mmap: Memory Mapped Files in R

Jeffrey A. Ryan
May 20, 2010

Abstract

The mmap package offers an interface for R to information that resides
on disk. As dataset grow, the finite limits of random access memory
constrain the the ability to process larger-than-memory files efficiently.
Memory mapped files (mmap files) leverage the operating system demand-
based paging infrastructure to move data from disk to memory as needed,
and do it in a transparent and highly optimized way. This package im-
plements a simple low-level interface to the related system calls, as well
as provides a useful set of abstractions to make accessing data on disk
consistent with R usage patterns. This paper will explore the design and
implementation of the mmap package, provide a comprehensive look at its
usage, and conclude with a look at some performance benchmarks and
applications.

1 Background

As datasets of interest grow from megabytes to terabytes to petabytes,
the limiting factor for processing is often the availability of memory on
a system. Even if memory is sufficient to hold an entire dataset, it is
usually only a subset of data that is needed at any given moment. In
these instances it is beneficial to be able to only keep the data in memory
that is needed at the time of the computation. Traditionally this meant
iterating through a large file and reading chunks at a time, or utilizing a
database system to manage the process in an external process.

The downside to the above workaround for limited memory is that a
deliberate effort by the user must be made to manage the reading and
removal of data so as to keep memory usage within the limits of a given
system. The system level mmap call is designed to make this process easier
and more efficient, from both a coding standpoint as well as an execution
one. In fact, most modern database systems rely on a combination of
mmap calls to make managing large data on limited memory systems
feasible.

To use mmap on large files, it is helpful to understand what is hap-
pening internally at the C level. Given a successful initialization call to
mmap, a pointer is returned to a byte offset of the opened file, typically
the start of the file. From this point onward, all references to this pointer
result in a series of bytes being read from disk into memory. The read and



write operations are hidden from the developer and are highly optimized
to minimize seek and copying costs.

The mmap package for R provides this level of access by cleanly wrap-
ping the underlying operating system call. This minimal and direct API
exposure allows for low-level bytes to be exposed to the R session. As
mapped files can be shared among processes, this allows for a simple form
of interprocess communication (IPC) to be available between R processes
as well as between R and other system processes.

The mmap package also makes additional abstractions available to allow
simplified data access and manipulation from within R. This includes a
direct mapping of standard R data types from binary files, as well as an
assortment of virtual types that are not directly supported in R, but still
need to be accessed. Examples of these virtual types include single byte
integers, four byte floats, and even more complex objects like C structs.
This paper will focus on working through basic examples as well as give
some comparisons to other solutions available in R that satisfy many of
the same objectives.

2 Mapping a file

To create a mapped file, either the as.mmap or mmap function is used.
Files are to be thought of as homogenous fixed-width byte strings on
disk, similar to atomic vectors in R. One exception to this is the use of
the struct type which will be covered later. For now we will begin by
mapping atomic vectors.

2.1 as.mmap: memory to disk

To create a file to use, we will first use as.mmap to convert in-memory data
into a mapped object. Here we create a vector of twenty million random
numbers, which takes up about 150 MB of memory in an R session. We’ll
then convert it into a tempory file and map it back in using the one
function as.mmap. Note that we reassign to the original variable to free
up memory, as it is now persistent on disk.

> library(mmap)
> r <- rnorm(2e+07)
> ge()
used (Mb) gc trigger (Mb) max used (Mb)

Ncells 136226 7.3 350000 18.7 350000 18.7
Vcells 20137970 153.7 22539571 172.0 20140302 153.7

> r <- as.mmap(r)
>r

<mmap:/var/folde...> (double) num [1:20000000] -0.5604756 -0.2301775 1.558708 ...

> gcQ)

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 137331 7.4 350000 18.7 350000 18.7
Vcells 138229 1.1 18031656 137.6 20151360 153.8



The as.mmap call simply writes the raw data using R’s writeBin to a
temporary file on disk. Internally this file is mapped with the appropriate
mode corresponding to the R storage mode. Keep in mind that the data
on disk is only a series of bytes. The OS mmap call is indifferent to the
formal ‘type’ offering no facility to convert into a particular C type. By
specifying the mode to the R-level mmap call though, we can now manipu-
late this “vector on disk” as if it was in memory and of the type we expect.
First we’ll extract some elements using standard R semantics, then replace
these values. Finally, we will call munmap to properly free the resources
associated with the mapping.

