
Fast Estimation of Multinomial Logit Models: R
Package mnlogit

Asad Hasan
Sentrana Inc.

Wang Zhiyu
Department of Computer Science

Carnegie Mellon University

Alireza Mahani
Sentrana Inc.

Abstract

We present mnlogit, an R package for training multinomial logistic regression models.
mnlogit is optimized for problems involving a large number of classes and offers speedups
of 30x for modestly sized problems and more than 100x for larger problems while run-
ning in parallel mode on 4 processors, compared to existing software. Parallelization
on multicore machines, implemented using OpenMP in C++, speeds up serial execution
by 3x-8x. Model coefficients are obtained by maximum likelihood estimation using the
Newton-Raphson method which is made competitive by optimizing its most expensive
step: Hessian matrix calculation, through exploiting its structure and parallelization.

Keywords: logistic regression, multinomial logit, discrete choice, large scale, parallel.

1. Introduction

Multinomial logit regression models, the K-class extension of the binary logistic regression,
have long been used in econometrics in the context of modeling discrete choice (McFadden
(1974), Bhat (1995), Train (2003)) and in machine learning as a linear classification tech-
nique (Hastie, Tibshirani, and Friedman 2009). In machine learning these models have been
shown to be useful in classification tasks involving a large number of classes such as natural
language processing and text classification (Nigam, Lafferty, and McCallum 1999). Estimat-
ing these models however presents the computational challenge of having to deal with a large
numbers of coefficients which scale linearly with both the number of alternatives and the
number of features in the model. We are motivated by an econometric problem requiring
classification in the presence of hundreds to thousands of classes and dense data sets arising
from modeling requirements of a large US food distributor. Regression models are particularly
attractive, compared to black box classification techniques like support vector machines and
random forest, because they offer the ability to explain the choice of a particular alternative
from a discrete, finite set.

Techniques to handle the computational issues involved in solving large scale problems include
approximating the multinomial model as a series of binary logistic regressions (Begg and
Gray 1984) and using advanced optimization algorithms to solve these problems Komarek
and Moore (2005), Lin, Weng, and Keerthi (2008). There have also been a number of R
packages such as: mlogit(Croissant 2012), the multinom function in package nnet (Venables
and Ripley 2002), glmnet (Friedman, Hastie, and Tibshirani 2010) and maxent (Jurka 2012),

2 Fast Estimation of Multinomial Logit Models: R package mnlogit

to estimate multinomial logistic models. Except for mlogit, most other package are focused
on a particular flavor of multinomial logit model. For example: glmnet is optimized for
obtaining l1-regularized paths and uses the coordinate descent algorithm (Friedman et al.
2010), maxent intended for text classification problems works well with sparse data while
nnet is limited to multinomial logit models where training data is invariant with respect
to alternatives. Package mlogit is very general and can handle many many data types and
advanced versions of multinomial logit models (such as nested logit, generalized extreme value
etc.). However we found it impossible to apply to large scale problems due to its speed and
memory requirements, despite trying the Newton-Raphson (Press, Teukolsky, Vetterling, and
Flannery 2007) and the BFGS (Nocedal and Wright 2000) algorithms for optimization.

In this work we describe our R package mnlogit, which uses a simple Newton-Raphson method
to rapidly estimate multinomial logit models. Although Newton methods enjoy the quick-
est rate of convergence (in terms of number of iterations) for globally convex, differentiable
objective functions 1, they are often much slower than algorithms from the quasi-Newton
method family and conjugate gradient methods (Nocedal (1992), Nocedal (1990)). The main
culprit is the high iteration cost incurred in computing the matrix of second derivatives (the
Hessian matrix). In mnlogit we cut down the per-iteration cost by implementing the Hessian
calculation in an optimized C++ library to speedup the Newton method. Our approach takes
advantage of the structure of the Hessian matrix to parallelize its computation with no inter-
thread communication and drastically reduces the number of floating point operations. On
a single processor these methods have allowed us to achieve speedups of more than 10 times
compared to mlogit on modest size problem, while in parallel mode we get an enhancement
in the speedup by another factor of 2x-4x.

The current implementation of mnlogit uses a C++ library which is parallelized for shared
memory architectures (SMA) using OpenMP. However, the ideas in this paper can be eas-
ily extended to distributed MPI-based computing platforms. mnlogit uses a formula based
interface and can handle all data types and coefficients as mlogit, however, it’s restricted to
multinomial logistic regression models. In section 2 we describe the data format required by
mnlogit together with other information on using the package. Section 3 and appendix A
contain the details of our estimation procedure. In section 4 we present the results of our
numerical experiments in benchmarking the performance of mnlogit while appendix C has a
synopsis of our timing methods. Finally section 5 concludes with a short discussion and some
outlook for future efforts.

2. Data format and model specification

Multinomial models are generalizations of the binary logistic regression model to outcomes
which may fall in one of multiple categories (the ‘choices’). The data for these models may
vary with both the choice makers (‘individuals’) and the choices themselves. A specialized
data format and a formula interface are needed to specify these models. In mnlogit we follow
the interface (with significant simplifications) of the package mlogit. To start we first load
the package mnlogit:

R> library(mnlogit)

1Such objective functions arise in multinomial logit estimation.

