Package ‘mvMonitoring’

February 3, 2017

Type Package

Title Multi-State Adaptive Dynamic Principal Component Analysis for
Multivariate Process Monitoring

Version 0.1.0
Author Gabriel Odom, Ben Barnard, Karen Kazor, and Amanda Hering
Maintainer Gabriel Odom <gabriel_odom@baylor.edu>

Description Use multi-state splitting to apply Adaptive-Dynamic PCA to data
generated from a continuous-time multivariate industrial or natural process.
Employ PCA-based dimension reduction to extract linear combinations of
relevant features, reducing computational burdens.

License file LICENSE

Depends R (>=2.10)

Imports BMS, lazyeval, zoo, xts, utils
Encoding UTF-8

LazyData true

RoxygenNote 5.0.1

Suggests knitr,
rmarkdown

VignetteBuilder knitr

R topics documented:

faultlA_XES . . . o o e e e 2
faultlB_XtS s 3
fault2A_XtS e e e 3
fault2B_XtS e e 4
fault3A_XES . . . o e 5
fault3B_XtS e e 6
faultDetect e e e e e e e 7
faultFilter e e 8
mspMONItOr e 9
mspTrain e e 11
mspWarning 13
normal_SWitCh_ XtS e 14
oneDay_clean 15

2 faultl A_xts

PCA . o o e 15
ProcessMONItor L. e e 16
rotate3D L 17
rotateScale3D L 18
tenDay_clean e e e 19
threshold e 19

Index 21

fault1A_xts Process Data under a System Shift Fault
Description

Three-feature, three-state simulated process data including observations under normal operating
conditions and observations after a positive shift for each feature in the system.

Usage

fault1A_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a 1-minute interval. The columns under normal conditions are defined in the help file
for normal_switch_xts. The fault is a system shock to each of the three features by 2. The fault
starts at row 8500, and the four columns under the fault state are defined here:

* state : the state indicator for the multivariate system, with three levels

e x:x(t)=t+ 2+ error

e y:y()=t*2-3t+ 2+ error

e z:z(t)=-t"3+3t"2+ 2+ error
where t is a 10080-entry vector of autocorrelated and non-stationary hidden process realizations.
The states alternate each hour and are defined as follows:

 Statel — As presented

« State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 * x, 0.5 *y, 2 * 7).

 State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 *

Z).

See the vignette for more details.

Source

Simluated in R.

fault1B_xts 3

fault1B_xts Process Data under a Feature Shift Fault

Description

Three-feature, three-state simulated process data including observations under normal operating
conditions and observations after a positive shift in values for one feature.

Usage

fault1B_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a I-minute interval. The columns under normal conditions are defined in the help file
for normal_switch_xts. The fault is a system shock to the "x" feature only by 2. The fault starts at
row 8500, and the four columns under the fault state are defined here:

* state : the state indicator for the multivariate system, with three levels

* x:x(t)=t+ 2+ error

e y:y(t)=t"2-3t+ error

e z:z(t)=-t"3+3t"2 +error
where t is a 10080-entry vector of autocorrelated and non-stationary hidden process realizations.
The states alternate each hour and are defined as follows:

 Statel — As presented

* State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 * x, 0.5 *y, 2 * z).

* State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 * y, 0.75 *

Z).

See the vignette for more details.

Source

Simluated in R.

fault2A_xts Process Data under a System Drift Fault

Description
Three-feature, three-state simulated process data including observations under normal operating
conditions and observations after a positive drift in values for each feature in the system.

Usage

fault2A_xts

4 fault2B_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a 1-minute interval. The columns under normal conditions are defined in the help file
for normal_switch_xts. The fault is a drift on each feature by s / 10 ~ 3, where s is the observation
index. The fault starts at row 8500, and the four columns under the fault state are defined here:

* state : the state indicator for the multivariate system, with three levels

e X : X(t) =t + drift + error

e y:y(t)=t"2-3t+drift + error

e z:z(t)=-t" 3+ 3t 2+ drift + error
where t is a 10080-entry vector of autocorrelated and non-stationary hidden process realizations.
The states alternate each hour and are defined as follows:

 Statel — As presented

« State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 * x, 0.5 *y, 2 * 7).