> r[1:10]

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
[71 0.46091621 -1.26506123 -0.68685285 -0.44566197

> r[87643]

[1] -0.2042827

> head(r)

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
> tail(r)

[1] 0.36987133 -1.19688282 0.41855741 -0.17126741 0.42012201 -0.02442838
> length(r)

[1]1 20000000

> r[1:10] <- 1:10
> r[87643] <- 3.14159265
> head(r)

[11 123456
> r[87643]

[1] 3.141593

> munmap (r)

By default, elements are only taken from disk when extracted via a ¢ [’
call. This allows for controlled behavior when dealing with objects that
are likely to be many times the available memory. Subsetting is always
required to access the contents of an mapped file. This is similar to the
requirement in C of dereferencing the pointer to the data, and is in fact
what is happening behind the scenes. To unmap the object and free the
system resources, the code must call munmap.

Many instances of mmap usage will be in a read-only capacity, with
data already on disk. These data can come from external processes, or
pre-processed by R to be in binary form. To access, a call to mmap is
required.



2.2 mmap: disk to memory

The basic mmap call consists of a file path as the file parameter, and speci-
fying the mode of the data to be returned. The mode argument is unique
to the mmap wrapper in R, and it is used to specify how the raw bytes are
to be mapped into R. There are a myriad of supported types and they all
strive to follow the general convention established by R in terms of calling
style, namely that provided by the what argument of scan and readBin:
integer () for integers, double() for double/numeric, etc.

The mmap package currently supports thirteen fixed-width (byte count)
types, including 8, 16, and 24-bit signed and unsigned integers, 32-bit
signed integers, floating point numbers with 32 and 64-bits, complex num-
bers (128-bit), fixed-width character strings (nul terminated, as writeBin
produces), and single byte char types. Additionally, types may be com-
bined into more complex structures via the struct type in mmap. This is
analogous to a row-based representation where different types are adjacent
on disk. This can be thought of as a data.frame or list in R.

The C-styled types are offered for compatability with external pro-
grams, as well as to minimizing disk usage for values of limited range,
though there may be performance penalties for non-stanard byte align-
ment, so testing is required for maximum performance.

One caveat to the above type availability is that R can only handle a
small subset of these on-disk types natively. All conversions to and from
C-types to R-types are carried out in package-level C code, and types are
automatically promoted so as not to lose precision. More discussion of
types will follow in the “Types” section.

To try something a bit more interesting, we’ll create some non-standard
R data on disk. We’ll use a temporary file and the writeBin function in
base R to alter the size to be 8-bit signed integer values, fitting 10 integers
into 10 bytes on disk.

> tmp <- tempfile()
> writeBin(1:10L, tmp, size=1) # write int as 1 byte
> readBin(tmp, integer(), size=1, signed=TRUE, n=10) # read back in to verify

[1] 1 2 3 4 5 6 7 8 910
> file.info(tmp)$size # only 10 bytes on disk
[1]1 10

Now that we have our file, we can map it back into R using the mmap
function. All the arguments to the function are detailed on the help page,
and as this relies heavily on the operating system call, it is advisable to
read the related man pages as well for your particular implementation.
The key arguments to consider are the first two, file and mode.

file is the path to the binary data on disk. Recall again that this
is only the raw bytestring, no meta-data is accounted for or should be
included. It is possible that header information could be skipped by uti-
lizing the len and off arguments, but this is outside of expected usage
patterns.

mode refers to the binary type on disk. This is used by mmap to
perform type conversion to and from R, as well as to correctly manage



the atomic length and offset behavior seen in R when subsets of data are
requested. Refer to the “Virtual Types” table in the following section for

details.

> m <- mmap(file = tmp, mode = int8())
> m[]

[1] 1 2 3 4 5 6 7 8 910
> nbytes (m)
[1] 10

3 Data Types

By design, R makes use of a limited subset of data types internally. These
include signed integers (32-bit), floating point doubles (64-bit), and com-
plex numbers (128-bit) for numerical computations, as well as native sup-
port for character and raw byte values. There is also a compound type
available with 1ist, which may contain any of the above. This relatively
limited selection is quite sufficient for use in R, but it is sometimes neces-
sary to work with data that may originate as different types or precision.
mmap’s mode argument allows for transparent conversion of most com-
mon types into the supported R subset through the use of a virtual class
paradigm. The following table describes the currently supported virtual

type support in mmap.