Asad Hasan 3

mnlogit accepts data in the ‘long’ format (see also vignette of mlogit). The ‘long’ format
requires that if there are K choices, then there be K rows of data for each individual. Here
is a snapshot from data on choice of recreational fishing mode made by 1182 individuals:

R> data(Fish, package = 'mnlogit')

R> head(Fish, 8)

mode income alt price catch chid

1.beach FALSE 7083.332 beach 157.930 0.0678 1

1.boat FALSE 7083.332 boat 157.930 0.2601 1

1.charter TRUE 7083.332 charter 182.930 0.5391 1

1.pier FALSE 7083.332 pier 157.930 0.0503 1

2.beach FALSE 1250.000 beach 15.114 0.1049 2

2.boat FALSE 1250.000 boat 10.534 0.1574 2

2.charter TRUE 1250.000 charter 34.534 0.4671 2

2.pier FALSE 1250.000 pier 15.114 0.0451 2

In the ‘Fish’ data, there are 4 choices (”beach”, ”boat”, ”charter”, ”pier”) available to each in-
dividual: labeled by the ‘chid’ (chooser ID). The ‘price’ and ‘catch’ column show, respectively,
the cost of a fishing mode and (in unspecified units) the expected amount of fish caught. An
important point here is that this data varies both with individuals and the fishing mode. The
‘income’ column reflects the income level of an individual and does not vary between choices.
Notice that the snapshot shows this data for two individuals.

The actual choice made by an individual, the ‘response’ variable, is shown in the column
‘mode’. mnlogit requires that the data contain a column with exactly two categories whose
levels can be coerced to integers by as.numeric(). The greater of these integers is auto-
matically taken to mean TRUE. The only other column strictly mandated by mnlogit is one
listing the names of choices (like the ‘alt’ in Fish data).

2.1. Model parametrization

Multinomial logit model have a solid basis in the theory of discrete choice models. The central
idea in these discrete models lies in the ‘utility maximization principle’ which states that
individuals choose the alternative, from a finite, discrete set, which maximizes a scalar value
called ‘utility’. Discrete choice models presume that the utility is completely deterministic for
the individual, however modelers can only model a part of the utility (the ‘observed’ part).
Stochasticity entirely arises from the unobserved part of the utility. Different assumptions
about the probability distribution of the unobserved utility give rise to various choice models
like multinomial logit, nested logit, multinomial probit, GEV (Generalized Extreme Value),
mixed logit etc. Multinomial logit models, in particular, assume that unobserved utility is
i.i.d. and follows a Gumbel distribution.2

We consider that observed part of the utility for the ith individual choosing the kth alternative
is given by:

Uik = ξk + ~Xi · ~βk + ~Yik · ~γk + ~Zik · ~α. (1)

2See the book Train (2003), particularly chapters 3 and 5 for a full discussion.

4 Fast Estimation of Multinomial Logit Models: R package mnlogit

Here Latin letters (X, Y , Z) stand for data while Greek letters (ξ, α, β, γ) stand for pa-
rameters. The parameter ξk is called the intercept. For many practical applications data in
multinomial logit models can be naturally grouped into two types:

� Individual specific variables ~Xi which does not vary between choices (e.g. income
of individuals in the ‘Fish’ data of section 2).

� Alternative specific variables ~Yij and ~Zij which vary with alternative and may also
differ, for the same alternative, between individuals (e.g. the amount of fish caught in
the ‘Fish’ data: column ‘catch’).

In mnlogit we model these two data with three types of coefficients3:

1. Individual specific data with alternative specific coefficients ~Xi · ~βj

2. Alternative specific data with generic coefficients ~Zik · ~α.

3. Alternative specific data with alternative specific coefficients ~Yik · ~γk.

The vector notation serves to remind that more than one variable of each type maybe used
to build a model. For example in the fish data we may choose both the ‘price’ and ‘catch’
with either generic coefficients (the ~α) or with alternative specific coefficients (the ~γk).

Due to the principle of utility maximization, only differences between utility are meaningful.
This implies that the multinomial logit model can not determine absolute utility. We must
specify the utility for any individual with respect to an arbitrary base value4, which we choose
to be 0. For convenience in notation we fix the choice indexed by k = 0 as the base, thus
normalized utility is given by:

Vik = Uik − Ui0 = ξk − ξ0 + ~Xi · (~βk − ~β0) + ~Yik · ~γk − ~Yi0 · ~γ0 + (~Zik − ~Zi0) · ~α.

Notice that the above expression implies that Vi0 = 0 ∀i. To simplify notation we re-write
the normalized utility as:

Vik = ξk + ~Xi · ~βk + ~Yik · ~γk − ~Yi0 · ~γ0 + ~Zik · ~α k ∈ [1,K − 1] (2)

This equation retains the same meaning as the previous, notice the restriction: k 6= 0, since
we need Vi0 = 0. The most significant difference is that ~Zik in equation 2 stands for: ~Zik− ~Zi0
(in terms of the original data).

The utility maximization principle implies that for multinomial logit models (Train 2003) the
probability of individual i choosing alternative k, Pik, is given by:

Pik = Pi0e
Vik . (3)

Here Vij is the normalized utility given in equation 2 and k = 0 is the base alternative with
respect to which we normalize utilities. The number of available alternatives is taken as K
which is a positive integer greater than one. From the condition that every individual makes

3This is consistent with mlogit.
4In choice model theory this is called ‘normalizing’ the model.

Asad Hasan 5

a choice, we have that:
∑k=K−1

k=0 Pik = 1,. This gives us the probability of individual i picking
the base alternative:

Pi0 =
1

1 +
∑K−1

k=1 e
Vik
.

Note that K = 2 is the familiar binary logistic regression model.

Equation 2 has implications about which model parameters maybe identified. In particular for
alternative specific coefficients of individual specific data we may only estimate the difference
~βk − ~β0. Similarly for the intercept only the difference ξk − ξ0, and not ξk and ξ0 separately
maybe estimated. For a model with K alternative we estimate K − 1 sets of parameters
~βk − ~β0 and K − 1 intercepts ξk − ξ0.

2.2. Formula interface

To specify multinomial logit models in R we need an enhanced version of the standard formula
interface - one which is able to handle multi-part formulas. Although this could be built using
the R package Formula (Zeileis and Croissant 2010), mnlogit uses a simple custom written
script. The interface itself closely confirms to that of mlogit.

