library(multinma)
options(mc.cores = parallel::detectCores())
This vignette describes the analysis of 50 trials of 8 thrombolytic drugs (streptokinase, SK; alteplase, t-PA; accelerated alteplase, Acc t-PA; streptokinase plus alteplase, SK+tPA; reteplase, r-PA; tenocteplase, TNK; urokinase, UK; anistreptilase, ASPAC) plus per-cutaneous transluminal coronary angioplasty (PTCA) (Boland et al. 2003; Lu and Ades 2006; Dias et al. 2011, 2010). The number of deaths in 30 or 35 days following acute myocardial infarction are recorded. The data are available in this package as thrombolytics
:
head(thrombolytics)
#> studyn trtn trtc r n
#> 1 1 1 SK 1472 20251
#> 2 1 3 Acc t-PA 652 10396
#> 3 1 4 SK + t-PA 723 10374
#> 4 2 1 SK 9 130
#> 5 2 2 t-PA 6 123
#> 6 3 1 SK 5 63
We begin by setting up the network. We have arm-level count data giving the number of deaths (r
) out of the total (n
) in each arm, so we use the function set_agd_arm()
. By default, SK is set as the network reference treatment.
<- set_agd_arm(thrombolytics,
thrombo_net study = studyn,
trt = trtc,
r = r,
n = n)
thrombo_net#> A network with 50 AgD studies (arm-based).
#>
#> ------------------------------------------------------- AgD studies (arm-based) ----
#> Study Treatments
#> 1 3: SK | Acc t-PA | SK + t-PA
#> 2 2: SK | t-PA
#> 3 2: SK | t-PA
#> 4 2: SK | t-PA
#> 5 2: SK | t-PA
#> 6 3: SK | t-PA | ASPAC
#> 7 2: SK | t-PA
#> 8 2: SK | t-PA
#> 9 2: SK | t-PA
#> 10 2: SK | SK + t-PA
#> ... plus 40 more studies
#>
#> Outcome type: count
#> ------------------------------------------------------------------------------------
#> Total number of treatments: 9
#> Total number of studies: 50
#> Reference treatment is: SK
#> Network is connected
Plot the network structure.
plot(thrombo_net, weight_edges = TRUE, weight_nodes = TRUE)
Following TSD 4 (Dias et al. 2011), we fit a fixed effects NMA model, using the nma()
function with trt_effects = "fixed"
. We use \(\mathrm{N}(0, 100^2)\) prior distributions for the treatment effects \(d_k\) and study-specific intercepts \(\mu_j\). We can examine the range of parameter values implied by these prior distributions with the summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
The model is fitted using the nma()
function. By default, this will use a Binomial likelihood and a logit link function, auto-detected from the data.
<- nma(thrombo_net,
thrombo_fit trt_effects = "fixed",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100))
#> Note: Setting "SK" as the network reference treatment.
Basic parameter summaries are given by the print()
method:
thrombo_fit#> A fixed effects NMA with a binomial likelihood (logit link).
#> Inference for Stan model: binomial_1par.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[Acc t-PA] -0.18 0.00 0.04 -0.26 -0.21 -0.18 -0.15 -0.09 2705 1
#> d[ASPAC] 0.02 0.00 0.04 -0.06 -0.01 0.02 0.04 0.09 6390 1
#> d[PTCA] -0.47 0.00 0.10 -0.67 -0.54 -0.47 -0.40 -0.28 3837 1
#> d[r-PA] -0.12 0.00 0.06 -0.24 -0.16 -0.12 -0.09 -0.01 3021 1
#> d[SK + t-PA] -0.05 0.00 0.05 -0.14 -0.08 -0.05 -0.02 0.04 5781 1
#> d[t-PA] 0.00 0.00 0.03 -0.06 -0.02 0.00 0.02 0.06 4755 1
#> d[TNK] -0.17 0.00 0.07 -0.32 -0.22 -0.17 -0.12 -0.03 4145 1
#> d[UK] -0.20 0.00 0.23 -0.65 -0.36 -0.20 -0.05 0.24 4314 1
#> lp__ -43042.85 0.14 5.40 -43053.87 -43046.36 -43042.61 -43039.08 -43033.16 1519 1
#>
#> Samples were drawn using NUTS(diag_e) at Tue Jan 18 09:33:18 2022.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) are hidden, but could be examined by changing the pars
argument:
# Not run
print(thrombo_fit, pars = c("d", "mu"))
The prior and posterior distributions can be compared visually using the plot_prior_posterior()
function:
plot_prior_posterior(thrombo_fit, prior = "trt")
Model fit can be checked using the dic()
function
<- dic(thrombo_fit))
(dic_consistency #> Residual deviance: 105.9 (on 102 data points)
#> pD: 58.7
#> DIC: 164.5
and the residual deviance contributions examined with the corresponding plot()
method.