 State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 *

7).

See the vignette for more details.

Source

Simluated in R.

fault2B_xts Process Data under a Feature Drift Fault

Description

Three-feature, three-state simulated process data including observations under normal operating
conditions and observations after a positive drift in values for two features.

Usage
fault2B_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a I-minute interval. The columns under normal conditions are defined in the help file

non

for normal_switch_xts. The fault is a drift on the "y" and "z" features by s / 10 ~ 3, where s is
the observation index. The fault starts at row 8500, and the four columns under the fault state are
defined here:

* state : the state indicator for the multivariate system, with three levels

* X : X(t) =t + error

e y:y(t)=t"2-3t+ drift + error

e z:z(t)=-t"3+ 3t "2 + drift + error

fault3A_xts 5

where t is a 10080-entry vector of autocorrelated and non-stationary hidden process realizations.
The states alternate each hour and are defined as follows:

 Statel — As presented

* State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 * x, 0.5 ¥y, 2 * z).

 State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 *
Z).

See the vignette for more details.

Source

Simluated in R.

fault3A_xts Process Data under a System Signal Amplification

Description

Three-feature, three-state simulated process data including observations under normal operating
conditions and observations after an amplification of the underlying process for each feature in the
system.

Usage

fault3A_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a 1-minute interval. The columns under normal conditions are defined in the help file
for normal_switch_xts. The fault is a signal amplificaton in the underlying determining t vector.
The fault starts at row 8500, and the four columns under the fault state are defined here:

* state : the state indicator for the multivariate system, with three levels

e X : x(t_*)=t_* + error

ey y(t_*) = (t_*)"2-3t+error

e z:z(t_*)=-(t_*) "3+ 3(t_*) "2 + error
where t_* =3 *t * (10080 - s) / (2 * 10080), where s is the observation index, and t is a 10080-entry
vector of autocorrelated and non-stationary hidden process realizations. The states alternate each
hour and are defined as follows:

» Statel — As presented

 State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 * x, 0.5 *y, 2 * 7).

 State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 *

Z).

See the vignette for more details.

Source

Simluated in R.

6 fault3B_xts

fault3B_xts Process Data under a Feature Signal Dampening

Description

Three-feature, three-state simulated process data including observations under normal operating
conditions and observations after a dampening of one of the underlying features in the system.

Usage

fault3B_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a 1-minute interval. The columns under normal conditions are defined in the help file
for normal_switch_xts. The fault is a signal dampening in the underlying determining t vector for
the "z" feature. The fault starts at row 8500, and the four columns under the fault state are defined
here:

* state : the state indicator for the multivariate system, with three levels

* x: x(t) =t + error

e y:y(t)=t"2-3t+ error

e z:z(t_¥*)=-(t_*) "3+ 3(t_*) "2 + error
where t_* =logltl, and t is a 10080-entry vector of autocorrelated and non- stationary hidden process
realizations. The states alternate each hour and are defined as follows:

» Statel — As presented

* State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 * x, 0.5 *y, 2 * z).

 State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 *

Z).

See the vignette for more details.

Source

Simluated in R.

faultDetect 7

faultDetect Process Fault Detection

Description

Detect if a single multivariate observation is beyond normal operating conditions.

Usage

faultDetect(threshold_object, observation, ...)

Arguments

threshold_object
An object of classes "threshold" and "pca" returned by the internal threshold()
function.

observation A single row of an xts data matrix (a 1 X p matrix) to compare against the thresh-
olds

Lazy dots for additional internal arguments

Details

This function takes in a threshold object returned by the threshold() function and a single obser-
vation as a matrix or xts row. Internally, the function multiplies the observation by the projection
matrix returned within the threshold object, calculates the SPE and T2 process monitoring statistics
for that observation, and compares these statistics against their corresponding threshold values to
determine if the observation lies outside the expected boundaries. The function then returns a row
vector of the SPE test statistic, a logical indicator marking if this statistic is beyond the threshold,
the Hotelling’s T2 statistic, and an indicator if this statistic is beyond the threshold. Observations
with monitoring statistics beyond the calculated threshold are marked with a 1, while observations
within normal operating conditions are marked with a 0. These threshold values are passed from
the threshold() function through this function via a returned threshold object. This object will be
used in higher function calls.

