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1 Introduction

The mfp package is a collection of R [3] functions targeted at the use of fractional polynomials (FP)
for modelling the relationship between a continuous covariate and the outcome in regression models,
as introduced by Royston & Altman (1994) [4] and modified by Sauerbrei & Royston (1999) [6]. It
combines backward elimination with a systematic search for a ‘suitable’ transformation to represent
the influence of each continuous covariate on the outcome. An application of multivariable fractional
polynomials (MFP) in modelling prognostic and diagnostic factors in breast cancer is given by [6]. The
stability of the models selected is investigated in [5]. Briefly, fractional polynomials models are useful
when one wishes to preserve the continuous nature of the covariates in a regression model, but suspects
that some or all of the relationships may be non-linear. At each step of a ‘backfitting’ algorithm MFP
constructs a fractional polynomial transformation for each continuous covariate while fixing the current
functional forms of the other covariates. The algorithm terminates when the functional forms of the
covariates do not change anymore.

2 Inventory of functions

mfp.object is an object representing a fitted mfp model. Class mfp inherits from either glm or
coxph depending on the type of model fitted. In addition to the standard glm/coxph components the
following components are included in an mfp object

x the final FP transformations that are contained in the design matrix x. The predictor ”z” with 4 df
would have corresponding columns ”z.1” and ”z.2” in x.

powers a matrix containing the best FP powers for each predictor. If a predictor has less than two
powers a NA will fill the appropriate cell of the matrix.

1



pvalues a matrix containing the P-values from the closed tests. Briefly p.null is the P-value for the
test of inclusion (see mfp), p.lin corresponds to the test of nonlinearity and p.FP the test of
simplification. The best m=1 power (power2) and best m=2 powers (power4.1 and power4.2)
are also given.

scale all predictors are shifted and rescaled before being power transformed if nonpositive values are
encountered or the range of the predictor is reasonably large. If x’ would be used instead of x
where x’ = (x+a)/b the parameters a (shift) and b (scale) are contained in the matrix scale.

df.initial a vector containing the degrees of freedom allocated to each predictor.

df.final a vector containing the degrees of freedom of each predictor at convergence of the backfitting
algorithm.

dev the deviance of the final model.

dev.lin the deviance of the model that has every predictor included with 1 df (i.e. linear).

dev.null the deviance of the null model.

fptable the table of the final fp transformations.

3 Usage in R

Start with

>library(mfp)

Loading required package: survival
Loading required package: splines

An mfp.object will be created by application of function mfp.

>str(mfp)

function (formula = formula(data), data = parent.frame(), family = gaussian,
subset = NULL, na.action = na.omit, init = NULL, alpha = 0.05,
select = 1, verbose = FALSE, x = TRUE, y = TRUE)

A typical predictor has the form response ∼ terms where response is the (numeric) response vector
and terms is a series of terms, separated by + operators, which specifies a linear predictor for response
and provided by the formula argument of the function call. Fractional polynomial terms are indicated
by fp.
For binomial models the response can also be specified as a factor. If a Cox proportional hazards
model is required then the outcome need to be specified using the Surv() notation.
The argument family describes the error distribution and link function to be used in the model. This
can be a character string naming a family function, a family function or the result of a call to a family
function.
alpha sets the FP selection level for all predictors. Values for individual predictors are changed using
the fp function. select sets the variable selection level for all predictors. Values for individual
predictors are set using the fp function in the formula.
The function fp defines a fractional polynomial object for a single input variable.
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>str(fp)

function (x, df = 4, select = NA, alpha = NA, scale = TRUE)

In addition to alpha and select the scale argument of the fp function denotes the use of pre-
transformation scaling to avoid possible numerical problems.

