brms
and marginaleffects
The marginaleffects
package offers convenience functions to compute and display predictions, contrasts, and marginal effects from bayesian models estimated by the brms
package. To compute these quantities, marginaleffects
relies on workshorse functions from the brms
package to draw from the posterior distribution. The type of draws used is controlled by using the type
argument of the predictions
or marginaleffects
functions:
type = "response"
: Compute posterior draws of the expected value using the brms::posterior_epred
function.type = "link"
: Compute posterior draws of the linear predictor using the brms::posterior_linpred
function.type = "prediction"
: Compute posterior draws of the posterior predictive distribution using the brms::posterior_predict
function.The predictions
and marginaleffects
functions can also pass additional arguments to the brms
prediction functions via the ...
ellipsis. For example, if mod
is a mixed-effects model, then this command will compute 10 draws from the posterior predictive distribution, while ignoring all group-level effects:
predictions(mod, type = "prediction", ndraws = 10, re_formula = NA)
See the brms
documentation for a list of available arguments:
::posterior_epred
?brms::posterior_linpred
?brms::posterior_predict ?brms
Note that support for brms
will be available in version 0.3.0 of marginaleffects
. Until that version is released on CRAN, it can be installed from the development repository:
library(remotes)
install_github("vincentarelbundock/marginaleffects")
Load libraries and download data on passengers of the Titanic from the Rdatasets archive:
library(brms)
library(marginaleffects)
library(ggplot2)
library(ggdist)
read.csv("https://vincentarelbundock.github.io/Rdatasets/csv/carData/TitanicSurvival.csv")
dat <-$survived <- ifelse(dat$survived == "yes", 1, 0)
dat$woman <- ifelse(dat$sex == "female", 1, 0) dat
Fit a logit model with a multiplicative interaction:
brm(survived ~ woman * age + passengerClass,
mod <-family = bernoulli(link = "logit"),
backend = "cmdstanr", cores = 4,
data = dat)
We can compute adjusted predicted values of the outcome variable (i.e., probability of survival aboard the Titanic) using the predictions
function. By default, this function calculates predictions for each row of the dataset:
predictions(mod)
pred <-head(pred)
#> rowid type predicted survived woman age passengerClass conf.low
#> 1 4 response 0.9361746 1 1 29.0000 1st 0.9088526
#> 2 5 response 0.8477418 1 0 0.9167 1st 0.7529371
#> 3 6 response 0.9426519 0 1 2.0000 1st 0.9010494
#> 4 7 response 0.5125855 0 0 30.0000 1st 0.4309135
#> 5 8 response 0.9371363 0 1 25.0000 1st 0.9091038
#> 6 9 response 0.2725831 1 0 48.0000 1st 0.2014191
#> conf.high
#> 1 0.9595733
#> 2 0.9225402
#> 3 0.9733116
#> 4 0.5987987
#> 5 0.9606767
#> 6 0.3455888
To visualize the relationship between the outcome and one of the regressors, we can plot conditional adjusted predictions with the plot_cap
function:
plot_cap(mod, condition = "age")
Compute adjusted predictions for some user-specified values of the regressors, using the newdata
argument and the typical
function:
predictions(mod, newdata = typical(woman = 0:1, passengerClass = c("1st", "2nd", "3rd")))
pred <-
pred#> rowid type predicted age woman passengerClass conf.low conf.high
#> 1 4 response 0.51419465 29.88113 0 1st 0.43366926 0.6018784
#> 2 5 response 0.93603218 29.88113 1 1st 0.90847257 0.9594656
#> 3 6 response 0.20265337 29.88113 0 2nd 0.15114590 0.2613733
#> 4 7 response 0.77774811 29.88113 1 2nd 0.71671854 0.8378469
#> 5 8 response 0.08775081 29.88113 0 3rd 0.06373833 0.1130598
#> 6 9 response 0.57136784 29.88113 1 3rd 0.50042547 0.6465660
The get_posterior_draws
function samples from the posterior distribution of the model, and produces a data frame with drawid
and draw
columns.