plot(dic_consistency)
There are a number of points which are not very well fit by the model, having posterior mean residual deviance contributions greater than 1.
Note: The results of the inconsistency models here are slightly different to those of Dias et al. (2010, 2011), although the overall conclusions are the same. This is due to the presence of multi-arm trials and a different ordering of treatments, meaning that inconsistency is parameterised differently within the multi-arm trials. The same results as Dias et al. are obtained if the network is instead set up with
trtn
as the treatment variable.
Another method for assessing inconsistency is node-splitting (Dias et al. 2011, 2010). Whereas the UME model assesses inconsistency globally, node-splitting assesses inconsistency locally for each potentially inconsistent comparison (those with both direct and indirect evidence) in turn.
Node-splitting can be performed using the nma()
function with the argument consistency = "nodesplit"
. By default, all possible comparisons will be split (as determined by the get_nodesplits()
function). Alternatively, a specific comparison or comparisons to split can be provided to the nodesplit
argument.
<- nma(thrombo_net,
thrombo_nodesplit consistency = "nodesplit",
trt_effects = "fixed",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100))
#> Fitting model 1 of 15, node-split: Acc t-PA vs. SK
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 2 of 15, node-split: ASPAC vs. SK
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 3 of 15, node-split: PTCA vs. SK
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 4 of 15, node-split: r-PA vs. SK
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 5 of 15, node-split: t-PA vs. SK
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 6 of 15, node-split: UK vs. SK
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 7 of 15, node-split: ASPAC vs. Acc t-PA
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 8 of 15, node-split: PTCA vs. Acc t-PA
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 9 of 15, node-split: r-PA vs. Acc t-PA
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 10 of 15, node-split: SK + t-PA vs. Acc t-PA
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 11 of 15, node-split: UK vs. Acc t-PA
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 12 of 15, node-split: t-PA vs. ASPAC
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 13 of 15, node-split: t-PA vs. PTCA
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 14 of 15, node-split: UK vs. t-PA
#> Note: Setting "SK" as the network reference treatment.
#> Fitting model 15 of 15, consistency model
#> Note: Setting "SK" as the network reference treatment.
The summary()
method summarises the node-splitting results, displaying the direct and indirect estimates \(d_\mathrm{dir}\) and \(d_\mathrm{ind}\) from each node-split model, the network estimate \(d_\mathrm{net}\) from the consistency model, the inconsistency factor \(\omega = d_\mathrm{dir} - d_\mathrm{ind}\), and a Bayesian \(p\)-value for inconsistency on each comparison. The DIC model fit statistics are also provided. (If a random effects model was fitted, the heterogeneity standard deviation \(tau\) under each node-split model and under the consistency model would also be displayed.)
summary(thrombo_nodesplit)
#> Node-splitting models fitted for 14 comparisons.