3.1 Model selection

The original implementation of mfp uses two different selection procedures for a single continuous
covariate x, a sequential selection procedure and a closed testing selection procedure (ra2). In the R
implementation only the ra2 algorithm is used. For the sequential selection procedure the actual Type
I error rate may exceed the nominal value when the true relationship is a straight line. Therefore the
procedure tends to favour more complex models over simple ones.
The ra2 algorithm is described in [1] and in [7]. It uses a closed test procedure [2] which maintains
approximately the correct Type I error rate for each component test. The procedure allows the
complexity of candidate models to increase progressively from a prespecified minimum (a null model)
to a prespecified maximum (an FP) according to an ordered sequence of test results.
The algorithm works as follows:

1. Perform a 4 df test at the α level of the best-fitting second-degree FP against the null model. If
the test is not significant, drop x and stop, otherwise continue.

2. Perform a 3 df test at the α level of the best-fitting second-degree FP against a straight line. If
the test is not significant, stop (the final model is a straight line), otherwise continue.

3. Perform a 2 df test at the α level of the best-fitting second-degree FP against the best-fitting
first-degree FP. If the test is significant, the final model is the FP with m = 2, otherwise the FP
with m = 1.

The tests in step 1, 2 and 3 are of overall association, non-linearity and between a simpler or more
complex FP model, respectively.

4 Example

4.1 Cox proportional hazards model

We use the dataset GBSG which contains data from a study of the German Breast Cancer Study Group
for patients with node-positive breast cancer.

>data(GBSG)

>str(GBSG)

`data.frame': 686 obs. of 11 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ htreat : Factor w/ 2 levels "0","1": 1 2 2 2 1 1 2 1 1 1 ...
$ age : int 70 56 58 59 73 32 59 65 80 66 ...
$ menostat: Factor w/ 2 levels "1","2": 2 2 2 2 2 1 2 2 2 2 ...
$ tumsize : int 21 12 35 17 35 57 8 16 39 18 ...
$ tumgrad : Factor w/ 3 levels "1","2","3": 2 2 2 2 2 3 2 2 2 2 ...
$ posnodal: int 3 7 9 4 1 24 2 1 30 7 ...
$ prm : int 49 62 53 61 27 1 182 193 1 1 ...
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$ esm : int 67 78 272 30 66 14 1 26 60 4 ...
$ rfst : int 1814 2018 712 1807 772 448 2172 2161 471 2014 ...
$ cens : int 1 1 1 1 1 1 0 0 1 0 ...

The response variable is recurrence free survival time (Surv(rfst, cens)). Complete data on 7
prognostic factors is available for 686 patients. The median follow-up was about 5 years, 299 events
were observed for recurrence free survival time. We use a Cox regression to model the hazard of
recurrence by the 7 prognostic factors of which 5 are continuous, age of the patients in years (age),
tumor size in mm (tumsize), number of positive nodes (posnodal), progesterone receptor in fmol
(prm), estrogen receptor in fmol (esm); two are binary, hormonal therapy (htreat), menopausal status
(menostat); and one is ordered categorical with three levels, tumor grade (tumgrad).
We use mfp to build a model from the initial set of 7 covariates using the backfitting model selection
algorithm. We set the global selection level to 0.05.
If one uses fp() in the formula a fractional polynomial transformation with pre-transformation scaling
is estimated. This is done here for tumsize, posnodal, prm, and esm. Otherwise a linear form of
the unscaled variable is used, as for age. Categorical factors are included without transformation.
Alternatively a categorical variable can be applied to define different strata. In the example hormonal
therapy (htreat) was used as stratification variable.
To be compatible with other implementations of multiple fractional polynomials in SAS and Stata we
use the Breslow method for tie handling.