get_posterior_draws(pred)
pred <-head(pred)
#> type rowid_internal drawid draw rowid predicted age woman
#> 1: response 1 1 0.5014001 4 0.5141946 29.88113 0
#> 2: response 1 2 0.4514729 4 0.5141946 29.88113 0
#> 3: response 1 3 0.4898628 4 0.5141946 29.88113 0
#> 4: response 1 4 0.5349225 4 0.5141946 29.88113 0
#> 5: response 1 5 0.5007135 4 0.5141946 29.88113 0
#> 6: response 1 6 0.5133510 4 0.5141946 29.88113 0
#> passengerClass conf.low conf.high
#> 1: 1st 0.4336693 0.6018784
#> 2: 1st 0.4336693 0.6018784
#> 3: 1st 0.4336693 0.6018784
#> 4: 1st 0.4336693 0.6018784
#> 5: 1st 0.4336693 0.6018784
#> 6: 1st 0.4336693 0.6018784
This “long” format makes it easy to plots results:
ggplot(pred, aes(x = draw, fill = factor(woman))) +
geom_density() +
facet_grid(~ passengerClass, labeller = label_both) +
labs(x = "Predicted probability of survival", y = "", fill = "Woman")
Use marginaleffects()
to compute marginal effects (slopes of the regression equation) for each row of the dataset, and use summary()
to compute “Average Marginal Effects”, that is, the average of all observation-level marginal effects:
marginaleffects(mod)
mfx <-summary(mfx)
#> Average marginal effects
#> type Term Effect 2.5 % 97.5 %
#> 1 response age -0.005224 -0.007948 -0.002612
#> 2 response passengerClass2nd 0.021671 -0.029946 0.074093
#> 3 response passengerClass3rd -0.129620 -0.169244 -0.092489
#> 4 response woman 0.365452 0.290606 0.443547
#>
#> Model type: brmsfit
#> Prediction type: response
Compute marginal effects with some regressors fixed at user-specified values, and other regressors held at their means:
marginaleffects(mod, newdata = typical(woman = 1, passengerClass = "1st"))
#> rowid type term dydx conf.low conf.high
#> 1 1 response woman 0.1567983435 0.111834123 0.2095589106
#> 2 1 response age -0.0002322851 -0.001331806 0.0009796472
#> 3 1 response passengerClass2nd -0.1565305092 -0.218441404 -0.1008674721
#> 4 1 response passengerClass3rd -0.3632796811 -0.441526785 -0.2954314481
#> age woman passengerClass
#> 1 29.88113 1 1st
#> 2 29.88113 1 1st
#> 3 29.88113 1 1st
#> 4 29.88113 1 1st
Compute and plot conditional marginal effects:
plot_cme(mod, effect = "woman", condition = "age")
The get_posterior_draws
produces a dataset with drawid
and draw
columns:
get_posterior_draws(mfx)
draws <-
dim(draws)
#> [1] 16736000 13
head(draws)
#> type rowid_internal drawid draw rowid term dydx conf.low
#> 1: response 1 1 0.1583305 1 woman 0.1536635 0.1103399
#> 2: response 1 2 0.1925169 1 woman 0.1536635 0.1103399
#> 3: response 1 3 0.1660440 1 woman 0.1536635 0.1103399
#> 4: response 1 4 0.1508484 1 woman 0.1536635 0.1103399
#> 5: response 1 5 0.1536475 1 woman 0.1536635 0.1103399
#> 6: response 1 6 0.1725165 1 woman 0.1536635 0.1103399
#> conf.high survived woman age passengerClass
#> 1: 0.2068255 1 1 29 1st
#> 2: 0.2068255 1 1 29 1st
#> 3: 0.2068255 1 1 29 1st
#> 4: 0.2068255 1 1 29 1st
#> 5: 0.2068255 1 1 29 1st
#> 6: 0.2068255 1 1 29 1st
We can use this dataset to plot our results. For example, to plot the posterior density of the marginal effect of age
when the woman
variable is equal to 0 or 1:
marginaleffects(mod,
mfx <-variables = "age",
newdata = typical(woman = 0:1)) |>
get_posterior_draws()
ggplot(mfx, aes(x = draw, fill = factor(woman))) +
stat_halfeye(slab_alpha = .5) +
labs(x = "Marginal Effect of Age on Survival",
y = "Posterior density",
fill = "Woman")
This section replicates some of the analyses of a random effects model published in Andrew Heiss’ blog post: “A guide to correctly calculating posterior predictions and average marginal effects with multilievel Bayesian models.” The objective is mainly to illustrate the use of marginaleffects
. Please refer to the original post for a detailed discussion of the quantities computed below.
