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Abstract

Least-squares means are predictions from a linear model, or averages thereof. They
are useful in the analysis of experimental data for summarizing the effects of factors, and
for testing contrasts among certain marginal predictions. The lsmeans package provides
a simple and rather comprehensive formula-based way of specifying least-squares means
and contrasts thereof. It supports most R packages that fit linear or mixed models.
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1. Introduction

1.1. What are least-squares means?

Least-squares means (or LS means), are generalizations of covariate-adjusted means, and date
back at least to 1976 when they were incorporated in the contributed SAS procedure named
HARVEY (Harvey 1976). Later, they were incorporated via LSMEANS statements in the regular
SAS releases. SAS’s documentation describes them as “predicted population margins—that
is, they estimate the marginal means over a balanced population” (SAS Institute Inc. 2012).

People disagree on the appropriateness of LS means. As in many statistical calculations, there
are times when they are appropriate, and times when they are not. However, as long as one
understands what is being calculated, one can judge its appropriateness. The main thing
to remember is that LS means are simply predictions from a model over a grid of predictor
values, or marginal averages thereof. More explicitly, define a set of reference levels for each
predictor, and create a grid (call it the reference grid) consisting of all combinations of these.
Make predictions on this grid, and compute marginal means of those predictions, if needed
(usually using equal weights). For clarity, we refer to these averaged predictions as marginal
LS means.

The default in lsmeans is to set the reference levels as follows: For predictors of class factor
or ordered, the default reference levels are the levels of the factor. For numeric predictors,
the default is to use a single reference level at the mean value of the predictor. It is possible
to change the reference levels, and if this is done, it is extremely important to understand
that this also alters the definition of any marginal LS means, as the averaging is done over a
different set of levels.
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1.2. Package overview

The lsmeans package (Lenth 2014) is built upon objects of class ref.grid which defines the
grid of reference levels to use for the predictions. Such ref.grid objects are provided for linear
models produced by most linear-models functions including lm and aov in the stats package;
lme and gls from the nlme package (Pinheiro, Bates, and R-core 2013); and lmer and others
from the lme4 package (Bates, Maechler, Bolker, and Walker 2013). aov is supported only
if the model does not contain an Error() term. Generalized linear models and GLMMs are
also supported, where LS means are defined in terms of the linear predictor (before applying
the link function). For lm objects, special provisions are included to check for estimability
when the model is rank-deficient. Provisions are also made for models with a multivariate
response, so that the dimensions of the response can be specified in the same way as the levels
of a factor.

As explained before, LS means are predictions over the reference grid, or marginal averages
thereof. These are computed by the function lsmeans, which works with either a ref.grid or
a model object. The desired sets of LS means are specified using the names of the predictors,
and optionally the names of “by” variables for grouping. Alternatively, these can be specified
using a formula, e.g., ~ dose | treat requests the LS means for each dose, within each
treatment. lsmeans creates an object of class lsmobj, a sub-class of ref.grid.

The summary method for ref.grid and lsmobj objects computes estimates, standard errors,
confidence intervals, test statistics, and P values. It also allows for groupings by one or more
variables, and allows for various adjustments for multiplicity of tests.

There are several useful functions that can be used to do follow-up analyses. The most
important one is contrast, which computes contrasts of LS means. A number of stan-
dard contrast families are provided and they can be specified by name, e.g., "pairwise" or
"poly". User-specified contrasts (or for that matter, any set of linear functions, be they
contrasts or not) may be specified using a list of coefficients. Contrasts may also be re-
quested directly from lsmeans via a contr argument or in the left-hand side of a formula,
e.g., poly ~ dose | treat would request orthogonal polynomial contrasts of dose means at
each level of each treat. The contrast function returns an lsmobj object; thus it is possible
to do further analyses of those results, such as contrasts of contrasts.

Other useful methods for lsmobj objects include test and confint, which simply call summary
with the implied portion of the statistical output; pairs, which calls contrasts for pairwise
comparisons; cld, which provides a compact letter display of comparisons; glht and as.glht,
which interface with the multcomp package (Hothorn, Bretz, and Westfall 2013) for more ex-
acting multiplicity adjustments; and lsmip, which produces an interaction-plot-like display
of the LS means.

lsmeans works as follows. First, if given a fitted-model object, the ref.grid is created.
This entails reconstructing the dataset used in fitting the model, by calling a recover.data

method. Then the factor levels and other summary information is used to define the reference
grid, and an lsm.basis method is called to assemble other needed information, such as
the linear function associated with each grid point, the regression coefficients, covariance
matrix, degrees of freedom information, basis for estimable functions, and so forth. New
recover.data and lsm.basis methods may be written to support additional model types.
The ref.grid object contains all needed information needed for subsequent least-squares-
mean analysis, independent of the model type. In mixed models fitted by a lme4 function, the
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pbkrtest package (Halekoh and Højsgaard 2013), if installed, is used to adjust the covariance
matrix and obtain degrees of freedom using the Kenward-Roger method. If degrees of freedom
are not available, asymptotic results are used and labeled as such.

