) = (-0.173206,-0.173206)

iteration: 9

f(x) = 0.552985

g(x) = (-0.009495,-0.009496)

iteration: 10

f(x) = 0.544354

g(x) = (-0.000026,-0.000025)

iteration: 11

f(x) = 0.544331

g(x) = (-0.000000,0.000000)

> print(res0)

Call:

nloptr(x0 = c(1.234, 5.678), eval_f = eval_f0, eval_grad_f = eval_grad_f0,

lb = c(-Inf, 0), ub = c(Inf, Inf), eval_g_ineq = eval_g0,

eval_jac_g_ineq = eval_jac_g0, opts = list(algorithm = "NLOPT_LD_MMA",

print_level = 2), a = a, b = b)

Minimization using NLopt version 2.2.4

NLopt solver status: 4 (NLOPT_XTOL_REACHED: Optimization

stopped because xtol_rel or xtol_abs (above) was reached.

)

Number of Iterations....: 11

Termination conditions: relative x-tolerance = 1e-4 (DEFAULT)

Number of inequality constraints: 2

Number of equality constraints: 0

Current value of objective function: 0.544331050645946

Current value of controls: 0.3333333 0.2962963

Here we supplied lower bounds for x2 in lb. There are no upper bounds for both

6

control variables, so we supply Inf values. If we don’t supply lower or upper
bounds, plus or minus infinity is chosen by default. The inequality constraints
and its jacobian are defined using eval_g_ineq and eval_jac_g_ineq. Not all
algorithms can handle inequality constraints, so we have to specifiy one that
does, NLOPT_LD_MMA (Svanberg, 2002).

We also specify the option print_level to obtain output during the opti-
mization process. For the available print_level values, see ?nloptr. Finally,
we add all the parameters that have to be passed on to the objective and con-
straint functions, a and b.

We can also use a different algorithm to solve the same minimization prob-
lem. The only thing we have to change is the algorithm that we want to use, in
this case NLOPT_LN_COBYLA, which is an algorithm that doesn’t need gradient
information (Powell, 1994, 1998).

> # Solve using NLOPT_LN_COBYLA without gradient information

> res1 <- nloptr(x0=c(1.234,5.678),

eval_f=eval_f0,

lb = c(-Inf,0),

ub = c(Inf,Inf),

eval_g_ineq = eval_g0,

opts = list("algorithm"="NLOPT_LN_COBYLA"),

a = a,

b = b)

[1] "No termination criterium specified, using default (relative x-tolerance = 1e-4)"

> print(res1)

Call:

nloptr(x0 = c(1.234, 5.678), eval_f = eval_f0, lb = c(-Inf, 0),

ub = c(Inf, Inf), eval_g_ineq = eval_g0, opts = list(algorithm = "NLOPT_LN_COBYLA"),

a = a, b = b)

Minimization using NLopt version 2.2.4

NLopt solver status: 4 (NLOPT_XTOL_REACHED: Optimization

stopped because xtol_rel or xtol_abs (above) was reached.

)

Number of Iterations....: 31

Termination conditions: relative x-tolerance = 1e-4 (DEFAULT)

Number of inequality constraints: 2

Number of equality constraints: 0

Current value of objective function: 0.544242301658176

Current value of controls: 0.3333292 0.2961997

5 Notes

The .R scripts in the tests directory contain more examples. For instance,
hs071.R and systemofeq.R show how to solve problems with equality con-

7

straints. See also http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms#Augmented_Lagrangian_algorithm
for more details. Please let me know if you’re missing any of the features that
are implemented in NLopt.

Sometimes the optimization procedure terminates with a message maxtime

was reached without evaluating the objective function. Submitting the same
problem again usually solves this problem.

References

Johnson, S. G. (n.d.). The NLopt nonlinear-optimization package. (http://ab-
initio.mit.edu/nlopt)

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports us-
ing literate data analysis. In W. Härdle & B. Rönz (Eds.), Comp-
stat 2002 — proceedings in computational statistics (pp. 575–580).
Physica Verlag, Heidelberg. Available from http://www.stat.uni-

muenchen.de/ leisch/Sweave (ISBN 3-7908-1517-9)
Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for

large scale optimization. Math. Programming , 45 , 503–528.
Nocedal, J. (1980). Updating quasi-Newton matrices with limited storage.

Math. Comput., 35 , 773–782.
Powell, M. J. D. (1994). A direct search optimization method that models the

objective and constraint functions by linear interpolation. In S. Gomez
& J.-P. Hennart (Eds.), Advances in optimization and numerical analysis
(pp. 51–67). Kluwer Academic, Dordrecht.

Powell, M. J. D. (1998). Direct search algorithms for optimization calculations.
Acta Numerica, 7 , 287–336.

Svanberg, K. (2002). A class of globally convergent optimization methods based
on conservative convex separable approximations. SIAM J. Optim., 12 (2),
555–573.

8