We illustrate the formula interface with examples motivated by the ‘Fish’ data (introduced in
section 2). Consider that we want to fit multinomial logit model where ‘price’ has a generic
coefficient, ‘income’ data being individual specific has an alternative specific coefficient and
the ’catch’ also has an alternative specific coefficient. That is, we want to use the 3 types of
coefficients described in section 2.1. Such a model can be specified in mnlogit with a 3-part
formula:

R> fm <- formula(mode ~ price | income | catch)

By default, the intercept is included, it can be omitted by inserting a ‘-1’ or ‘0’ anywhere in
the formula. The following formulas specify the same model:

R> fm <- formula(mode ~ price | income - 1 | catch)

R> fm <- formula(mode ~ price | income | catch - 1)

R> fm <- formula(mode ~ 0 + price | income | catch)

We can omit any group of variables from the model by placing a 1 as a placeholder:

R> fm <- formula(mode ~ 1 | income | catch)

R> fm <- formula(mode ~ price | 1 | catch)

R> fm <- formula(mode ~ price | income | 1)

R> fm <- formula(mode ~ price | 1 | 1)

R> fm <- formula(mode ~ 1 | 1 | price + catch)

When the meaning is unambiguous, an omitted group of variables need not have a placeholder.
The following formulas represent the same model where ‘price’ and ‘catch’ are modeled with
generic coefficients and the intercept is included:

R> fm <- formula(mode ~ price + catch | 1 | 1)

R> fm <- formula(mode ~ price + catch | 1)

R> fm <- formula(mode ~ price + catch)

6 Fast Estimation of Multinomial Logit Models: R package mnlogit

2.3. Using package mnlogit

In an R session with mnlogit loaded, the man page can be accessed in the standard way:

R> ?mnlogit

The complete mnlogit function call looks like:

R> mnlogit(formula, data, choiceVar, maxiter = 25, ftol = 1e-6,

+ gtol = 1e-6, ncores = 1, na.rm = TRUE, print.level = 0,

+ linDepTol = 1e-6, ...)

We have described the ‘formula’ and ‘data’ arguments in previous sections while others are
explained in the man page, only the ‘linDepTol’ argument needs further elaboration. Data
used to train the model must satisfy certain necessary conditions so that the Hessian matrix,
computed during Newton-Raphson estimation, is full rank (more about this in appendix B).
In mnlogit we use the R built-in function qr, with its argument ‘tol’ set to ‘linDepTol’, to
check for linear dependencies . If collinear columns are detected in the data then some are
removed so that the remaining columns are linearly independent.

We now illustrate the practical usage of mnlogit and some of its methods by a simple example.
Consider the following model, which is trained on 2 processors using the ‘Fish’ data set.

R> fm <- formula(mode ~ price | income | catch)

R> fit <- mnlogit(fm, Fish, "alt", ncores=2)

R> class(fit)

[1] "mnlogit"

For mnlogit class objects we have the usual methods associated with R objects: coef, print,
summary and predict methods. In addition, the returned ‘fit’ object can be queried for details
of the estimation process by:

R> print(fit$est.stats)

Maximum likelihood estimation using Newton-Raphson iterations.

Number of iterations: 7

Number of linesearch iterations: 7

At termination:

Gradient 2-norm = 4.76158374838386e-09

Diff between last 2 loglik values = 1.81898940354586e-12

Stopping reason: Succesive loglik difference < ftol (1e-06).

Total estimation time (sec): 0.048

Time for Hessian calculations (sec): 0.004 using 2 processors.

The estimation process terminates when first one of the 3 conditions ‘maxiter’, ‘ftol’ or ‘gtol’
are met. In case one runs into numerical singularity problems during the Newton iterations,
we recommend relaxing ‘ftol’ or ’gtol’ to obtain a suitable estimate. The plain Newton method
has a tendency to overshoot extrema, adding a linesearch (which involves only function value

Asad Hasan 7

calculation) avoids this problem and ensures convergence. There is atleast one linesearch
iteration in every Newton iterations which amounts the full Newton step.

Finally we provide the following method so that an mnlogit object maybe queried for the
number and type of model coefficients.

R> print(fit$model.size)

Number of observations in training data = 1182

Number of alternatives = 4

Intercept turned: ON.

Number of parameters in model = 11

individual specific variables = 2

choice specific coeff variables = 1

generic coeff variables = 1

3. Algorithms and optimization

In mnlogit we employ maximum likelihood estimation (MLE) to compute model coefficients.
Before going into details, we shall specify our notation. Throughout we assume that there
are K ≥ 3 alternatives. The letter i labels individuals (the ‘choice-makers’) while k, t label
alternatives (the ‘choices’). We also assume that we have data for N individuals available to
fit the model (N is also assumed to much greater than the number of model parameters).

To simplify housekeeping in our calculations we organize model coefficients into a vector
~θ. If the intercept is to be estimated then it simply considered another individual specific
variable with an alternative specific coefficient but with the special provision that the ‘data’
corresponding to this variable is unity for all alternatives. The vector ~θ is a concatenation of
all coefficients, in the following order:

~θ =
{
~β1, ~β2 . . . ~βK−1, ~γ0, ~γ1, . . . ~γK−1, ~α

}
. (4)

Here, the subscripts index alternatives and the vector notation reminds us there maybe more
than two types of variables of the same type. In ~θ we group together coefficients corresponding
to an alternative: this choice is deliberate and leads to a particular structure of the Hessian
matrix of the log-likelihood function - which we exploit to speed up calculations (details in
section 3.1). We use symbols in bold face to denote matrices: in particular, H stands for
the Hessian matrix.

As an illustration consider the the ‘Fish’ data and a model specified by the formula:

R> fm <- formula(mode ~ 1 | income | price + catch)

This model has:

� Two variables of type ~βk: ‘income’ and the intercept.

� Two variables of type ~γk: ‘price’ and ‘catch’.