Virtual Types

mmap R C bytes
raw() raw unsigned char 1
char() raw char 1
uchar () raw unsigned char 1
int8() integer signed char 1
uint8() integer unsigned char 1
int16() integer signed short 2
uint16() integer unsigned short 2
int24() integer three byte int 3
uint24() integer unsigned three byte int 3
int32() integer int 4
integer () integer int 4
real32() double single precision float 4
real64() double double precision float 8
double () double double precision float 8
cplx ) complex complex 16
complex () complex complex 16
char(n) character fixed-width ascii n+1
character(n) character fixed-width ascii n+1
struct(...) list struct of above types variable




The leftmost column of the table is the constructor function used in
mmap to create and describe this extended collection of types. The first six-
teen functions are called without parameters and passed as the mode argu-
ment to the mmap constructor. Fixed width character vectors are mapped
with a mode char(n), where n must specify the number of characters in
each element of the character mapping. A nul byte will be automatically
assumed to increase the length of each string by one. The struct function
takes any number of other valid types from above, and creates a object of
class struct. This allows for collections of disparate types to be organized
together in row-major relations.

Coercion from one type to another internally will move from least
precision to most precision for extraction, but replacement functions will
truncate values without warning. It is up to the user to determine the
minimal precision required, and assure that the values assigned are within
this range. A table of legal value ranges by type is available at the end of
this document. A few examples will illustrate some basic usage.

> # write out a vector of upper case letters as a char * array
> writeBin(LETTERS, tmp)

> let <- mmap(tmp, char(1))

> let

<mmap:/var/folde...> (char) chr [1:26] ABCDEF ...
> let[]

[1] WAN NBN NON NDN NEN RN NG RER T g g e upne nn ngn npn IIQII ngn ngn
[20] WTn o ongn wyn nn nynowyn ngzn

> munmap (1et)

> #

> # view the data as a series of bytes instead, using raw()
> let <- mmap(tmp, raw())

> let[]

[1] 41 00 42 00 43 00 44 00 45 00 46 00 47 00 48 00 49 00 4a 00 4b 00 4c 00 4d
[26] 00 4e 00 4f 00 50 00 51 00 52 00 53 00 54 00 55 00 56 00 57 00 58 00 59 00
[61] 5a 00

> munmap (let)

> #

> # view the data as a series of short integers
> let <- mmap(tmp, int16())

> let[]

[1] 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
[26] 90

> munmap (let)

As you can see, the data on disk is simply an array of bytes. This
provides maximum flexibility as there is no associated metadata to keep
track of. Byte arrays are architecture dependent but allow for very simple
interprocess communication and extraction.



To make use of data other than a homogenous collection of byte types,
we can map a C-style struct from disk into R’s multi-type container, the
list. We do this by means of a struct(...) call. For this example we’ll
start with an array of struct’s on disk that are each composed of a 2-
byte integer, a 4-byte integer, and an 8-byte floating point double. First
we’ll need to define our struct, as well as make sure it has the size we are
expecting.

# 2-byte (int16)

# 4-byte (int32 or integer)

# 8-byte float (real64 or double)

record.type <- struct(short=int16(),int=int32(),double=real64())
record.type

vV V. Vv Vv Vv

struct:
(short) integer(0)
(int) integer(0)
(double) double(0)

> nbytes(record.type) # 14 bytes in total
[1] 14
Now we can extract individual elements of the array of structs.

> m <- mmap(tmp, record.type)
> m[1]

$short
[1] 1

$int
[1] 366214

$double

[1] -1.382365
> m[1:3]
$short

[11 123

$int
[1] 366214 164342 223787

$double
[1] -1.3823652 1.0580897 -0.3492971
> m[1:3, "short"]

$short
[11 123

> length(m)
[1] 100



As mentioned previously, the result is a mapping to a list. It is also
consistent with R that the object could also be a data.frame. mmap sup-
ports a set of hook functions with extractFUN and replaceFUN to allow
for automatic class coercion of mapped objects upon extraction and re-
placement. This can be defined at the point of mapping, or added later.
We'll try this here by converting our list result into a data.frame instead.

> extractFUN(m) <- function(X) do.call(data.frame, X)
> extractFUN (m)

function (X)
do.call(data.frame, X)

As you can see the object now has an extraction hook to enable on-
the-fly coercion. This allows the use of raw bytes on disk (useful for
application independent data sharing), while at the same type exploiting
the feature rich language of R. The examples in the package also show
how this can be used for other classes as well, such as Date and POSIXct
time. See example (mmap).