The lsmeans methods use the given specifications to obtain marginal averages of the lin-
ear predictors as needed, and the contrast function computes contrasts among the linear
predictors. These altered sets of linear predictors define something quite similar, but more
general, than a reference grid, outputted as an lsmobj object. The summary method does the
statistical calculations; thus, one can re-summarize a result in a different way if needed.

There is also an lstrends function which uses a fitted model to obtain a difference quotient
from two reference grids, and returns an lsmobj object. This is useful for comparing the
slopes of lines in models where a covariate interacts with other predictors.

2. Some examples

Most of the remainder of this article consists of examples showing lsmeans’s features and how
it can be used to advantage in a variety of situations.

2.1. Adjusted means in covariance models

Oehlert (2000), p.456, gives a dataset concerning repetitive-motion pain due to typing on
three types of ergonomic keyboards. Twelve subjects having repetitive-motion disorders were
randomized to the keyboard types, and reported the severity of their pain on a subjective
scale of 0–100 after two weeks of using the keyboard. We also recorded the time spent typing,
in hours. Here we enter the data, and obtain the plot shown in Figure 1.

R> typing <- data.frame(

+ keybd = rep(c("A","B","C"), each=4),

+ hours = c(60,72,61,50, 54,68,66,59, 56,56,55,51),

+ pain = c(85,95,69,58, 41,74,71,52, 41,34,50,40))

R> library("lattice")

R> xyplot(pain ~ hours | keybd, data = typing, layout = c(3,1))

It appears that hours and pain are linearly related (though it’s hard to know for keyboard C),
and that the trend line for keyboard A is higher than for the other two. To test this, consider
a simple covariate model that fits parallel lines to the three panels:

R> typing.lm <- lm(pain ~ hours + keybd, data = typing)

The reference levels can be discerned by calling the ref.grid function:

R> ( typing.rg <- ref.grid(typing.lm) )

'ref.grid' object with variables:

hours = 59

keybd = A, B, C
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Figure 1: Display of the keyboard-pain data.

Note that only one variable has more than one level. Thus, the reference grid has only three
points in it, corresponding to the three keyboards. The summary displays the predictions on
this grid:

R> summary(typing.rg)

hours keybd prediction SE df

59 A 73.565 3.6406 8

59 B 54.495 3.7223 8

59 C 49.440 3.9434 8

If we want lsmeans of the keyboard types, we get the same results, only by default, 95%
confidence intervals are displayed:

R> ( typing.lsm <- lsmeans(typing.rg, "keybd") )

keybd lsmean SE df lower.CL upper.CL

A 73.565 3.6406 8 65.170 81.960

B 54.495 3.7223 8 45.912 63.079

C 49.440 3.9434 8 40.346 58.533

Confidence level used: 0.95

These results are the same as what are often called “adjusted means” in the analysis of
covariance—predicted values for each keyboard, when the covariate is set to its overall average
value.

The cov.reduce and at arguments can modify the reference grid. For example, by default,
covariates are reduced to their means, but we can change this:

R> ref.grid(typing.lm, cov.reduce = median)
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'ref.grid' object with variables:

hours = 57.5

keybd = A, B, C

Or we can use at to create a reference grid that contains more hours values:

R> typing.rg2 <- ref.grid(typing.lm, at = list(hours = c(50,60)))

R> lsmeans(typing.rg2, c("keybd","hours"))

keybd hours lsmean SE df lower.CL upper.CL

A 50 57.186 5.3185 8 44.922 69.451

B 50 38.116 5.5940 8 25.216 51.016

C 50 33.060 3.9434 8 23.967 42.154

A 60 75.385 3.5944 8 67.096 83.674

B 60 56.315 3.6406 8 47.920 64.710

C 60 51.259 4.1093 8 41.783 60.736

Confidence level used: 0.95

Again, these LS means are the same as the predictions at the six points of the reference grid.
However, if we specify fewer predictors, we obtain marginal averages of the predictions:

R> lsmeans(typing.rg2, "keybd")

keybd lsmean SE df lower.CL upper.CL

A 66.286 4.1548 8 56.705 75.867

B 47.216 4.3512 8 37.182 57.250

C 42.160 3.5886 8 33.885 50.435

Results are averaged over the levels of: hours

Confidence level used: 0.95

R> lsmeans(typing.rg2, "hours")

hours lsmean SE df lower.CL upper.CL

50 42.788 3.8865 8 33.825 51.750

60 60.987 2.1012 8 56.141 65.832

Results are averaged over the levels of: keybd

Confidence level used: 0.95

Note that the results just above for keybd are not the same as the results we got the first
time, using typing.rg. This illustrates the important point that least-squares means depend
on the reference grid. In the first case, we have predictions at the average hours, 59, and in
the second, we have the averages of predictions at 50 and 60 hours.

2.2. Follow-up analyses

There are several followup analyses available. Using our original typing.lsm result, we can
obtain pairwise comparisons of them:
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R> ( typing.pairs <- pairs(typing.lsm) )

contrast estimate SE df t.ratio p.value

A - B 19.0699 5.0816 8 3.753 0.0138

A - C 24.1257 5.5596 8 4.339 0.0062

B - C 5.0558 5.7195 8 0.884 0.6647

P value adjustment: tukey method for a family of 3 means

Or the same results with a compact letter display (this requires that the multcompView
package (Graves, Piepho, Selzer, and Dorai-Raj 2012) be installed):

R> cld(typing.lsm, alpha = .10)

keybd lsmean SE df lower.CL upper.CL .group

C 49.440 3.9434 8 40.346 58.533 1

B 54.495 3.7223 8 45.912 63.079 1

A 73.565 3.6406 8 65.170 81.960 2

Confidence level used: 0.95

P value adjustment: tukey method for a family of 3 means

significance level used: alpha = 0.1

In this display, two LS means that share at least one grouping symbol are not significantly
different at the stated level. In this case, keyboard type A’s predicted pain is significantly
greater than either of the other two. By default, cld sorts the means, but this can be disabled.

Using the contrast function, other contrast families are available besides pairwise compar-
isons. For example, to obtain factor effects (differences from the grand mean), use:

R> contrast(typing.lsm, "eff")

contrast estimate SE df t.ratio p.value

A effect 14.3985 2.9954 8 4.807 0.0040

B effect -4.6714 3.0941 8 -1.510 0.1695

C effect -9.7271 3.3569 8 -2.898 0.0299

P value adjustment: fdr method for 3 tests

It is possible to provide custom contrasts as well—see the documentation.

Sometimes, we want to see different analyses of the same results. For example, the above
results for pairs had a Tukey adjustment. If you want to know what the P values are with
no adjustment, just do a different summary:

R> summary(typing.pairs, adjust = "none")

contrast estimate SE df t.ratio p.value

A - B 19.0699 5.0816 8 3.753 0.0056

A - C 24.1257 5.5596 8 4.339 0.0025

B - C 5.0558 5.7195 8 0.884 0.4025



Russell V. Lenth 7

−10 0 10 20 30 40

B − C

A − C

A − B (

(

(

)

)

)

●

●

●

95% family−wise confidence level

Linear Function

Figure 2: Graphical display of comparisons via multcomp

2.3. Interfacing with multcomp

As seen in the previous output, lsmeans provides for adjusting the p values of contrasts to
preserve a familywise error rate. The default for pairwise comparisons is the Tukey (HSD)
method. One must use these adjustments with caution. For example, when the standard
errors are unequal, the Tukey method is only approximate, even under normality and inde-
pendence assumptions. To get a more exact adjustment, we can convert an lsmobj object to
a glht one for further analysis in the multcomp package (Hothorn et al. 2013):

R> library("multcomp")

R> typing.glht <- as.glht(typing.pairs)

R> summary(typing.glht)

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

A - B == 0 19.07 5.08 3.75 0.0137 *

A - C == 0 24.13 5.56 4.34 0.0062 **

B - C == 0 5.06 5.72 0.88 0.6641

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

These p values are exact (if the assumptions hold) and, as expected, differ slightly from those
in the previous lsmeans output. We may of course use other methods available for glht

objects. The plot in Figure 2 displays the comparisons in the preceding table:

R> plot(typing.glht)