#>
#> ---------------------------------------------------- Node-split Acc t-PA vs. SK ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.18 0.04 -0.26 -0.21 -0.18 -0.15 -0.09 2764 3008 1
#> d_dir -0.16 0.05 -0.25 -0.19 -0.16 -0.12 -0.06 3551 3830 1
#> d_ind -0.24 0.09 -0.42 -0.31 -0.25 -0.18 -0.07 647 1181 1
#> omega 0.09 0.10 -0.13 0.01 0.09 0.16 0.29 754 1563 1
#>
#> Residual deviance: 106.6 (on 102 data points)
#> pD: 60.1
#> DIC: 166.7
#>
#> Bayesian p-value: 0.41
#>
#> ------------------------------------------------------- Node-split ASPAC vs. SK ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net 0.02 0.04 -0.05 -0.01 0.02 0.04 0.09 5040 3351 1
#> d_dir 0.01 0.04 -0.06 -0.02 0.01 0.03 0.08 4229 3246 1
#> d_ind 0.42 0.25 -0.06 0.25 0.42 0.59 0.92 2680 3210 1
#> omega -0.41 0.25 -0.91 -0.58 -0.41 -0.24 0.08 2679 3003 1
#>
#> Residual deviance: 104.4 (on 102 data points)
#> pD: 59.8
#> DIC: 164.3
#>
#> Bayesian p-value: 0.092
#>
#> -------------------------------------------------------- Node-split PTCA vs. SK ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.47 0.10 -0.68 -0.54 -0.47 -0.41 -0.27 4262 2754 1
#> d_dir -0.66 0.19 -1.03 -0.79 -0.67 -0.54 -0.29 5634 3172 1
#> d_ind -0.39 0.12 -0.63 -0.47 -0.40 -0.31 -0.16 3893 3299 1
#> omega -0.27 0.22 -0.70 -0.41 -0.27 -0.13 0.16 4721 3358 1
#>
#> Residual deviance: 105.7 (on 102 data points)
#> pD: 60
#> DIC: 165.6
#>
#> Bayesian p-value: 0.22
#>
#> -------------------------------------------------------- Node-split r-PA vs. SK ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.12 0.06 -0.24 -0.16 -0.12 -0.08 0.00 3924 2629 1
#> d_dir -0.06 0.09 -0.23 -0.12 -0.06 0.00 0.11 4832 3126 1
#> d_ind -0.18 0.08 -0.33 -0.23 -0.18 -0.12 -0.02 2580 3046 1
#> omega 0.11 0.12 -0.12 0.04 0.12 0.19 0.35 3084 3089 1
#>
#> Residual deviance: 106.4 (on 102 data points)
#> pD: 60.1
#> DIC: 166.5
#>
#> Bayesian p-value: 0.34
#>
#> -------------------------------------------------------- Node-split t-PA vs. SK ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net 0.00 0.03 -0.06 -0.02 0.00 0.02 0.06 4747 3756 1
#> d_dir 0.00 0.03 -0.06 -0.02 0.00 0.02 0.06 4078 3569 1
#> d_ind 0.19 0.23 -0.25 0.03 0.19 0.35 0.66 1146 1884 1
#> omega -0.19 0.23 -0.67 -0.35 -0.19 -0.03 0.25 1156 1877 1
#>
#> Residual deviance: 106.5 (on 102 data points)
#> pD: 60
#> DIC: 166.5
#>
#> Bayesian p-value: 0.42
#>
#> ---------------------------------------------------------- Node-split UK vs. SK ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.20 0.22 -0.62 -0.35 -0.20 -0.05 0.22 4727 3192 1
#> d_dir -0.37 0.53 -1.44 -0.72 -0.37 -0.02 0.63 7298 3061 1
#> d_ind -0.16 0.25 -0.65 -0.33 -0.17 0.01 0.31 4335 2784 1