8 Fast Estimation of Multinomial Logit Models: R package mnlogit

In the ‘Fish’ data the number of alternatives K = 4, so the number of coefficients in the above
model is:

� 2× (K − 1) = 6, alternative specific coefficients for individual specific data (note: that
we have subtract 1 from the number of alternative because after normalization the base
choice coefficient can’t be identified).

� 2×K = 8, alternative specific coefficients with alternative specific data.

Thus the total number of coefficients in our example model is 6 + 8 = 14.

The likelihood function is defined by L(~θ) =
∏
i P
(
yi|~θ
)

, where each yi labels the alternative

observed to chosen by individual i. Now we have:

P
(
yi|~θ
)

=
K−1∏
k=0

P (yi = k)I(yi=k) .

Here I(yi = k) is the indicator function which unity if its argument is true and zero otherwise.
The likelihood function is given by: L(~θ) = ΠN

i=1L(~θ|yi). It is more convenient to work with

the log-likelihood function which is given by l(~θ) = logL(~θ). A little manipulation gives:

l(~θ) =

N∑
i=1

[
log(Pi0(~θ)) +

K−1∑
k=1

VikI(yi = k)

]
. (5)

In the above we make use of the identity:
∑

k I(yi = k) = 1. McFadden (1974) has shown
that the likelihood function given above is globally convex.

We solve the optimization problem by the Newton-Raphson (NR) method which requires
finding a stationary point of the gradient of the log-likelihood5. For our log-likelihood func-
tion 5, this point (which we name θ̂) is unique (because of global convexity) and is given by
the solution of the equations:

∂l(~θ)

∂~θ
= ~0.

The NR method is iterative and starting at an initial guess obtains an improved estimate of
θ̂ by the equation:

~θnew = ~θold −H−1
∂l

∂~θ
. (6)

Here the Hessian matrix, H = ∂2l

∂~θ∂~θ′
and the gradient, ∂l

∂~θ
, are both evaluated at ~θold. The

vector ~δθ = −H−1 ∂l
∂~θ

is called the full Newton step. In each iteration we attempt to update

~θold by this amount. However if the log-likelihood value at the resulting ~θnew is smaller,
then we instead try an update of ~δθ/2. This linesearch procedure is repeated with half the
previous step until the new log-likelihood value is not lower than the value at ~θold. Using such
a linesearch procedure guarantees convergence of the Newton-Raphson iterations (Nocedal
and Wright 2000).

5MLE by the Newton-Raphson method is the same as the Fisher scoring algorithm.

Asad Hasan 9

3.1. Gradient and Hessian calculation

Differentiating the log-likelihood function with respect to the coefficient vector ~θ, we get the
gradient:

∂l

∂~θm
=

 Mm
T
(
~ym − ~Pm

)
if ~θm is one of

{
~β1, . . . ~βK−1, ~γ0, . . . ~γK−1

}
∑

k=1 Zk
T
(
~yk − ~Pk

)
if ~θm is ~α

(7)

Here we have partitioned the gradient vector into chunks according to ~θm which is a group
of coefficients of a particular type (defined in section 2.1): alternative specific and generic.
Subscript m (and subscript k) indicates a particular alternative, for example:

� if ~θm = ~β1, m = 1

� if ~θm = ~βK−1, m = K − 1

� if ~θm = ~γ1, m = 1.

The vector ~ym is a vector of length N whose ith entry is given by: I(yi = m) - it tells us
whether the observed choice of individual i is alternative m, or not. Similarly ~Pm is vector
of length whose ith entry is given by: Pim - which is the probability individual i choosing
alternative m. The matrices Mm and Zk contain data for choice m and k, respectively. Each

of these matrices has N rows, one for each individual. When ~θm is one of
{
~β1, . . . ~βK−1

}
,

matrix Mm = X, whereas when ~θm is one of {~γ0, . . . ~γK−1}, matrix Mm = Ym. Similarly
the matrices Zk are analogues of the Ym and haveN rows each (note that due to normalization
Z0 = 0).

The matrix of second derivatives of the log-likelihood function, called ‘Hessian matrix’ and
we continue to take derivatives with respect to chunks of coefficients ~θm. The advantage is
we can we can write the Hessian in a very simple and compact block format given below:

Hnm =
∂2l

∂~θn∂~θm
=


−Mn

TWnmMm if ~θn, ~θm ∈
{
~β1, . . . ~βK−1, ~γ0, . . . ~γK−1

}
−
∑

k=1 Mn
TWnkZk if ~θn ∈

{
~β1, . . . ~γK−1

}
& ~θm is ~α

−
∑

k,t=1 Zk
TWktZt if ~θn is ~α & ~θm is ~α

(8)

Here Hnm is a block of the Hessian and the matrices Wnm are diagonal matrix of dimension
N ×N , whose ith diagonal entry is given by: Pin(δnm − Pim).6 For the Hessian, we have the
special case that when m = 0, the matrix Mm = −Y0 (note the minus sign). The details of
taking derivatives in this block-wise fashion are given in appendix A.

In mnlogit, Hessian computation is implemented in a set of optimized C++ routines. The
block format of the Hessian matrix given in equation 8 has a number of interesting properties
which are exploited to obtain large speedups in Hessian calculation. Notice that each block
can be computed independently of other blocks with two matrix multiplications. The first
of these involves a diagonal matrix, while the second requires multiplication of two dense
matrices. We handle the first multiplication with a hand written loop which exploits the

6Here δnm is the Kronecker delta, which is 1 if n = m and 0 otherwise.

10 Fast Estimation of Multinomial Logit Models: R package mnlogit

sparsity of the diagonal matrix, while the second multiplication is handed off to a BLAS7 call
(specifically DGEMM). Another useful property of the Hessian blocks is that because matrices
Wnm are diagonal (hence symmetric), we have the symmetry property : Hnm = Hmn

T . This
implies that we only need to compute roughly half of the blocks.