This internal function is called by faultFilter().

Value

A named 1 x 4 matrix with the following entries for the single row observation passed to this
function:
* SPE — the SPE statistic value

* SPE_Flag — the SPE fault indicator, where 1 represents a flag and 0 marks that the observation
is within the normal operating conditions

e T2 — the T2 statistic value

* T2_Flag — the T2 fault indicator, defined the same as SPE_Flag

8 faultFilter

Examples

data(”"normal_switch_xts")

scaledData <- scale(normal_switch_xts[,-1])

pca_obj <- pca(scaledData, var.amnt = 0.9)

thresh_obj <- threshold(pca_object = pca_obj, alpha = 0.05)

Check a single observation. We see this observation is within the normal
operating conditions at alpha = 0.05.
faultDetect(threshold_object = thresh_obj, observation = scaledDatal1,])

According to the Squared Prediction Error statistic, this observation is
outside the range of "normal” operation at the 0.05 level.
faultDetect(threshold_object = thresh_obj, observation = scaledDatal[20,])

We can also check an entire data matrix:
detect_1s <- lapply(1:nrow(scaledData), function(i){
faultDetect(threshold_object = thresh_obj, scaledDatali,])

»
do.call(rbind, detect_ls)

faultFilter Process Fault Filtering

Description

Flag and filter out observations beyond normal operating conditions, then return the observations
within normal operating conditions.

Usage
faultFilter(trainData, testData, updateFreq, faultsToTriggerAlarm = 3, ...)
Arguments
trainData An xts data matrix of initial training observations
testData The data not included in the training data set
updateFreq The number of observations from the test data matrix that must be returned to
update the training data matrix and move it forward.
faultsToTriggerAlarm
Specifies how many sequential faults will cause an alarm to trigger. Defaults to
3.
Lazy dots for additional internal arguments
Details

This function is essentially a wrapper function to call and organize the output from these other
internal functions: faultDetect(), threshold(), and pca(). It is applied over a rolling window, with
observation width equal to updateFreq, of the larger full data matrix via the processMonitor() func-
tion, wherein the testing and training data sets move forward in time across the entire data matrix.

This internal function is called by processMonitor().

mspMonitor

Value

A list of class "fault_ls" with the following:

* faultObj — an xts flagging matrix with the same number of rows as "testData". This flag matrix
has the following five columns:

SPE — the SPE statistic value for each observation in "testData"

SPE_Flag — a vector of SPE indicators recording O if the test statistic is less than or equal
to the critical value passed through from the threshold object

T2 — the T2 statistic value for each observation in "testData"
T2_Flag — a vector of T2 fault indicators, defined like SPE_Flag

Alarm — a column indicating if there have been three flags in a row for either the SPE or
T2 monitoring statistics or both. Alarm states are as follows: 0 = no alarm, 1 = Hotelling’s
T2 alarm, 2 = Squared Prediction Error alarm, and 3 = both alarms.

* nonAlarmedTestObs — an xts matrix of the first updateFreq number of rows of the training
data which were not alarmed

* trainSpecs — the threshold object returned by the internal threshold() function. See the thresh-
old() function’s help file for more details.

Examples

data(”"normal_switch_xts")

Select

the data under state 1

data <- normal_switch_xts[normal_switch_xts[,1] == 1]

Split the data into testing and training data sets
nTrainObs <- floor(@.2 * nrow(data))
nUpdate <- floor(@.5 * nTrainObs)

trainObs

<- datal[1:nTrainObs, -1]

testObs <- data[(nTrainObs + 1):nrow(data), -1]

faultFilter(trainData = trainObs,

testData = testObs,
updateFreq = nUpdate)

mspMonitor Real-Time Process Monitoring Function

Description

Monitor and flag (if necessary) incoming multivariate process observations.

Usage

mspMonitor (observations, labelVector, trainingSummary, ...)

10 mspMonitor

Arguments

observations ann x p xts matrix. For real-time monitoring via a script within a batch file, n =
1, so this must be a 1 x p matrix. If lags were included at the training step, then
these observations will also have lagged features.

labelVector an n x 1 integer vector of class memberships

trainingSummary
the TrainingSpecs list returned by the mspTrain() function. This list contains—
for each class—the SPE and T2 thresholds, as well the projection matrix.