#> omega -0.21 0.59 -1.38 -0.59 -0.20 0.18 0.90 6233 2998 1
#>
#> Residual deviance: 106.6 (on 102 data points)
#> pD: 59.5
#> DIC: 166.1
#>
#> Bayesian p-value: 0.73
#>
#> ------------------------------------------------- Node-split ASPAC vs. Acc t-PA ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net 0.19 0.06 0.09 0.16 0.19 0.23 0.30 3329 2914 1
#> d_dir 1.40 0.41 0.64 1.11 1.38 1.67 2.24 4006 2643 1
#> d_ind 0.16 0.06 0.05 0.12 0.16 0.20 0.28 3386 3224 1
#> omega 1.24 0.42 0.46 0.95 1.22 1.52 2.09 3934 2562 1
#>
#> Residual deviance: 97.8 (on 102 data points)
#> pD: 60.6
#> DIC: 158.4
#>
#> Bayesian p-value: <0.01
#>
#> -------------------------------------------------- Node-split PTCA vs. Acc t-PA ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.30 0.10 -0.49 -0.36 -0.30 -0.23 -0.10 5358 2948 1
#> d_dir -0.21 0.12 -0.45 -0.29 -0.21 -0.13 0.02 4779 3460 1
#> d_ind -0.48 0.18 -0.83 -0.60 -0.48 -0.36 -0.13 3033 3243 1
#> omega 0.27 0.21 -0.14 0.12 0.26 0.41 0.68 3044 2918 1
#>
#> Residual deviance: 105.2 (on 102 data points)
#> pD: 59.5
#> DIC: 164.7
#>
#> Bayesian p-value: 0.21
#>
#> -------------------------------------------------- Node-split r-PA vs. Acc t-PA ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net 0.05 0.05 -0.05 0.02 0.05 0.09 0.16 6185 3557 1
#> d_dir 0.02 0.07 -0.11 -0.02 0.02 0.06 0.15 5014 3573 1
#> d_ind 0.13 0.10 -0.06 0.06 0.13 0.20 0.33 1788 2421 1
#> omega -0.11 0.12 -0.35 -0.19 -0.11 -0.03 0.13 1851 2454 1
#>
#> Residual deviance: 105.5 (on 102 data points)
#> pD: 59.2
#> DIC: 164.7
#>
#> Bayesian p-value: 0.36
#>
#> --------------------------------------------- Node-split SK + t-PA vs. Acc t-PA ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net 0.13 0.05 0.03 0.09 0.13 0.16 0.23 4890 3585 1
#> d_dir 0.13 0.05 0.02 0.09 0.13 0.16 0.23 3022 3122 1
#> d_ind 0.62 0.70 -0.69 0.16 0.60 1.04 2.07 2798 2546 1
#> omega -0.49 0.69 -1.96 -0.92 -0.48 -0.03 0.82 2799 2573 1
#>
#> Residual deviance: 106.2 (on 102 data points)
#> pD: 59.5
#> DIC: 165.8
#>
#> Bayesian p-value: 0.48
#>
#> ---------------------------------------------------- Node-split UK vs. Acc t-PA ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.02 0.22 -0.44 -0.17 -0.02 0.13 0.39 4776 3153 1
#> d_dir 0.14 0.34 -0.51 -0.09 0.14 0.36 0.85 4920 2945 1
#> d_ind -0.13 0.29 -0.71 -0.32 -0.14 0.07 0.45 4437 3021 1
#> omega 0.27 0.45 -0.61 -0.03 0.27 0.58 1.15 4108 2908 1
#>
#> Residual deviance: 106.6 (on 102 data points)
#> pD: 59.8
#> DIC: 166.4
#>
#> Bayesian p-value: 0.54
#>
#> ----------------------------------------------------- Node-split t-PA vs. ASPAC ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.01 0.04 -0.08 -0.04 -0.01 0.01 0.06 5457 3156 1