Independence of Hessian blocks leads to a very useful strategy for parallelizing Hessian cal-
culations: we simply divide the work of computing blocks in the upper triangular part of the
Hessian among available threads. This strategy has the great advantage that threads don’t
require any synchronization or communication overhead. However the cost of computing all
Hessian blocks is not the same: the blocks involving generic coefficients (the ~α) take much
longer to compute longer. In mnlogit implementation the blocks involving generic coefficients
are handled separately from other blocks. Specifically the block involving only generic coef-
ficients (the third case in equation 8) is optimized for a single processor and not for parallel
computation.

4. Benchmarking performance

In this section we give results on: profiling mnlogit code, checking the efficiency of parallel
performance and comparing its running time to the existing mlogit package. We use simulated
data generated using a custom R function makeModel sourced from simChoiceModel.R which
is available in the folder mnlogit/vignettes/. Using simulated data we can easily vary
problem size to study performance of the code - which our main intention here - and make
comparisons to other packages. Our tests have been performed on a 16 processor, 64-bit Intel
machine with processors clocked at 1.2GHz8. R has been natively compiled on this machine
using gcc with BLAS/LAPACK support from single-threaded Intel MKL v11.0.

The 3 types of model coefficients mentioned in section 2.1 entail very different computational
requirements. In particular it can be seen from equations 7 and 8, that Hessian and gradient
calculation is computationally very demanding for generic coefficients. For clear-cut compar-
isons we speed test the code with 4 types of problems described below. In our results we shall
use K to denote the number of alternatives and np to denote the total number of coefficients
in the model.

1. Problem ‘X’: A model with only individual specific data with alternative specific
coefficients.

2. Problem ‘Y’: A model with data varying both with individuals and alternatives and
alternative specific model coefficients.

3. Problem ‘Z’: Same type of data as problem ‘Y’ but with generic coefficients which are
independent of alternatives.

4. Problem ‘YZ’: Same type of data as problem ‘Y’ but with a mixture of alternative
specific and generic coefficients.

We specifically include the ‘YZ’ class of problems to illustrate a common use case of multi-
nomial logit models where the data may vary with both individuals and alternatives while

7Basic Linear Algebra Subprograms.
8Per processor the machine has 8GB of RAM and 1.25MB of L3 cache, shared among all processors.

Asad Hasan 11

the coefficients are a mixture of alternative specific and generic types (usually only a small
fraction of variables are modeled with generic coefficients). Problem ‘X’ maybe considered a
special case of problem ‘Y’ but we have considered it separately to demonstrate that mnlogit
runs much faster for this class of problems.9

The workings of mnlogit can be logically broken up into 3 steps:

1. Pre-processing: Where the model formula is parsed and a matrices are assembled from
a user supplied data.frame. We also check the data for collinear columns (and remove
them) to satisfy certain necessary conditions10 for the Hessian to be non-singular.

2. Newton-Raphson Estimation: Where we maximize the log-likelihood function to es-
timate model coefficients. This involves solving a linear equation and one needs to
compute the gradient vector and its Hessian matrix of the log-likelihood.

3. Post-processing: All work needed to take the estimated coefficients and returning an
object of class mnlogit.

Table 1 has a profile of mnlogit performance for representative problems each of these four
types. Notice the very high pre-processing time for problem ‘Z’: a large portion of which

Problem Pre-processing time(s) NR time(s) Hessian time(s) Total time(s) np
X 93.64 1125.5 1074.1 1226.7 4950

Y 137.0 1361.5 1122.4 1511.8 5000

Z 169.9 92.59 60.05 272.83 50

YZ 170.1 1247.4 1053.1 1417.5 4505

Table 1: Performance profile of mnlogit for different problems with 50 variables and K = 100
alternatives with data for N = 100, 000 individuals. All times are in seconds. ‘NR time’ is
the total time taken in Newton-Raphson estimation while ‘Hessian time’ (which is included
in ‘NR time’) is the time spent in computing Hessian matrices. Column np has the number of
model coefficients. Problem ‘YZ’ has 45 variables modeled with individual specific coefficients
while the other 5 variables are modeled with generic coefficients.

is spent in ensuring that the data satisfies necessary conditions for the Hessian to be non-
singular. The most striking observation to make in table 1 is the high proportion of time spent
in computing the Hessian (except for problem ‘Z’). This observation motivates our approach
of parallelizing Hessian calculation to bring further speedups.

Figure 1 shows the speedups we obtain in Hessian calculation for the same problems considered
in table 1. The value of np, the number of model parameters, is significant because it’s the
dimension of the Hessian matrix and hence the time taken to compute the Hessian scales
like O(n2p). We have run the parallel code separately on 2, 4, 8, 16 processors, comparing in
each case with the single core time. Figure 1 shows that it’s quite profitable to parallelize
problems ‘X’ and ‘Y’, but the gains for problem ’Z’ are not too high. For problems of type
‘YZ’ (or other combinations which involve ‘Z’), parallelization can bring significant gains if
the number of model coefficients of type ‘Z’ are less than other types.

9And to compare with the R package nnet (see appendix C) which runs only this class of problems.
10Given in appendix B

12 Fast Estimation of Multinomial Logit Models: R package mnlogit

0 2 4 6 8 10 12 14 16
procs

2

4

6

8

10
Sp

ee
du

p
X (n

p
 = 4950)

Y (n
p
 = 5000)

YZ (n
p
 = 4505)

Z (n
p
 = 50)

Linear Speedup

Figure 1: Speedup factors (ratio of parallel to single thread running time) for 2, 4, 8, 16,
processors for problems of table 1. The dashed ‘Linear Speedup’ guideline represents perfect
parallelization.