We have also provided an lsm function that can be called within a glht call in a way similar
to that of mcp as provided in the multcomp package. Here we display simultaneous confidence
intervals for the LS means:
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R> confint(glht(typing.lm, lsm("keybd")))

Simultaneous Confidence Intervals

Fit: lm(formula = pain ~ hours + keybd, data = typing)

Quantile = 2.953

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

A == 0 73.565 62.815 84.316

B == 0 54.495 43.504 65.487

C == 0 49.440 37.795 61.084

The design of lsm is to create just one set of linear functions to hand to glht. It returns
contrast output if specified, otherwise LS means output; so in the illustration above, the linear
functions of the lsmeans themselves are used. If we had instead specified

R> lsm("keybd", contr="pairwise")

(output not shown) then the results would have been the same as shown earlier for the pairwise
differences.

2.4. Fancy lsmeans calls

The lsmeans function allows for a lot of flexibility. we can call it with a fitted-model object
instead of a ref.grid. If so, it can pass at and cov.reduce arguments to ref.grid. One
may also specify contrasts and grouping variables. Here is an example:

R> lsmeans(typing.lm, specs = "keybd", by = "hours",

+ at = list(hours = c(50, 60)), contr = "trt.vs.ctrl1")

$lsmeans

hours = 50:

keybd lsmean SE df lower.CL upper.CL

A 57.186 5.3185 8 44.922 69.451

B 38.116 5.5940 8 25.216 51.016

C 33.060 3.9434 8 23.967 42.154

hours = 60:

keybd lsmean SE df lower.CL upper.CL

A 75.385 3.5944 8 67.096 83.674

B 56.315 3.6406 8 47.920 64.710

C 51.259 4.1093 8 41.783 60.736
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Confidence level used: 0.95

$contrasts

hours = 50:

contrast estimate SE df t.ratio p.value

B - A -19.070 5.0816 8 -3.753 0.0112

C - A -24.126 5.5596 8 -4.339 0.0050

hours = 60:

contrast estimate SE df t.ratio p.value

B - A -19.070 5.0816 8 -3.753 0.0112

C - A -24.126 5.5596 8 -4.339 0.0050

P value adjustment: sidak method for 2 tests

The result is a list with two lsmobj objects. When a by variable is present, the listings are
grouped accordingly, and contrasts are restricted to each group.

In addition, a formula may be used in specs in place of all or part of the separate specs, by,
and contr arguments. The following (not run) are all equivalent to the above:

R> lsmeans(typing.lm, specs = ~ keybd, by = "hours",

+ at = list(hours = c(50, 60)), contr = "trt.vs.ctrl1")

R> lsmeans(typing.lm, specs = ~ keybd | hours,

+ at = list(hours = c(50, 60)), contr = "trt.vs.ctrl1")

R> lsmeans(typing.lm, specs = trt.vs.ctrl1 ~ keybd | hours,

+ at = list(hours = c(50, 60)))

2.5. A three-factor experiment

The auto.noise dataset provided with lsmeans contains data from a factorial experiment
wherein a newly design air-pollution filter called the Octel filter is compared with a standard
filter with respect to the amount of ambient noise. Besides the factor type for which filter
is used, the experiment includes three different sizes of cars (factor size) and measurements
from each side of the car (factor side). First we fit a model to the data:

R> noise.lm <- lm(noise ~ size*type*side, data = auto.noise)

R> anova(noise.lm)

Analysis of Variance Table

Response: noise

Df Sum Sq Mean Sq F value Pr(>F)

size 2 26051 13026 893.19 < 2e-16 ***

type 1 1056 1056 72.43 1.0e-08 ***

side 1 1 1 0.05 0.82910

size:type 2 804 402 27.57 6.0e-07 ***
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Figure 3: Three-way interaction plot for the auto.noise data.

size:side 2 1293 647 44.33 8.7e-09 ***

type:side 1 17 17 1.19 0.28607

size:type:side 2 301 151 10.33 0.00058 ***

Residuals 24 350 15

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The default reference grid for the lsmeans consists of all 3× 2× 2 = 12 factor combinations:

R> ref.grid(noise.lm)

'ref.grid' object with variables:

size = S, M, L

type = Std, Octel

side = R, L

The model includes all interactions, so the LS means are the cell means. The lsmeans package
provides a convenient function lsmip for displaying an interaction plot. (This feature requires
lattice (Sarkar 2013) to be installed.) Figure 3 shows separate interaction plots for each side,
via