Load libraries and clean data:
::install_github("vdeminstitute/vdemdata") remotes
library(vdemdata)
library(tidyverse)
library(marginaleffects)
library(brms)
library(ggdist)
library(patchwork)
2015 <- vdem %>%
vdem_ select(country_name, country_text_id, year, region = e_regionpol_6C,
media_index = v2xme_altinf, party_autonomy_ord = v2psoppaut_ord,
polyarchy = v2x_polyarchy, civil_liberties = v2x_civlib) %>%
filter(year == 2015) %>%
mutate(party_autonomy = party_autonomy_ord >= 3,
party_autonomy = ifelse(is.na(party_autonomy), FALSE, party_autonomy)) %>%
mutate(region = factor(region,
labels = c("Eastern Europe and Central Asia",
"Latin America and the Caribbean",
"Middle East and North Africa",
"Sub-Saharan Africa",
"Western Europe and North America",
"Asia and Pacific")))
Fit a basic model:
brm(
mod <-bf(media_index ~ party_autonomy + civil_liberties + (1 | region),
~ (1 | region)),
phi data = vdem_2015,
family = Beta(),
control = list(adapt_delta = 0.9),
backend = "cmdstanr", cores = 4,
seed = 12345)
To compute posterior predictions for specific values of the regressors, we use the newdata
argument and the typical
function. We also use the type
argument to compute two types of predictions: accounting for residual (observation-level) residual variance (prediction
) or ignoring it (response
).
predictions(mod,
pred <-type = c("response", "prediction"),
newdata = typical(party_autonomy = c(TRUE, FALSE),
civil_liberties = .5,
region = "Middle East and North Africa"))
pred#> rowid type predicted party_autonomy civil_liberties
#> 1 7 response 0.6215307 TRUE 0.5
#> 2 8 response 0.3683854 FALSE 0.5
#> 3 7 prediction 0.6363109 TRUE 0.5
#> 4 8 prediction 0.3462030 FALSE 0.5
#> region conf.low conf.high
#> 1 Middle East and North Africa 0.52950493 0.7119285
#> 2 Middle East and North Africa 0.27851895 0.4580605
#> 3 Middle East and North Africa 0.24836232 0.9769307
#> 4 Middle East and North Africa 0.03544802 0.7485465
Extract posterior draws and plot them:
get_posterior_draws(pred)
pred <-
ggplot(pred, aes(x = draw, fill = party_autonomy)) +
stat_halfeye(alpha = .5) +
facet_wrap(~ type) +
labs(x = "Media index (predicted)",
y = "Posterior density",
fill = "Party autonomy")
As noted in the Marginal Effects vignette, there should be one distinct marginal effect for each combination of regressor values. Here, we consider only one combination of regressor values, where region
is “Middle East and North Africa”, and civil_liberties
is 0.5. Then, we calculate the mean of the posterior distribution of marginal effects:
marginaleffects(mod,
mfx <-newdata = typical(civil_liberties = .5,
region = "Middle East and North Africa"))
mfx#> rowid type term dydx conf.low conf.high
#> 1 1 response party_autonomyTRUE 0.2499799 0.1675054 0.3281245
#> 2 1 response civil_liberties 0.8172178 0.6342737 1.0107915
#> party_autonomy civil_liberties region
#> 1 TRUE 0.5 Middle East and North Africa
#> 2 TRUE 0.5 Middle East and North Africa
Use the get_posterior_draws()
to extract draws from the posterio distribution of marginal effects, and plot them:
get_posterior_draws(mfx)
mfx <-
ggplot(mfx, aes(x = draw, y = term)) +
stat_halfeye() +
labs(x = "Marginal effect", y = "")
Plot marginal effects, conditional on a regressor:
plot_cme(mod,
effect = "civil_liberties",
condition = "party_autonomy")
predictions(mod,
pred <-newdata = typical(party_autonomy = FALSE,
region = "Middle East and North Africa",
civil_liberties = seq(0, 1, by = 0.05))) |>
get_posterior_draws()
ggplot(pred, aes(x = civil_liberties, y = draw)) +
stat_lineribbon() +
scale_fill_brewer(palette = "Reds") +
labs(x = "Civil liberties",
y = "Media index (predicted)",
fill = "")
The slope of this line for different values of civil liberties can be obtained with:
marginaleffects(mod,
mfx <-newdata = typical(civil_liberties = c(.2, .5, .8),
party_autonomy = FALSE,
region = "Middle East and North Africa"),
variables = "civil_liberties")
mfx#> rowid type term dydx conf.low conf.high civil_liberties
#> 1 1 response civil_liberties 0.4899448 0.3561016 0.6277562 0.2
#> 2 2 response civil_liberties 0.8090324 0.6133495 0.9922249 0.5
#> 3 3 response civil_liberties 0.8073873 0.6826792 0.9367713 0.8
#> party_autonomy region
#> 1 FALSE Middle East and North Africa
#> 2 FALSE Middle East and North Africa
#> 3 FALSE Middle East and North Africa
And plotted:
get_posterior_draws(mfx)
mfx <-
ggplot(mfx, aes(x = draw, fill = factor(civil_liberties))) +
stat_halfeye(slab_alpha = .5) +
labs(x = "Marginal effect of Civil Liberties on Media Index",
y = "Posterior density",
fill = "Civil liberties")
The marginaleffects
function can use the ellipsis (...