> m[1]

short int double
1 1 366214 -1.382365

> m[2:5]

short int double
2 164342 1.05808972
3 223787 -0.34929713
4 960135 0.06192997
5 571006 -1.25329358

=W N -

\4

m[2:5, "double"] # note that subset is on mmap, returning a new data.frame

double
1.05808972
-0.34929713
0.06192997
-1.25329358

S w N e

> m[2:5, 2]
int

164342

223787

960135
571006

=W N

> m[1:9][,"double"] # second brackets act on d.f., as the first is on the mmap

[1] -1.38236525 1.05808972 -0.34929713 0.06192997 -1.25329358 -1.36476174
[7] 1.13131072 -1.80529501 -1.68255758



4 Performance

While there is a certain novelty to being able to use mapped files within
R, the real value comes from performance gains. This can be seen in
three distinct areas: (1) simplified interface to on-disk data, (2) reduction
of memory footprint, and (3) increased throughput. Any combination of
the three can be seen as a benefit and makes mmap an important tool for
high-performance programming.

4.1 Interface Simplicity

Handling large data on disk has always been possible in R using the built-
in functions to read chunks of files. This is simple in strategy, albeit
highly susceptible to errors. Keeping track of offsets, as well as freeing
memory explicitely in R isn’t likely the most optimal use of a developer
or analyst’s time. mmap allows for direct access to subsets of data on
disk, using standard R subsetting semantics. This allows for R code to be
cleaner, as well as safer.

4.2 Reduced Memory Requirements

The primary motivation to using mmap comes from removing the need to
keep an entire data object in-core at all times. The mmap package allows
for direct access to subsets of data on disk, all while removing the need
to have per-process memory allocated to the entire file.

On small data, this is likely to not be an issue, but as data demands
grow beyond available memory the benefits to minimizing a memory foot-
print grow too. Even when data can fit into memory, it isn’t the data that
is needed per se, it is the analytical computations on that data. This puts
an upper bound on data size well short of available memory.

Another facet to mapped files is in the inherent ability to share data
across disparate processes. By mapping a file into memory, multiple pro-
cesses can make use of the same data without requiring additional re-
sources. Caching, reads, and writes are all managed at the system-level,
and as such are highly optimized. Parallel computations on multicore
architectures are simplified through the use of shared data.

4.3 Increased Throughput

For random access to large data on disk, the underlying mmap system call
is as optimal a solution as modern operating systems offer. Minimizing the
memory footprint in R also reduces the need for expensive allocation and
garbage collections, further increasing performance. mmap also provides
for automatic caching of data, as directed by the OS mechanisms. This
typically incurs a small penalty upon a new chunk of data being read, but
can result in faster than in-core performance on recently accessed data
chunks.

An additional built in benefit from mmap objects comes from some
simple Ops behavior. As mmap objects are typically larger than desired
for in-memory storage, logical operations will make use of memory and



time reducing techniques to return only matches to queries. The behavior
is consistent with the R code which(x==0) to find data that matches some
criteria, though operates via the standard Ops based equility test, namely
x==0. This tends to be substantially faster though, as large logical vectors
are not created, reducing both processing time as well as memory use.

> one.to.onemil <- 1:1000000L
> writeBin(1:1000000L, tmp)

> m <- mmap (tmp, int32())

> str(m < 100)

int [1:99]1 1234567 89 10 ...
> str(which(one.to.onemil < 100))
int [1:99] 123456789 10 ...
> system.time(m < 100)

user system elapsed
0.007 0.000 0.008

> system.time(which(one.to.onemil < 100))

user system elapsed
0.034 0.001 0.034

5 Summary

The mmap package attempts to provide two levels of access to the POSIX
system mmap call. One level offers direct byte access, as well as user spec-
ified mappings of arguments from R to the system. The second interface,
albeit using the same functions, offers a more R-like level of interaction
with data on disk, providing direct byte to R-type extraction and replace-
ment. Whether used for speed, memory reduction, or simplification of
code, the mmap package provides R with one more tool to make program-
ming with data easier and more robust.

10



Table 1: Typical Valid Ranges By Type

type minimum maximum
int8 -128 127

uint& 0 255

int16 -32768 32767
uint16 0 65534

int24 -8388608 8388607
uint24 0 16777215
int32 -2147483648 2147483647

11



	Background
	Mapping a file
	as.mmap: memory to disk
	mmap: disk to memory

	Data Types
	Performance
	Interface Simplicity
	Reduced Memory Requirements
	Increased Throughput

	Summary