R> lsmip(noise.lm, size ~ type | side)

The left side of the formula in lsmip specifies which factor(s) define the different curves, and
the right side specifies the factor(s) for x axis. If a | character is included, it separates the
plot into different panels. If two or more factors are given, their factor combinations are used
to create a single factor for purposes of plotting. To illustrate, some variations on the plot in
Figure 3 (not shown) are as follows:

R> lsmip(noise.lm, size ~ type * side) # 1 panel, 3 curves, 2*2 = 4 x values

R> lsmip(noise.lm, type * side ~ size) # 1 panel, 2*2 = 4 curves, 3 x values

R> lsmip(noise.lm, type ~ side | size) # 3 panels, 2 curves, 2 x values
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The main goal of the experiment is to compare the mean noise levels for the two filters. One
näıve way to do this is to simply ask for that comparison:

R> lsmeans(noise.lm, pairwise ~ type)

$lsmeans

type lsmean SE df lower.CL upper.CL

Std 815.56 0.9001 24 813.70 817.41

Octel 804.72 0.9001 24 802.86 806.58

Results are averaged over the levels of: size, side

Confidence level used: 0.95

$contrasts

contrast estimate SE df t.ratio p.value

Std - Octel 10.833 1.2729 24 8.51 <.0001

Results are averaged over the levels of: size, side

Warning in lsmeans(noise.lm, pairwise ~ type) :

lsmeans of type may be misleading due to interaction with other predictor(s)

lsmeans generates a warning message because the model includes interactions and it may
not be wise to do main-effect comparisons. But whether it is wise or not, keep in mind that
the LS means are marginal averages (using equal weights) of the predictions in the reference
grid. So the LS mean for the Std filter is the average of the six predictions for which type =

Std; and the LS mean for Octel is the average of the other six predictions. For a balanced
experiment (which is the case here), these will be the same as the marginal means of the data:

R> with(auto.noise, tapply(noise, type, mean))

Std Octel

815.56 804.72

So one way to look at marginal LS means for unbalanced data is that they are estimates of
the marginal means we would obtain, had the experiment been balanced.

Now, given the strength of the interactions, it really is not smart to compare the marginal
LS means for type; instead, we should compare them at each combination of the other factors.
This is easily done by conditioning:

R> lsmeans(noise.lm, pairwise ~ type | size*side)[[2]]

size = S, side = R:

contrast estimate SE df t.ratio p.value

Std - Octel -3.3333 3.118 24 -1.069 0.2957

size = M, side = R:
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contrast estimate SE df t.ratio p.value

Std - Octel 20.0000 3.118 24 6.414 <.0001

size = L, side = R:

contrast estimate SE df t.ratio p.value

Std - Octel 11.6667 3.118 24 3.742 0.0010

size = S, side = L:

contrast estimate SE df t.ratio p.value

Std - Octel 10.0000 3.118 24 3.207 0.0038

size = M, side = L:

contrast estimate SE df t.ratio p.value

Std - Octel 28.3333 3.118 24 9.087 <.0001

size = L, side = L:

contrast estimate SE df t.ratio p.value

Std - Octel -1.6667 3.118 24 -0.535 0.5979

(We show only the second table of the results; the first table is the same as was shown earlier
for the LS means of the three-factor combinations.) We find that in the four middle cases, the
mean noise is statistically greater for the Std filter than the Octel filter. In the other two cases,
the differences are nonsignificant. Note that a separate Tukey correction is made for each com-
bination of the conditioning factors. Since each condition involves only two means, there is
only one comparison and hence this amounts to no multiplicity correction at all. The con-
ditioning also greatly reduces the output; if we had specified pairwise ~ type*size*side,
we would have obtained estimates and tests of all

(12
2

)
= 66 pairwise comparisons of the 12

means, and the Tukey correction would have been based on 12 means also.

2.6. Split-plot example

The nlme package includes a famous dataset Oats that was used in Yates (1935) as an example
of a split-plot experiment. The dataset contains predictors Block (6-level factor), Variety
(3-level factor), and nitro (4 unique numeric values). The experiment was conducted in
six blocks, and each block was divided into three plots, which were randomly assigned to
varieties of oats. With just Variety as a factor, it is a randomized complete-block experiment.
However, each plot was subdivided into 4 subplots and the subplots were treated with different
amounts of nitrogen. Thus, Block is a blocking factor, Variety is the whole-plot factor, and
nitro is the split-plot factor. The response variable is yield, the yield of each subplot, in
bushels per acre.