An important factor to consider in parallel speedups of the whole program is Amdahl’s
law Chandra, Menon, Dagum, Kohr, Maydan, and McDonald (2001) which limits the maxi-
mum speedup that maybe be achieved by any parallel program. Assuming, perfect paralleliza-
tion and an infinite number of processors, Amdahl’s law states that the ultimate speedup:
S∞ = 1

fs
, where fs is the fraction of non-parallelized, serial code. Table 2 lists the observed

speedups on 4 and 16 processors together fs and S∞ for problems of table 1. We take the

Problem Serial code fraction (fs) S4 S16 S∞
X 0.124 2.70 4.78 8.04

Y 0.258 2.27 3.06 3.88

Z 0.780 1.14 1.18 1.28

YZ 0.257 2.08 2.71 3.88

Table 2: Parallel speedup of mnlogit compared to its serial performance for problems of
table 1. S4 and S16 are observed speedups on 4 and 16 processors respectively, while S∞ is
the estimated ultimate speedup from Amdahl’s law.

time not spent in computing the Hessian as the ‘serial time’ to compute fs and neglect the
serial work in setting up the parallel computation in Hessian calculation, which mainly in-
volves spawning threads in OpenMP and allocating separate blocks of working memory for
each thread11. Our tests have shown that (proportionately) this time is negligible for most
problems of sufficient size but maybe significant for very small problems. Finally we compare

11For problems involving type ‘Z’ variables this is an underestimate because some calculation is also serial.

Asad Hasan 13

the performance of mnlogit and the R package mlogit on a series of problems of different
types and size. Table 3 shows our results, demonstrating that for most problems, except for
problem with only type ‘Z’ variables, mnlogit outperforms mlogit by a large factor, even on a
single processor. We have not run larger problems for this comparison because mlogit running

Optimizer Newton-Raphson BFGS

K 10 20 30 10 20 30

problem X 21.2 37.3 48.4 16.5 29.2 35.4

problem Y 13.8 20.6 33.3 14.9 18.0 23.9

problem YZ 10.5 22.8 29.4 10.5 17.0 20.4

problem Z 1.16 1.31 1.41 1.01 0.98 1.06

Table 3: Ratio between mlogit and mnlogit total running times on a single processor for
problems of various sizes and types. Each problem has 50 variables with K alternatives and
N = 50 ∗K ∗ 20 observations to train the model. mlogit has been run separately with two
optimizers: Newton-Raphson and BFGS.

times become too long12. Appendix C contains a synopsis of our data generation and timing
methods including a comparison of mnlogit with nnet.

Besides Newton-Raphson, which is the default, we have also run mlogit with the BFGS
optimizer. Typically the BFGS method, part of the quasi-Newton class of methods, takes
more iterations than the Newton method but with significantly lower cost per iteration since
it never directly computes the Hessian matrix. For large problems the BFGS method is often
faster overall than the Newton method. Since Hessian is the most step in the Newton-Raphson
method, our approach in mnlogit of optimizing the Hessian calculation and parallelizing to
add an extra factor of speedup enables the Newton method to vastly outperform BFGS.

5. Discussion

In this work we have shown that the main advantage of Newton’s method - few iterations
to converge - can be harnessed through an optimized implementation of the Hessian matrix.
Hessian matrices for many problems have a definite pattern, even if they are dense, which can
be exploited to speedup their calculation. In such cases parallelizing the Hessian calculation
can lead to a further speedup, making Newton’s method even more competitive. For very
large-scale problems, Newton’s method is usually outperformed by gradient based, quasi-
Newton methods like the l-BFGS algorithm (Liu and Nocedal 1989). However for medium
sized problems, our optimized Newton’s method often performs better and more so when run
in parallel mode.

This work was initially motivated by the need to train large-scale multinomial regression
models. Hessian based methods based still hold promise for such problems. The class of
inexact Newton (also called truncated Newton) methods are specifically designed for problems
where the Hessian is expensive to compute but taking a Hessian-vector (for any given vector) is
much cheaper (Nash 2000). Multinomial logit models have a Hessian with a structure which
permits taking cheap, implicit products with vectors. Where applicable, inexact Newton

12For problem ‘Z’ with K = 100 and keeping other parameters the same as table 3, mnlogit outperforms
mlogit by factors of 1.35 and 1.26 while running the Newton-Raphson and BFGS optimizer, respectively.

14 Fast Estimation of Multinomial Logit Models: R package mnlogit

methods have the promise of being better than l-BFGS methods (Nash and Nocedal 1991)
besides having low memory requirements (since they never store the Hessian) and are thus
very scalable. In the future we shall apply inexact Newton methods to estimating multinomial
logit models to study their convergence properties and performance.

Appendix

A. Log-likelihood differentiation

In this section we give the details of our computation of gradient and Hessian of the log-
likelihood function in equation 5. We make use of the notation of section 3.1. Taking the
derivative of the log-likelihood with respect to a chunk of coefficient ~θm one gets:

∂l

∂~θm
=

N∑
i=1

[
1

Pi0

∂Pi0

∂~θm
+
K−1∑
k=1

I(yi = k)
∂Vik

∂~θm

]
.

The second term in this equation is a constant term, since the utility Vik, defined in equation 2,
is a linear function of the coefficients. The first term requires the derivative of probabilities.
Upon differentiating the probability vector ~Pk in equation 3 with respect to ~θm we get:

∂ ~Pk

∂~θm
=

 WkmMm if ~θm ∈
{
~β1, . . . ~βK−1, ~γ0, . . . ~γK−1

}
D(~Pk)

(
Zk −

∑
t=1 ZtD(~Pt)

)
if ~θm is ~α

(9)

where:

� D(~Pk) is an N ×N diagonal matrix whose ith diagonal entry is: Pik.

� Matrix Wkm is also an an N×N diagonal matrix whose ith diagonal entry is: Pik(δkm−
Pim). In matrix form this is: Wkm = δkmD(~Pk)−D(~Pk)D(~Pm).