Lazy dots for additional internal arguments

Details

This function is designed to be run at specific time intervals (e.g.every 10 seconds, 30 seconds, 1
minute, 5 minutes, 10 minutes) through a scheduled operating script which calls this function and
mspWarning(). We expect this script to be set up in Windows "Task Scheduler" or Macintosh OX
"launchd" application suites. This function takes in the specific observations to monitor and their
class memberships (if any) and returns an xts matrix of these observation columns concatenated
with their monitoring statistic values, flag statuses, and an empty alarm column. Users should then
append these rows onto a previously existing matrix of daily observations. The mspWarning() func-
tion will then take in the daily observation xts matrix with updated rows returned by this function
and check the monitoring statistic flag indicators to see if an alarm status has been reached. For
further details, see the mspWarning() function.

This function calls the faultDetect() function, and requires the training information returned by
the mspTrain function. This function will return the xts matrix necessary for the mspWarning()
function.

Value

Ann x (p + 5) xts matrix, where the last five columns are:

¢ SPE — the SPE statistic value for each observation in "observations"

» SPE_Flag — a vector of SPE indicators recording O if the test statistic is less than or equal to
the critical value passed through from the threshold object

e T2 —the T2 statistic value for each observation in "observations"
* T2_Flag — a vector of T2 fault indicators, defined like SPE_Flag

e Alarm — a column indicating if there have been three flags in a row for either the SPE or T2
monitoring statistics or both. Alarm states are as follows: 0 = no alarm, 1 = Hotelling’s T2
alarm, 2 = Squared Prediction Error alarm, and 3 = both alarms.

Examples

data("normal_switch_xts")

The state values are recorded in the first column.
n <- nrow(normal_switch_xts)

nTrainObs <- floor(@.4 x n)

Calculate the training summary, but save five observations for monitoring.
trainResults_ls <- mspTrain(data = normal_switch_xts[1:(n - 5), -11],
labelVector = normal_switch_xts[1:(n - 5), 11,
trainObs = nTrainObs,
lagsIncluded = c(@, -1))

mspTrain 11

While training, we included 1 lag (the default), so we will also lag the
observations we will test.

testObs <- normal_switch_xts[(n - 6):n, -1]

testObs <- stats::lag(zoo::zoo(testObs), 0:-1)

testObs <- xts::xts(testObs[-1,])

testObs <- cbind(normal_switch_xts[(n - 5):n, 1], testObs)

mspMonitor(observations = testObs[, -117,
labelVector = testObs[, 1],
trainingSummary = trainResults_ls$TrainingSpecs)

mspTrain Multi-State Adaptive-Dynamic Process Training

Description

This function performs Multi-State Adaptive-Dynamic PCA on a data set with time-stamped obser-

vations.
Usage
mspTrain(data, labelVector, trainObs, updateFreq = ceiling(@.5 * trainQObs),
Dynamic = TRUE, lagsIncluded = c(@, -1), faultsToTriggerAlarm = 3, ...)
Arguments
data An xts data matrix
labelVector Class labels as a logical (two states only) or finite numeric (two or more states)

vector with length equal to the number of rows in "data". For data with only one
state, this will be a vector of 1s.

trainObs The number of observations upon which to train the algorithm

updateFreq The algorithm update frequency. Defaults to half as many observations as the
training frequency.

Dynamic Specify if the PCA algorithm should include lagged variables. Defaults to
TRUE.

lagsIncluded A vector of lags to include. If Dynamic = TRUE, specify which lags to include.
Defaults to c(0, -1), signifying that the Dynamic process observations will in-
clude current observations and observations from one time step previous. See
"Details" for more information.

faultsToTriggerAlarm
The number of sequential faults needed to trigger an alarm. Defaults to 3

Lazy dots for additional internal arguments

Details

This function is designed to identify and sort out sequences of observations which fall outside nor-
mal operating conditions. We assume that the process data are time-dependent in both seasonal and
non-stationary effects (which necessitate the Adaptive and Dynamic components, respectively). We