This experiment has random factors Block and Block:Variety (which identifies the plots).
So we will fit a linear mixed-effects model that accounts for these. Another technicality is
that nitro is a numeric variable, and initially we will model it as a factor. We will use lmer

in the lme4 package (Bates et al. 2013) to fit a model:

R> data(Oats, package = "nlme")

R> library("lme4")
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R> Oats.lmer <- lmer(yield ~ Variety*factor(nitro) + (1|Block/Variety),

+ data = Oats)

R> anova(Oats.lmer)

Analysis of Variance Table

Df Sum Sq Mean Sq F value

Variety 2 526 263 1.49

factor(nitro) 3 20020 6673 37.69

Variety:factor(nitro) 6 322 54 0.30

R> lsmip(Oats.lmer, Variety ~ nitro)

The interaction plot is displayed in Figure 4(a).

There is not much evidence of an interaction. Let’s reduce to an additive model and look at
the LS means and some appropriate contrasts

R> Oats.add <- lmer(yield ~ Variety + factor(nitro) + (1|Block/Variety),

+ data = Oats)

R> lsmeans(Oats.add, list(revpairwise ~ Variety, poly ~ nitro))

$`lsmeans of Variety`

Variety lsmean SE df lower.CL upper.CL

Golden Rain 104.500 7.7975 8.87 86.821 122.18

Marvellous 109.792 7.7975 8.87 92.113 127.47

Victory 97.625 7.7975 8.87 79.946 115.30

Results are averaged over the levels of: nitro

Confidence level used: 0.95

$`pairwise differences of Variety`

contrast estimate SE df t.ratio p.value

Marvellous - Golden Rain 5.2917 7.0789 10 0.748 0.7419

Victory - Golden Rain -6.8750 7.0789 10 -0.971 0.6104

Victory - Marvellous -12.1667 7.0789 10 -1.719 0.2458

Results are averaged over the levels of: nitro

P value adjustment: tukey method for a family of 3 means

$`lsmeans of nitro`

nitro lsmean SE df lower.CL upper.CL

0.0 79.389 7.1324 6.64 62.335 96.442

0.2 98.889 7.1324 6.64 81.835 115.942

0.4 114.222 7.1324 6.64 97.169 131.276

0.6 123.389 7.1324 6.64 106.335 140.442

Results are averaged over the levels of: Variety
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Confidence level used: 0.95

$`polynomial contrasts of nitro`

contrast estimate SE df t.ratio p.value

linear 147.333 13.4395 51 10.963 <.0001

quadratic -10.333 6.0103 51 -1.719 0.0916

cubic -2.000 13.4395 51 -0.149 0.8823

Results are averaged over the levels of: Variety

The polynomial contrasts for nitro suggest that we could substitute a quadratic trend for
nitro; so let’s fit a third model where nitro is a quantitative predictor with a quadratic
trend:

R> Oats.poly <- lmer(yield ~ Variety + poly(nitro, 2) + (1 | Block/Variety),

+ data=Oats)

If we want to see the same predictions as before, use the at argument to expand the reference
grid:

R> Oats.poly.rg <- ref.grid(Oats.poly, at = list(nitro = c(0, .2, .4, .6)))

R> lsmeans(Oats.poly.rg, ~ Variety)

Variety lsmean SE df lower.CL upper.CL

Golden Rain 104.500 7.7975 8.87 86.821 122.18

Marvellous 109.792 7.7975 8.87 92.113 127.47

Victory 97.625 7.7975 8.87 79.946 115.30

Results are averaged over the levels of: nitro

Confidence level used: 0.95

R> lsmeans(Oats.poly.rg, ~ nitro)

nitro lsmean SE df lower.CL upper.CL

0.0 79.289 7.0923 6.49 62.249 96.329

0.2 99.189 6.8379 5.62 82.178 116.199

0.4 113.922 6.8379 5.62 96.912 130.933

0.6 123.489 7.0923 6.49 106.449 140.529

Results are averaged over the levels of: Variety

Confidence level used: 0.95

(Note: With the at argument omitted, we would obtain different LS means for Variety,
because they would be predictions at the average nitro value of 0.3 rather than the aver-
ages of four predictions.) A simpler way to get the unique values of covariates is to specify
cov.reduce = FALSE; we show this in a call to lsmip, which produces the interaction plot in
Figure 4(b).