Here δkm is the Kronecker delta, which is 1 if k = m and zero otherwise. Note specifically
that:

∂Pi0

∂~θm
=

{
−Pi0Mm · ~Pm if ~θm ∈

{
~β1, . . . ~βK−1, ~γ0, . . . ~γK−1

}
−Pi0

∑
t=1 ZtD(~Pt) if ~θm is ~α

(10)

In the last step we have used the fact that, after normalization, Z0 is 0. Some manipulation
together with equations 9 and 10 yield the gradient in the form shown in equation 7.

We write the Hessian of the log-likelihood in block form as:

Hnm =
∂2l

∂~θn∂~θm
=

N∑
i=1

[
1

Pi0

∂2Pi0

∂~θn∂~θm
− 1

P 2
i0

∂Pi0

∂~θn

∂Pi0

∂~θm

]
.

However it can be derived in a simpler way by differentiating the gradient with respect to ~θn.
Doing this and making use of equation 9 gives us equation 8. The first two cases of equation

Asad Hasan 15

are fairly straightforward with the matrices Wkm being the same as shown in equation 9.
The third case, when (~θn, ~θm are both ~α), is a bit messy and we describe it here.

Hnm = −
K−1∑
k=1

[
Zk

TD(~Pk)

(
Zk −

K−1∑
t=1

D(~Pt)Zt

)]

= −
K−1∑
k=1

K−1∑
t=1

Zk
T
[
δktD(~Pk)−D(~Pk)D(~Pt)

]
Zt

= −
∑
k=1

∑
t=1

Zk
TWktZt.

Here the last line follows from the definition of matrix Wkt in equation 9.

B. Data requirements for Hessian non-singularity

We derive necessary conditions on the data for the Hessian to be non-singular. Using notation
from sections 3.1, we start by building a ‘design matrix’ X′ by concatenating data matrices
X, Yk and Zk in the following format:

X′ =



X 0 · · · 0 0 0 · · · 0 Z1/2
0 X · · · 0 0 0 · · · 0 Z2/2
...

. . .
...

...
...

...
...

...
0 · · · 0 X 0 0 · · · 0 ZK−1/2
0 · · · · · · 0 −Y0 0 · · · 0 0
0 · · · · · · 0 0 Y1 · · · 0 Z1/2

0 · · · · · · 0 0 0
. . . 0

...
0 · · · · · · 0 0 0 · · · YK−1 ZK−1/2


. (11)

In the above 0 stands for a matrix of zeros of appropriate dimension. Similarly we build two
more matrices Q and Q0 as shown below:

Q =


W11 W12 · · · W1,K−1
W21 W22 · · · W2,K−1

...
... · · ·

...
WK−1,1 · · · · · · WK−1,K−1

 ,

Q0 =


W10

W20
...

WK−1,0

 .

Using the 2 matrices above we define a ‘weight’ matrix W′:

W′ =

 Q Q0 Q

Q0
T W00 Q0

T

Q Q0 Q

 , (12)

16 Fast Estimation of Multinomial Logit Models: R package mnlogit

The full Hessian matrix, containing all the blocks of equation 8, is given by: H = X′TW′X′.
Using linear algebra arguments about matrix rank, we have the following necessary conditions
for H to be non-singular (i.e. full rank):

1. All matrices in the set: {X, Y0, Y1 . . . YK−1} must be of full rank.

2. Atleast one matrix from the set: {Z1,Z2 . . . ZK−1} must be of full rank.

In mnlogit we directly test condition 1, while the second condition is tested by checking for
collinearity among the columns of the matrix13:(

Z1 Z2 . . . ZK−1
)T
.

Columns are arbitrarily dropped from a collinear set until the remainder becomes linearly
independent.

Another necessary condition: It can be shown with some linear algebra manipulations (omit-
ted because they aren’t illuminating) that if we have a model with has only : data for generic
variables independent of alternatives and the intercept, then the resulting Hessian will al-
ways be singular. mnlogit does not attempt to check the data for this condition which is
independent of the 2 necessary conditions given above.

It is well known that Newton-Raphson (NR) method and the IRLS (iteratively reweighted
least squares) algorithm are equivalent14 for binary logistic regression and for the GLM family,
in general. We can easily show this equivalence for multinomial logit models by plugging in
the Hessian: X′TW′X′ into the NR update equation 6 (together with a suitable matrix
representation of the gradient). Despite the numerical stability advantages offered by the
IRLS approach (Trefethen and Bau 1997), we choose not to use it because it requires dealing
with huge matrices and is not profitably parallelizable. The downside to this decision is that
the condition number of the Hessian is proportion to the square of the condition number of
our data matrices. This sometimes leads to numerical singularity and consequent breakdown
of NR iterations.

C. Timing tests

We give the details of our simulated data generation process and how we setup runs of mlogit
and nnet to compare running times against mnlogit. First we start with loading packages
into an R session:

R> library(nnet)

R> library(mlogit)

Next we generate data in the ‘long format’ (described in section 2) using the makeModel

function availabe in ‘simChoiceModel.R’ which is in the mnlogit/vignettes/ folder. In the
example problems considered here we generate individual specific data for a model with K = 5
choices. Default arguments of makeModel set the number of variables to 50 and the number
of observations to 50 ∗K ∗ 20 = 5000.

13Since number of rows is lesser than the number of columns
14Disregarding numerical numerical stability considerations

Asad Hasan 17

R> source("simChoiceModel.R")

R> data <- makeModel('X', K=5)

R> dim(data)

[1] 25000 53

The next steps setup a formula object which specifies that all the variables must be mod-
eled with alternative specific variables and the data is individual specific (doesn’t vary with
alternatives).

R> vars <- paste("X", 1:50, sep="", collapse=" + ")

R> fm <- formula(paste("response ~ 1|", vars, "| 1"))

Using this formula and our previously generated data.frame we run mnlogit to measure its
running time.