12 mspTrain

further assume that this data is drawn from a multivariate process under multiple mutually exclu-
sive states, implying that the linear dimension reduction projection matrices may be different for
each state. Therefore, in summary, this function lags the features to account for correlation between
sequential observations, splits the data by classes, and re-estimates projection matrices on a rolling
window to account for seasonality. Further, this function uses non-parametric density estimation
to calculate the 1 - alpha quantiles of the SPE and Hotelling’s T2 statistics from a set of training
observations, then flags any observation in the testing data set with process monitoring statistics
beyond these calculated critical values. Becuase of natural variablity inherent in all real data, we
do not remove observations simply because they are have been flagged as outside normal operating
conditions. This function records an alarm only for observations having three flags in a row, as set
by the default argument value of "faultsToTriggerAlarm". These alarm-positive observations are
then removed from the data set and held in a separate xts matrix for inspection.

Concering the lagsIncluded variable: the argument lagsIncluded = ¢(0,-1) will column concatenate
the current data with the same data from one discrete time step back. This will necesarily remove
the first row of the data matrix, as we will have NA values under the lagged features. The argument
lagsIncluded = 0:-2 will column concatenate the current observations with the observations from
one step previous and the observations from two steps previous, which will necessarily requirethe
removal of the first two rows of the data matrix. To include only certain lags with the current
data, specify lagsIncluded = c(0, -lag_1, -lag_2, ... , -lag_K). This induce NA values in the first
max(abs(-lag_k)) rows, for k =1, ... , K, and these rows will be removed from consideration.

Of note when considering performance: the example has 10080 rows on three features alternating
between three states, and trains on 20 percent of the observations, while updating every 1008 (10
percent) observation. On a 2016 Macbook Pro with 16Gb of RAM, this example function call
takes 15 second to run. Increasing the update frequency will decrease computation time, but may
increase false alarm rates or decrease flagging accuracy. We recommend that you set the update
frequency based on the natural and physical designs of your system. For example, if your system
has a multi-state process which switches across one of four states every two hours, then test the
update frequency at an eight or 12 hour level — enough observations to measure two to three full
cycles of the switching process. For observations recorded every five minutes, try updateFreq = (60
/5)*8=960r(60/5)* 12 =144.

This user-facing function calls the processMonitor() function, and returns the training arguments
necessary to call the mspMonitor() and mspWarning() functions.

For more details, see Kazor et al (2016):
http://1link.springer.com/article/10.1007/s00477-016-1246-2

Value

A list with the following components:

* FaultChecks — an xts flagging matrix with the same number of rows as "data". This flag matrix
has the following five columns:

— SPE - the SPE statistic value for each observation in "data"

SPE_Flag — a vector of SPE indicators recording O if the test statistic is less than or equal
to the critical value passed through from the threshold object

T2 — the T2 statistic value for each observation in "data"
T2_Flag — a vector of T2 fault indicators, defined like SPE_Flag
Alarm — a column indicating if there have been three flags in a row for either the SPE or

T2 monitoring statistics or both. Alarm states are as follows: 0 =no alarm, 1 = Hotelling’s
T2 alarm, 2 = Squared Prediction Error alarm, and 3 = both alarms.

¢ Non_Alarmed_Obs — an xts data matrix of all the non-alarmed observations

http://link.springer.com/article/10.1007/s00477-016-1246-2

mspWarning 13

* Alarms — an xts data matrix of the features and specific alarms for Alarmed observations with
the alarm codes are listed above

» TrainingSpecs — a list of k lists, one for each class, with each list containing the specific
threshold object returned by the internal threshold() function for that class. See the threshold()
function’s help file for more details.

Examples

data(”"normal_switch_xts")
nTrainObs <- floor(@.4 * nrow(normal_switch_xts))
The state values are recorded in the first column.

mspTrain(data = normal_switch_xts[, -11,
labelVector = normal_switch_xts[, 11,
trainObs = nTrainObs)

mspWarning Process Alarms

Description

Trigger an alarm, if necessary, for incoming multivariate process observations.