Russell V. Lenth 15

(a) Original model (b) Additive quadratic model
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Figure 4: Interaction plots for the Oats experiment

R> lsmip(Oats.poly, Variety ~ nitro, cov.reduce = FALSE)

2.7. Messy data

To illustrate some more issues, and related lsmeans capabilities, consider the dataset named
nutrition that is provided with the lsmeans package. These data come from Milliken and
Johnson (1984), and contain the results of an observational study on nutrition education.
Low-income mothers are classified by race, age category, and whether or not they received
food stamps (the group factor); and the response variable is a gain score (post minus pre
scores) after completing a nutrition training program.

Consider the model that includes all main effects and two-way interactions; and let us look
at the group by race LS means:

R> nutr.lm <- lm(gain ~ (age + group + race)^2, data = nutrition)

R> lsmip(nutr.lm, race ~ age | group)

R> lsmeans(nutr.lm, ~ group*race)

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 4.7083 2.3681 92 0.0049714 9.4115

NoAid Black -2.1904 2.4906 92 -7.1368981 2.7561

FoodStamps Hispanic NA NA NA NA NA

NoAid Hispanic NA NA NA NA NA

FoodStamps White 3.6077 1.1556 92 1.3125215 5.9028

NoAid White 2.2563 2.3893 92 -2.4889667 7.0016

Results are averaged over the levels of: age

Confidence level used: 0.95

Figure 5 shows the predictions from this model. One thing the lsmeans output illustrates is
that lsmeans incorporates an estimability check, and returns a missing value when a predic-
tion cannot be made uniquely. In this example, we have very few Hispanic mothers in the
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Figure 5: Predictions for the nutrition data

dataset, resulting in empty cells. This creates a rank deficiency in the fitted model and some
predictors are thrown out.

We can avoid non-estimable cases by using at to restrict the reference levels to a smaller set:

R> lsmeans(nutr.lm, ~ group*race, at = list(age = "3"))

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 7.5000e+00 2.67205 92 2.1931 12.80693

NoAid Black -3.6667e+00 2.18172 92 -7.9998 0.66642

FoodStamps Hispanic 2.1316e-14 5.34411 92 -10.6139 10.61386

NoAid Hispanic 2.5000e+00 3.77885 92 -5.0051 10.00513

FoodStamps White 5.4194e+00 0.95983 92 3.5130 7.32566

NoAid White -2.0000e-01 1.19498 92 -2.5733 2.17333

Confidence level used: 0.95

Nonetheless, the standard errors for the Hispanic mothers are enormous due to very small
counts. One useful summary of the results is to narrow the scope of the reference levels
to two races and the two middle age groups, where most of the data lie. However, always
keep in mind that whenever we change the reference grid, we also change the definition of
the LS means. Moreover, it may be more appropriate to average the two ages using weights
proportional to their frequencies (23 and 64) in the data set. This may be done by changing
the fac.reduce argument. With those ideas in mind, here are the LS means and comparisons
within rows and columns:

R> wtavg <- function(coefs, lev) (23*coefs[1,] + 64*coefs[2,])/87

R> nutr.lsm <- lsmeans(nutr.lm, ~ group * race, fac.reduce = wtavg,

+ at = list(age=c("2","3"), race=c("Black","White")))

So here are the results
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R> nutr.lsm

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 8.24896 2.9019 92 2.4856 14.01234

NoAid Black -2.88615 1.6914 92 -6.2455 0.47321

FoodStamps White 5.27544 0.8649 92 3.5577 6.99322

NoAid White -0.31236 1.0111 92 -2.3204 1.69571

Results are averaged over the levels of: age

Confidence level used: 0.95

R> pairs(nutr.lsm, by = "race")

race = Black:

contrast estimate SE df t.ratio p.value

FoodStamps - NoAid 11.1351 3.5444 92 3.142 0.0023

race = White:

contrast estimate SE df t.ratio p.value

FoodStamps - NoAid 5.5878 1.3305 92 4.200 0.0001

Results are averaged over the levels of: age

R> pairs(nutr.lsm, by = "group")

group = FoodStamps:

contrast estimate SE df t.ratio p.value

Black - White 2.9735 3.0047 92 0.990 0.3250

group = NoAid:

contrast estimate SE df t.ratio p.value

Black - White -2.5738 1.9706 92 -1.306 0.1948

Results are averaged over the levels of: age

The general conclusion from these analyses is that for age groups 2 and 3, the expected gains
from the training are higher among families receiving food stamps. Note that this analysis is
somewhat different than the results we would obtain by subsetting the data before analysis,
as we are borrowing information from the other observations in estimating and testing these
LS means.