#> d_dir -0.02 0.04 -0.10 -0.05 -0.02 0.00 0.05 4907 3444 1
#> d_ind 0.03 0.06 -0.09 -0.02 0.03 0.07 0.15 3416 3238 1
#> omega -0.05 0.06 -0.18 -0.09 -0.05 -0.01 0.07 3416 2876 1
#>
#> Residual deviance: 106.5 (on 102 data points)
#> pD: 59.9
#> DIC: 166.4
#>
#> Bayesian p-value: 0.41
#>
#> ------------------------------------------------------ Node-split t-PA vs. PTCA ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net 0.48 0.10 0.27 0.41 0.48 0.54 0.68 4171 2831 1
#> d_dir 0.54 0.42 -0.26 0.25 0.54 0.82 1.37 4654 3244 1
#> d_ind 0.47 0.11 0.26 0.40 0.47 0.54 0.68 4139 3609 1
#> omega 0.07 0.43 -0.76 -0.23 0.06 0.36 0.91 4204 3193 1
#>
#> Residual deviance: 107.1 (on 102 data points)
#> pD: 59.9
#> DIC: 167
#>
#> Bayesian p-value: 0.88
#>
#> -------------------------------------------------------- Node-split UK vs. t-PA ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d_net -0.20 0.22 -0.62 -0.35 -0.20 -0.05 0.22 4777 3033 1
#> d_dir -0.29 0.34 -0.98 -0.53 -0.29 -0.06 0.38 5388 3354 1
#> d_ind -0.14 0.30 -0.72 -0.34 -0.14 0.06 0.44 3836 3307 1
#> omega -0.15 0.46 -1.07 -0.46 -0.16 0.16 0.75 4318 3386 1
#>
#> Residual deviance: 107 (on 102 data points)
#> pD: 60
#> DIC: 167
#>
#> Bayesian p-value: 0.73
Node-splitting the ASPAC vs. Acc t-PA comparison results the lowest DIC, and this is lower than the consistency model. The posterior distribution for the inconsistency factor \(\omega\) for this comparison lies far from 0 and the Bayesian \(p\)-value for inconsistency is small (< 0.01), meaning that there is substantial disagreement between the direct and indirect evidence on this comparison.
We can visually compare the direct, indirect, and network estimates using the plot()
method.
plot(thrombo_nodesplit)
We can also plot the posterior distributions of the inconsistency factors \(\omega\), again using the plot()
method. Here, we specify a “halfeye” plot of the posterior density with median and credible intervals, and customise the plot layout with standard ggplot2
functions.
plot(thrombo_nodesplit, pars = "omega", stat = "halfeye", ref_line = 0) +
::aes(y = comparison) +
ggplot2::facet_null() ggplot2
Notice again that the posterior distribution of the inconsistency factor for the ASPAC vs. Acc t-PA comparison lies far from 0, indicating substantial inconsistency between the direct and indirect evidence on this comparison.
Relative effects for all pairwise contrasts between treatments can be produced using the relative_effects()
function, with all_contrasts = TRUE
.
<- relative_effects(thrombo_fit, all_contrasts = TRUE))