Usage

mspWarning(mspMonitor_object, faultsToTriggerAlarm = 3)

Arguments

mspMonitor_object
An xts matrix returned by the mspMonitor() function

faultsToTriggerAlarm
Specifies how many sequential faults will cause an alarm to trigger. Defaults to
3.
Details

This function and the mspMonitor() function are designed to be ran via a scheduled task through
Windows "Task Scheduler" or Macintosh OX "launchd" application suites. The file flow is as fol-
lows: at each time interval, run the mspMonitor() function on the matrix of daily observations to
add a flag status to the most recent incoming observation in the matrix, and return this new xts
matrix. Then, pass this updated daily observation matrix to the mspWarning() function, which will
check if the process has recorded three or more sequential monitoring statistic flags in a row. Of
note, because these functions are expected to be repeatedly called in real time, this function will
only check for an alarm within the last row of the xts matrix. To check multiple rows for an alarm
state, please use the mspTrain() function, which was designed to check multiple past observations.

This function requires an xts matrix returned by the mspMonitor() function.

Value

An xts matrix of the same dimensions as mspMonitor_object, with a recorded negative or positive
and type-specific alarm status. Alarm codes are: 0 = no alarm, 1 = Hotelling’s T2 alarm, 2 =
Squared Prediction Error alarm, and 3 = both alarms.

14 normal_switch_xts

Examples

data(”"normal_switch_xts")

The state values are recorded in the first column.
n <- nrow(normal_switch_xts)

nTrainObs <- floor(@.4 x n)

Calculate the training summary, but save five observations for monitoring.
trainResults_ls <- mspTrain(data = normal_switch_xts[1:(n - 5), -11,
labelVector = normal_switch_xts[1:(n - 5), 11,
trainObs = nTrainObs,
lagsIncluded = c(@, -1))

While training, we included 1 lag (the default), so we will also lag the
observations we will test.

testObs <- normal_switch_xts[(n - 6):n, -1]

testObs <- stats::lag(zoo::zoo(testObs), 0:-1)

testObs <- xts::xts(testObs[-1,])

testObs <- cbind(normal_switch_xts[(n - 5):n, 1], testObs)

Run the monitoring function.
dataAndFlags <- mspMonitor(observations = testObs[, -11,
labelVector = testObs[, 117,
trainingSummary = trainResults_ls$TrainingSpecs)

Alarm check the last row of the matrix returned by the mspMonitor function
mspWarning(dataAndFlags)

normal_switch_xts Process Data under Normal Conditions

Description
Three-feature, three-state simulated process data under normal operating conditions as example data
for different included functions.

Usage

normal_switch_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a 1-minute interval, and four columns as defined here:

* state — the state indicator for the multivariate system, with three levels

* x: x(t) =t + error

e y:y(t)=t"2-3t+error

e z:z(t)=-t"3+3t"2 + error

where t is a 10080-entry vector of autocorrelated and non-stationary hidden process realizations.
The states alternate each hour and are defined as follows:

 Statel — As presented

oneDay_clean 15

* State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 * x, 0.5 *y, 2 * z).

 State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 *
Z).

See the vignette for more details.

Source

Simluated in R.

oneDay_clean Real Process Data for Testing

Description
Data from the SM-MBR Bioreactor system over 24 hours. This data will be used for testing the
mvMonitoring package.

Usage

oneDay_clean

Format
An xts matrix of 144 rows and 35 features recorded over 2017-01-26 at 00:10 to 2017-01-27 at
00:00.

Source

Kathryn Newhart

pca PCA for Data Scatter Matrix

Description

Calculate the principal component analysis for a data matrix, and also find the squared prediction
error (SPE) and Hotelling’s T2 test statistic values for each observation in this data matrix.

Usage
pca(data, var.amnt = 0.95, ...)
Arguments
data A centred-and-scaled data matrix or xts matrix
var.amnt The energy proportion to preserve in the projection, which dictates the number

of principal components to keep. Defaults to 0.95.

Lazy dots for additional internal arguments

16 processMonitor

Details

This function takes in a training data matrix, without the label column, and the energy preservation
proportion, which defaults to 95 percent per Kazor et al (2016). This proportion is the sum of the
q largest eigenvalues divided by the sum of all p eigenvalues, where q is the number of columns of
the p x q projection matrix P. This function then returns the projection matrix P, a diagonal matrix
of the reciprocal eigenvalues (Lambdalnv), a vector of the SPE test statistic values corresponding
to the rows of the data matrix, and a T2 test statistic vector similar to the SPE vector.