) to push any argument forward to the posterior_predict
function. This can alter the types of predictions returned. For example, the re_formula=NA
argument of the posterior_predict.brmsfit
method will compute marginaleffects without including any group-level effects:
marginaleffects(mod,
mfx <-newdata = typical(civil_liberties = c(.2, .5, .8),
party_autonomy = FALSE,
region = "Middle East and North Africa"),
variables = "civil_liberties",
re_formula = NA) |>
get_posterior_draws()
ggplot(mfx, aes(x = draw, fill = factor(civil_liberties))) +
stat_halfeye(slab_alpha = .5) +
labs(x = "Marginal effect of Civil Liberties on Media Index",
y = "Posterior density",
fill = "Civil liberties")
predictions(mod,
pred <-re_formula = NA,
newdata = typical(party_autonomy = c(TRUE, FALSE))) |>
get_posterior_draws()
marginaleffects(mod,
mfx <-re_formula = NA,
variables = "party_autonomy") |>
get_posterior_draws()
ggplot(pred, aes(x = draw, fill = party_autonomy)) +
plot1 <- stat_halfeye(slab_alpha = .5) +
labs(x = "Media index (Predicted)",
y = "Posterior density",
fill = "Party autonomy")
ggplot(mfx, aes(x = draw)) +
plot2 <- stat_halfeye(slab_alpha = .5) +
labs(x = "Contrast: Party autonomy TRUE - FALSE",
y = "",
fill = "Party autonomy")
# combine plots using the `patchwork` package
+ plot2 plot1
Predicted media index by region and level of civil liberties:
predictions(mod,
pred <-newdata = typical(region = vdem_2015$region,
party_autonomy = FALSE,
civil_liberties = seq(0, 1, length.out = 100))) |>
get_posterior_draws()
ggplot(pred, aes(x = civil_liberties, y = draw)) +
stat_lineribbon() +
scale_fill_brewer(palette = "Reds") +
facet_wrap(~ region) +
labs(x = "Civil liberties",
y = "Media index (predicted)",
fill = "")
Predicted media index by region and level of civil liberties:
predictions(mod,
pred <-newdata = typical(region = vdem_2015$region,
civil_liberties = c(.2, .8),
party_autonomy = FALSE)) |>
get_posterior_draws()
ggplot(pred, aes(x = draw, fill = factor(civil_liberties))) +
stat_halfeye(slab_alpha = .5) +
facet_wrap(~ region) +
labs(x = "Media index (predicted)",
y = "Posterior density",
fill = "Civil liberties")
Predicted media index by region and party autonomy:
predictions(mod,
pred <-newdata = typical(region = vdem_2015$region,
party_autonomy = c(TRUE, FALSE),
civil_liberties = .5)) |>
get_posterior_draws()
ggplot(pred, aes(x = draw, y = region , fill = party_autonomy)) +
stat_halfeye(slab_alpha = .5) +
labs(x = "Media index (predicted)",
y = "",
fill = "Party autonomy")
TRUE/FALSE contrasts (marginal effects) of party autonomy by region:
marginaleffects(mod,
mfx <-variables = "party_autonomy",
newdata = typical(region = vdem_2015$region,
civil_liberties = .5)) |>
get_posterior_draws()
ggplot(mfx, aes(x = draw, y = region , fill = party_autonomy)) +
stat_halfeye(slab_alpha = .5) +
labs(x = "Media index (predicted)",
y = "",
fill = "Party autonomy")
We can also obtain predictions or marginal effects for a hypothetical group instead of one of the observed regions. To achieve this, we create a dataset with NA
in the region
column. Then, we call the marginaleffects
or predictions
functions with the re_formula=NULL
argument. This argument is pushed through via the ellipsis (...
) to the predict
function of brms
:
data.frame(civil_liberties = .5,
dat <-party_autonomy = FALSE,
region = "Atlantis")
marginaleffects(mod,
variables = "party_autonomy",
type = "response",
newdata = dat,
allow_new_levels = TRUE,
re_formula = NULL) |>
get_posterior_draws() |>
ggplot(aes(x = draw)) +
stat_halfeye()