(thrombo_releff #> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[Acc t-PA vs. SK] -0.18 0.04 -0.26 -0.21 -0.18 -0.15 -0.09 2766 3228 1
#> d[ASPAC vs. SK] 0.02 0.04 -0.06 -0.01 0.02 0.04 0.09 6415 3816 1
#> d[PTCA vs. SK] -0.47 0.10 -0.67 -0.54 -0.47 -0.40 -0.28 3922 3176 1
#> d[r-PA vs. SK] -0.12 0.06 -0.24 -0.16 -0.12 -0.09 -0.01 3088 3019 1
#> d[SK + t-PA vs. SK] -0.05 0.05 -0.14 -0.08 -0.05 -0.02 0.04 5906 3396 1
#> d[t-PA vs. SK] 0.00 0.03 -0.06 -0.02 0.00 0.02 0.06 4886 3461 1
#> d[TNK vs. SK] -0.17 0.07 -0.32 -0.22 -0.17 -0.12 -0.03 4223 3245 1
#> d[UK vs. SK] -0.20 0.23 -0.65 -0.36 -0.20 -0.05 0.24 4319 3243 1
#> d[ASPAC vs. Acc t-PA] 0.19 0.06 0.08 0.16 0.19 0.23 0.31 4017 3650 1
#> d[PTCA vs. Acc t-PA] -0.30 0.10 -0.48 -0.36 -0.30 -0.23 -0.10 5298 3778 1
#> d[r-PA vs. Acc t-PA] 0.05 0.05 -0.05 0.02 0.05 0.09 0.16 6180 3518 1
#> d[SK + t-PA vs. Acc t-PA] 0.13 0.05 0.03 0.09 0.13 0.16 0.23 5629 3601 1
#> d[t-PA vs. Acc t-PA] 0.18 0.05 0.08 0.14 0.18 0.21 0.28 3527 3235 1
#> d[TNK vs. Acc t-PA] 0.01 0.06 -0.12 -0.04 0.01 0.05 0.13 5848 3514 1
#> d[UK vs. Acc t-PA] -0.03 0.23 -0.47 -0.18 -0.03 0.13 0.42 4640 2957 1
#> d[PTCA vs. ASPAC] -0.49 0.11 -0.70 -0.56 -0.49 -0.42 -0.28 4454 3582 1
#> d[r-PA vs. ASPAC] -0.14 0.07 -0.28 -0.19 -0.14 -0.09 0.00 4106 3171 1
#> d[SK + t-PA vs. ASPAC] -0.06 0.06 -0.18 -0.10 -0.06 -0.03 0.05 6049 3717 1
#> d[t-PA vs. ASPAC] -0.01 0.04 -0.09 -0.04 -0.01 0.01 0.06 7459 3403 1
#> d[TNK vs. ASPAC] -0.19 0.08 -0.35 -0.25 -0.19 -0.13 -0.02 4691 3398 1
#> d[UK vs. ASPAC] -0.22 0.23 -0.68 -0.37 -0.22 -0.07 0.23 4497 3482 1
#> d[r-PA vs. PTCA] 0.35 0.11 0.14 0.27 0.35 0.43 0.56 5664 3411 1
#> d[SK + t-PA vs. PTCA] 0.43 0.11 0.22 0.35 0.43 0.50 0.63 5090 3410 1
#> d[t-PA vs. PTCA] 0.48 0.10 0.27 0.40 0.48 0.55 0.68 4002 3636 1
#> d[TNK vs. PTCA] 0.30 0.11 0.07 0.23 0.30 0.39 0.52 6106 3378 1
#> d[UK vs. PTCA] 0.27 0.25 -0.23 0.11 0.27 0.44 0.74 4761 3479 1
#> d[SK + t-PA vs. r-PA] 0.08 0.07 -0.06 0.03 0.08 0.12 0.21 5474 3159 1
#> d[t-PA vs. r-PA] 0.13 0.07 0.00 0.08 0.13 0.17 0.26 3759 3382 1
#> d[TNK vs. r-PA] -0.05 0.08 -0.21 -0.10 -0.05 0.01 0.11 7765 3097 1
#> d[UK vs. r-PA] -0.08 0.23 -0.54 -0.23 -0.08 0.08 0.38 4555 3211 1
#> d[t-PA vs. SK + t-PA] 0.05 0.05 -0.05 0.02 0.05 0.09 0.16 5696 3325 1
#> d[TNK vs. SK + t-PA] -0.12 0.08 -0.29 -0.18 -0.12 -0.07 0.04 6340 3296 1
#> d[UK vs. SK + t-PA] -0.15 0.23 -0.61 -0.31 -0.16 0.00 0.30 4248 3289 1
#> d[TNK vs. t-PA] -0.17 0.08 -0.34 -0.23 -0.17 -0.12 -0.02 4386 3483 1
#> d[UK vs. t-PA] -0.20 0.23 -0.66 -0.36 -0.21 -0.05 0.23 4343 3412 1
#> d[UK vs. TNK] -0.03 0.24 -0.50 -0.19 -0.04 0.13 0.43 4645 3120 1
plot(thrombo_releff, ref_line = 0)
Treatment rankings, rank probabilities, and cumulative rank probabilities.