This internal function is called by faultFilter().

Value

A list of class "pca" with the following:
* projectionMatrix — the q eigenvectors corresponding to the q largest eigenvalues as a p X q
projection matrix
* Lambdalnv — the diagonal matrix of inverse eigenvalues
* SPE — the vector of SPE test statistic values for each of the n observations contained in "data"

» T2 — the vector of Hotelling’s T2 test statistic for each of the same n observations

Examples

data(”"normal_switch_xts")
scaledData <- scale(normal_switch_xts[,-1])
pca(scaledData, var.amnt = 0.9)

processMonitor Adaptive Process Training

Description

Apply Adaptive-Dynamic PCA to state-specific data matrices.

Usage
processMonitor(data, trainObs, updateFreq = ceiling(@.5 * trainObs),
faultsToTriggerAlarm = 3, ...)
Arguments
data An xts data matrix
trainObs The number of training observations to be used
updateFreq The number of non-flagged observations to collect before the function updates.

Defaults to half as many observations as the number of training observations.

faultsToTriggerAlarm
The number of sequential faults needed to trigger an alarm. Defaults to 3.

Lazy dots for additional internal arguments

rotate3D 17

Details

This function is the class-specific implementation of the Adaptive- Dynamic PCA described in the
details of the mspTrain() function. See the mspTrain() function’s help file for further details.

This internal function is called by mspTrain(). This function calls the faultFilter() function.

Value

A list with the following components:

* FaultChecks — a class-specific xts flagging matrix with the same number of rows as "data".
This flag matrix has the following five columns:

— SPE - the SPE statistic value for each observation in "data"

— SPE_Flag — a vector of SPE indicators recording 0 if the test statistic is less than or equal
to the critical value passed through from the threshold object

— T2 — the T2 statistic value for each observation in "data"

— T2_Flag — a vector of T2 fault indicators, defined like SPE_Flag

— Alarm — a column indicating if there have been three flags in a row for either the SPE or
T2 monitoring statistics or both. Alarm states are as follows: 0 =no alarm, 1 = Hotelling’s
T2 alarm, 2 = Squared Prediction Error alarm, and 3 = both alarms.

* Non_Alarmed_Obs — a class-specific xts data matrix of all the non-alarmed observations (ob-
servations with alarm state equal to 0)

* Alarms — a class-specific xts data matrix of the features and specific alarms of Alarmed obser-
vations, where the alarm codes are listed above

* trainSpecs — a threshold object returned by the internal threshold() function. See the thresh-
old() function’s help file for more details.

Examples

data("normal_switch_xts")

Select the data under state 1

data <- normal_switch_xts[normal_switch_xts[,1] == 1]
nTrainObs <- floor(@.4 x nrow(data))

Remove the now unnecesary state column
featureCols <- datal,-1]

processMonitor(data = featureCols, trainObs = nTrainObs)

rotate3D Three-Dimensional Rotation Matrix

Description
Render a 3-Dimensional projection matrix given positive or negative degree changes in yaw, pitch,
and / or roll.

Usage

rotate3D(yaw, pitch, roll)

18 rotateScale3D

Arguments
yaw z-axis change in degrees; look left (+) or right (-). Consider this a rotation on
the x-y plane.
pitch y-axis change in degrees; look up (-) or down (+). Consider this a rotation on
the x-z plane.
roll x-axis change in degrees; this change appears as if you touch head to shoulders:
right roll (+) and left roll (-).
Details

When plotting with the package scatterplot3d, the default perpective is such that the pitch action
appears as a roll while the roll action appears as a pitch.

This function is used only in data generation of the package vignette. This function is called by
rotateScale3D().

Value

A 3 x 3 projection matrix corresponding to the degree changes entered.

Examples

data("normal_switch_xts")
normal_switch_xts[,-1] %x% rotate3D(yaw = -10, pitch = @, roll = 15)

rotateScale3D Three-Dimensional Rotation and Scaling Matrix

Description

Render a 3-Dimensional projection matrix given positive or negative degree changes in yaw, pitch,
and / or roll and increment or decrement feature scales.