R> system.time(fit.mnlogit <- mnlogit(fm, data, "choices")) # runs on 1 proc

user system elapsed

1.080 0.000 1.099

Likewise we measure running times for mlogit running the same problem with the Newton-
Raphson (the default) and the BFGS optimizers.

R> mdat <- mlogit.data(data[order(data$indivID),], "response", shape="long",

+ alt.var="choices")

R> system.time(fit.mlogit <- mlogit(fm, mdat)) # Newton-Raphson

user system elapsed

7.120 0.240 7.393

R> system.time(fit.mlogit <- mlogit(fm, mdat, method='bfgs'))

user system elapsed

5.370 0.160 5.544

Here the first step is necessary to turn the data.frame object into an mlogit.data object
required by mlogit.

For comparison with nnet we must make a few modifications: first we turn the data into a
format required by nnet and then change the stopping conditons from their default to match
mnlogit and mlogit. We set the stopping tolerance so that ‘reltol’ controls convergence and
roughly corresponds at termination to ‘ftol’ in these packages. Note that nnet runs the BFGS
optimizer.

R> ndat <- data[which(data$response > 0),]

R> ff <- paste("choices ~", vars) # formula for nnet

R> system.time(fit.nnet <- multinom(ff, ndat, reltol=1e-10, abstol=1e-8))

18 Fast Estimation of Multinomial Logit Models: R package mnlogit

weights: 260 (204 variable)

initial value 8047.189562

iter 10 value 7953.330668

iter 20 value 7939.139388

iter 30 value 7938.067310

iter 40 value 7937.998107

iter 50 value 7937.991878

iter 60 value 7937.991495

final value 7937.991462

converged

user system elapsed

1.220 0.000 1.231

NOTE: The precise times running times reported on compiling this Sweave document depend
strongly on the machine, whether other programs are also running simultaneously and the
BLAS implementation linked to R. For reproducible results run on a ‘quiet’ machine (with no
other programs running).

References

Begg CB, Gray R (1984). “Calculation of Polychotomous Logistic Regression Parameters
Using Individualized Regressions.” Biometrika, 71, 11–18.

Bhat C (1995). “A heterocedastic extreme value model of intercity travel mode choice.”
Transportation Research B, 29(6), 471–483.

Chandra R, Menon R, Dagum L, Kohr D, Maydan D, McDonald J (2001). Parallel Program-
ming in OpenMP. Academic Press, New York.

Croissant Y (2012). mlogit: multinomial logit model. R package version 0.2-3, URL http:

//CRAN.R-project.org/package=mlogit.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. URL http:

//www.jstatsoft.org/v33/i01/.

Hastie T, Tibshirani R, Friedman J (2009). The Elements of Statistical Learning: Data
Mining, Inference and Prediction. 2nd. edition. Springer-Verlag.

Jurka TP (2012). “maxent: An R Package for Low-memory Multinomial Logistic Regression
with Support for Semi-automated Text Classification.” The R Journal, 4, 56–59.

Komarek P, Moore AW (2005). “Making logistic regression a core data mining tool: A
practical investigation of accuracy, speed, and simplicity.”Technical report, Carnegie Mellon
University.

Lin CJ, Weng RC, Keerthi SS (2008). “Trust Region Newton Method for Large-Scale Logistic
Regression.” Journal of Machine Learning Research, 9, 627–650.

http://CRAN.R-project.org/package=mlogit
http://CRAN.R-project.org/package=mlogit
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/

Asad Hasan 19

Liu DC, Nocedal J (1989). “On the limited memory BFGS method for large scale optimiza-
tion.” Mathematical Programming, 45, 503–528.

McFadden D (1974). “The measurment of urban travel demand.” Journal of public economics,
3, 303–328.

Nash SG (2000). “A Survey of truncated-Newton methods.” Journal of Computational and
Applied Mathematics, 124, 45–59.

Nash SG, Nocedal J (1991). “A Numerical Study of the Limited Memory BFSG Method and
the Truncated-Newton Method for Large-Scale Optimization.” SIAM Journal of Optimiza-
tion, 1, 358–372.

Nigam K, Lafferty J, McCallum A (1999). “Using maximum entropy for text classification.”
In IJCAI-99 Workshop on Machine Learning for Information Filtering.

Nocedal J (1990). “The performance of several algorithms for large scale unconstrained opti-
mization.” In Large Scale Numerical Optimization.

Nocedal J (1992). “Theory of Algorithms for Unconstrained Optimization.” Acta Numerica.

Nocedal J, Wright S (2000). Numerical Optmization. 2nd. edition. Springer-Verlag.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007). Numerical Recipes in C++.
2nd. edition. Cambridge University Press.

Train KE (2003). Discrete choice methods with simulation. Cambridge University Press,
Cambridge, UK.

Trefethen LN, Bau D (1997). Numerical Linear Algebra. Siam, Philadelphia.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th. edition. Springer,
New York. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

Zeileis A, Croissant Y (2010). “Extended Model Formulas in R: Multiple Parts and Multiple
Responses.” Journal of Statistical Software, 34(1), 1–13. URL http://www.jstatsoft.

org/v34/i01/.

Affiliation:

Asad Hasan
Scientific Computing Group
Sentrana Inc.
1725 I St NW
Washington, DC 20006
E-mail: asad.hasan@sentrana.com

http://www.stats.ox.ac.uk/pub/MASS4
http://www.jstatsoft.org/v34/i01/
http://www.jstatsoft.org/v34/i01/
mailto:asad.hasan@sentrana.com

	Introduction
	Data format and model specification
	Model parametrization
	Formula interface
	Using package mnlogit

	Algorithms and optimization
	Gradient and Hessian calculation

	Benchmarking performance
	Discussion
	Appendices
	Log-likelihood differentiation
	Data requirements for Hessian non-singularity
	Timing tests