<- posterior_ranks(thrombo_fit))
(thrombo_ranks #> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> rank[SK] 7.45 0.98 6 7 7 8 9 3862 NA 1
#> rank[Acc t-PA] 3.18 0.80 2 3 3 4 5 4536 3459 1
#> rank[ASPAC] 7.98 1.14 5 7 8 9 9 5203 NA 1
#> rank[PTCA] 1.14 0.35 1 1 1 1 2 3960 3863 1
#> rank[r-PA] 4.42 1.14 2 4 5 5 7 4815 2767 1
#> rank[SK + t-PA] 5.97 1.18 4 5 6 6 9 4465 3385 1
#> rank[t-PA] 7.48 1.08 5 7 8 8 9 4713 NA 1
#> rank[TNK] 3.47 1.23 2 3 3 4 6 5158 3479 1
#> rank[UK] 3.93 2.75 1 2 2 5 9 4215 NA 1
plot(thrombo_ranks)
<- posterior_rank_probs(thrombo_fit))
(thrombo_rankprobs #> p_rank[1] p_rank[2] p_rank[3] p_rank[4] p_rank[5] p_rank[6] p_rank[7] p_rank[8]
#> d[SK] 0.00 0.00 0.00 0.00 0.02 0.14 0.37 0.31
#> d[Acc t-PA] 0.00 0.21 0.46 0.29 0.04 0.00 0.00 0.00
#> d[ASPAC] 0.00 0.00 0.00 0.00 0.03 0.09 0.18 0.26
#> d[PTCA] 0.87 0.13 0.00 0.00 0.00 0.00 0.00 0.00
#> d[r-PA] 0.00 0.05 0.14 0.31 0.39 0.08 0.01 0.01
#> d[SK + t-PA] 0.00 0.00 0.01 0.07 0.24 0.47 0.10 0.07
#> d[t-PA] 0.00 0.00 0.00 0.00 0.03 0.14 0.30 0.33
#> d[TNK] 0.00 0.24 0.32 0.24 0.15 0.03 0.01 0.00
#> d[UK] 0.13 0.38 0.07 0.08 0.10 0.05 0.02 0.02
#> p_rank[9]
#> d[SK] 0.16
#> d[Acc t-PA] 0.00
#> d[ASPAC] 0.44
#> d[PTCA] 0.00
#> d[r-PA] 0.01
#> d[SK + t-PA] 0.05
#> d[t-PA] 0.19
#> d[TNK] 0.00
#> d[UK] 0.16
plot(thrombo_rankprobs)
<- posterior_rank_probs(thrombo_fit, cumulative = TRUE))
(thrombo_cumrankprobs #> p_rank[1] p_rank[2] p_rank[3] p_rank[4] p_rank[5] p_rank[6] p_rank[7] p_rank[8]
#> d[SK] 0.00 0.00 0.00 0.00 0.02 0.16 0.53 0.84
#> d[Acc t-PA] 0.00 0.21 0.66 0.96 1.00 1.00 1.00 1.00
#> d[ASPAC] 0.00 0.00 0.00 0.00 0.03 0.12 0.30 0.56
#> d[PTCA] 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00
#> d[r-PA] 0.00 0.05 0.19 0.50 0.89 0.97 0.98 0.99
#> d[SK + t-PA] 0.00 0.00 0.01 0.08 0.32 0.79 0.89 0.95
#> d[t-PA] 0.00 0.00 0.00 0.00 0.04 0.18 0.49 0.81
#> d[TNK] 0.00 0.24 0.56 0.80 0.96 0.98 0.99 1.00
#> d[UK] 0.13 0.51 0.57 0.65 0.75 0.80 0.82 0.84
#> p_rank[9]
#> d[SK] 1
#> d[Acc t-PA] 1
#> d[ASPAC] 1
#> d[PTCA] 1
#> d[r-PA] 1
#> d[SK + t-PA] 1
#> d[t-PA] 1
#> d[TNK] 1
#> d[UK] 1
plot(thrombo_cumrankprobs)