>f <- mfp(Surv(rfst, cens) ~ strata(htreat) +

+ age + fp(tumsize) + fp(posnodal) +

+ fp(prm) + fp(esm) + menostat + tumgrad,

+ family = cox, data = GBSG, select = 0.05,

+ verbose = T)

Variable Deviance Power(s)
------------------------------------------------
Cycle 1

posnodal
3135.218
3103.245 1
3081.123 0
3074.213 0.5 3

prm
3095.43
3074.213 1
3067.746 0.5
3066.502 -2 0.5

tumgrad2
3081.253
3074.213 1

tumgrad3
3082.613

4



3074.213 1

tumsize
3075.813
3074.213 1
3072.091 -1
3071.882 -1 3

menostat2
3076.922
3075.813 1

age
3076.922
3076.922 1

esm
3077.795
3076.922 1
3073.627 3
3071.028 -0.5 3

Cycle 2
posnodal

3152.737
3108.965 1
3085.051 0
3077.795 0.5 3

prm
3099.562
3077.795 1
3071.74 0.5
3070.548 0 0.5

tumgrad2
3085.024
3077.795 1

tumgrad3
3086.686
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3077.795 1

tumsize
3077.795
3076.471 1
3074.077 -1
3073.759 -0.5 0

menostat2
3077.795
3076.973 1

age
3077.795
3077.737 1

Tansformation
shift scale

posnodal 0 1
prm 0 100
tumgrad2 0 1
tumgrad3 0 1
tumsize 0 10
menostat2 0 1
age 0 1
esm 0 100

Fractional polynomials
df.initial select alpha df.final power1

posnodal 4 0.05 0.05 4 0.5
prm 4 0.05 0.05 1 1
tumgrad2 1 0.05 0.05 1 1
tumgrad3 1 0.05 0.05 1 1
tumsize 4 0.05 0.05 0 .
menostat2 1 0.05 0.05 0 .
age 1 0.05 0.05 0 .
esm 4 0.05 0.05 0 .

power2
posnodal 3
prm .
tumgrad2 .
tumgrad3 .
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tumsize .
menostat2 .
age .
esm .

Null model: 3198.026
Linear model: 3103.245
Final model: 3077.795

After three cycles the final model is selected. Of the possible input variables tumor size, menopausal
status, age and estrogen receptor were excluded from the model. Only for variable posnodal a non-
linear transformation was chosen. Prescaling was used for esm, prm and tumsize.

>summary(f)

Call:
mfp(formula = Surv(rfst, cens) ~ strata(htreat) + age + fp(tumsize) +

fp(posnodal) + fp(prm) + fp(esm) + menostat + tumgrad, data = GBSG,
family = cox, select = 0.05, verbose = T)

n= 686
coef exp(coef) se(coef) z

posnodal.1 5.66e-01 1.762 6.75e-02 8.39
posnodal.2 -3.25e-05 1.000 1.33e-05 -2.44
prm.1 -2.13e-03 0.998 5.38e-04 -3.96
tumgrad2.1 6.16e-01 1.852 2.49e-01 2.48
tumgrad3.1 7.49e-01 2.115 2.68e-01 2.79

p
posnodal.1 0.0e+00
posnodal.2 1.5e-02
prm.1 7.4e-05
tumgrad2.1 1.3e-02
tumgrad3.1 5.2e-03

exp(coef) exp(-coef) lower .95
posnodal.1 1.762 0.568 1.544
posnodal.2 1.000 1.000 1.000
prm.1 0.998 1.002 0.997
tumgrad2.1 1.852 0.540 1.137
tumgrad3.1 2.115 0.473 1.251

upper .95
posnodal.1 2.011
posnodal.2 1.000
prm.1 0.999
tumgrad2.1 3.016
tumgrad3.1 3.576

Rsquare= 0.161 (max possible= 0.991 )
Likelihood ratio test= 120 on 5 df, p=0
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Wald test = 116 on 5 df, p=0
Score (logrank) test = 123 on 5 df, p=0

The final model states a sqrt-transformation for prm prm/1000.
The function plot.mfp draws three plots: the linear predictor function, a plot of the partial residuals
together with a lowess smooth, and smoothed martingale based residuals of the null model (1).
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Figure 1: Smoothed null model martingale residuals, the plot of the estimated functional form of the
influence of prm on the log relative risk of tumor recurrence, and the partial residuals plot for prm.
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