Usage

rotateScale3D(rot_angles = c(@, @, @), scale_factors = c(1, 1, 1))

Arguments

rot_angles a list or vector containg the rotation angles in the order following: yaw, pitch,
roll. Defaults to <0,0,0>.

scale_factors alist or vector containing the values by which to multiply each dimension. De-
faults to <1,1,1>.

Details

See the help file of function rotate_3D() for a brief explination of how these angles behave in
scatterplot3d functionality (from package scatterplot3d).

This function is used only in data generation of the package vignette. This function calls rotate3D().

tenDay_clean 19

Value

A 3 x 3 projection matrix corresponding to the degree and scale changes entered.

Examples

data(”"normal_switch_xts")

angles <- list(yaw = -10, pitch = @, roll = 15)

featureScales <- ¢(0.2, 1, 5)

normal_switch_xts[,-1] %*% rotateScale3D(rot_angles = angles,
scale_factors = featureScales)

tenDay_clean Real Process Data for Training

Description
Data from the SM-MBR Bioreactor system over ten days. This data will be used for training the
mvMonitoring package.

Usage

tenDay_clean

Format
An xts matrix of 1,155 rows and 35 features recorded over 2017-01-17 at 00:10 to 2017-01-26 at
00:00.

Source

Kathryn Newhart

threshold Non-parametric Threshold Estimation

Description

Calculate the non-parametric critical value threshold estimates for the SPE and T2 monitoring test

statistics.
Usage
threshold(pca_object, alpha = 0.001, ...)
Arguments
pca_object A list with class "pca" from the internal pca() function
alpha The upper 1 - alpha quantile of the SPE and T2 densities from the training data

passed to this function. Defaults to 0.001.

Lazy dots for additional internal arguments

20 threshold

Details

This function takes in a pca object returned by the pca() function and a threshold level defaulting
to alpha = 0.1 percent of the observations. This critical quantile is set this low to reduce false
alarms, as described in Kazor et al (2016). The function then returns a calculated SPE threshold
corresponding to the 1 - alpha critical value, a similar T2 threshold, and the projection and Lambda
Inverse (1 / eigenvalues) matrices passed through from the pca() function call.

This internal function is called by faultFilter().

Value
A list with classes "threshold" and "pca" containing:

e SPE_threshold — the 1 - alpha quantile of the estimated SPE density
* T2_threshold — the 1 - alpha quantile of the estimated Hotelling’s T2 density

* projectionMatrix — a projection matrix from the data feature space to the feature subspace
which preserves some pre-specified proportion of the energy of the data scatter matrix. This
pre-specified energy proportion is user supplied as the var.amnt argument in the pca() function.
See the pca() function’s help file for more details.

* Lambdalnv — a diagonal matrix of the reciprocal eigenvalues of the data scatter matrix

Examples

data("normal_switch_xts")

scaledData <- scale(normal_switch_xts[,-1])
pca_obj <- pca(scaledData, var.amnt = 0.9)
threshold(pca_object = pca_obj, alpha = 0.05)

Index

*Topic datasets
fault1A_xts, 2
fault1B_xts, 3
fault2A_xts, 3
fault2B_xts, 4
fault3A_xts, 5
fault3B_xts, 6
normal_switch_xts, 14
oneDay_clean, 15
tenDay_clean, 19

faultlA_xts, 2
fault1B_xts, 3
fault2A_xts, 3
fault2B_xts, 4
fault3A_xts, 5
fault3B_xts, 6
faultDetect, 7
faultFilter, 8

mspMonitor, 9
mspTrain, 11
mspWarning, 13
normal_switch_xts, 14

oneDay_clean, 15

pca, 15
processMonitor, 16

rotate3D, 17
rotateScale3D, 18

tenDay_clean, 19
threshold, 19

	fault1A_xts
	fault1B_xts
	fault2A_xts
	fault2B_xts
	fault3A_xts
	fault3B_xts
	faultDetect
	faultFilter
	mspMonitor
	mspTrain
	mspWarning
	normal_switch_xts
	oneDay_clean
	pca
	processMonitor
	rotate3D
	rotateScale3D
	tenDay_clean
	threshold
	Index