2.8. Trends

The lsmeans package provides a function lstrends for estimating and comparing the slopes
of fitted lines (or curves). To illustrate, consider the built-in R dataset ChickWeight which
has data on the growths of newly hatched chicks under four different diets. The following
code produces the display in Figure 6.
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Figure 6: Growth curves of chicks, dataset ChickWeight.

R> xyplot(weight~Time | Diet, groups = ~ Chick, data=ChickWeight, type="o",

+ layout=c(4,1))

Let us fit a model to these data using random slopes for each chick and allowing for a different
average slope for each diet:

R> Chick.lmer <- lmer(weight ~ Diet * Time + (0 + Time | Chick),

+ data = ChickWeight)

We can then call lsmeans with a trend argument to estimate and compare the average slopes
for each diet. Let’s show comparisons of slopes using a compact letter display.

R> cld (lstrends (Chick.lmer, ~ Diet, var = "Time"))

Diet Time.trend SE df lower.CL upper.CL .group

1 6.3386 0.61049 49.86 5.1123 7.5648 1

2 8.6091 0.83800 48.28 6.9245 10.2938 12

4 9.5558 0.83924 48.56 7.8689 11.2427 2

3 11.4229 0.83800 48.28 9.7382 13.1075 2

Confidence level used: 0.95

P value adjustment: tukey method for a family of 4 means

significance level used: alpha = 0.05

According to the Tukey HSD comparisons (with default significance level of .05), there are
two groupings of slopes: Diet 1’s mean slope is significantly less than 3 or 4’s, Diet 2’s slope
is not distinguished from any other.

There is some additional trickery associated with trend. Consider the same model but with
Time replaced by log(Time + 1):
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R> Chick.lmer2 <- lmer(weight ~ Diet * log(Time + 1) +

+ (0 + log(Time + 1) | Chick), data = ChickWeight)

R> cld (lstrends (Chick.lmer2, ~ Diet, var = "log(Time + 1)"))

Diet log(Time + 1).trend SE df lower.CL upper.CL .group

1 43.101 3.8884 122.79 35.404 50.798 1

2 58.493 5.3099 119.69 47.979 69.006 12

4 65.541 5.3366 121.74 54.977 76.106 2

3 75.900 5.3099 119.69 65.386 86.413 2

Confidence level used: 0.95

P value adjustment: tukey method for a family of 4 means

significance level used: alpha = 0.05

This compares the trends that are fitted by the model. They compare in roughly the same
way, but of course the values are much higher because the transformation has compressed the
scale. But we can also look at the slopes for Time itself:

R> cld (lstrends (Chick.lmer2, ~ Diet, var = "Time"))

Diet Time.trend SE df lower.CL upper.CL .group

1 3.6456 0.32889 122.79 2.9946 4.2967 1

2 4.9475 0.44913 119.69 4.0582 5.8368 12

4 5.5437 0.45138 121.74 4.6501 6.4373 2

3 6.4198 0.44913 119.69 5.5306 7.3091 2

Confidence level used: 0.95

P value adjustment: tukey method for a family of 4 means

significance level used: alpha = 0.05

These results are somewhat comparable to those we obtained with the first model. We will get
a different set of slopes at different Times, because the fitted trends are curved with respect
to Time.

2.9. Multivariate models

The MOats dataset provided in the package gives the Oats data mentioned previously, but
with a multivariate response variable yield with four columns representing the yields of each
plot with the four levels of nitrogen. We fit a model to these data

R> MOats.mlm <- lm(yield ~ Block + Variety, data = MOats)

This model assumes an unstructured covariance matrix on each plot. Here is its reference
grid:

R> ref.grid(MOats.mlm)
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'ref.grid' object with variables:

Block = VI, V, III, IV, II, I

Variety = Golden Rain, Marvellous, Victory

rep.meas = multivariate response levels: 1, 2, 3, 4

The ref.grid function “flattens” the multivariate results by creating a pseudo-factor to ac-
count for the dimensions of the multivariate response. By default, the pseudo-factor is named
rep.meas with integer levels. It’s often better to specify a more meaningful name and levels:

R> MOats.rg <- ref.grid(MOats.mlm, mult.levs = list(nitro = c(0,.2,.4,.6)))

R> MOats.rg

'ref.grid' object with variables:

Block = VI, V, III, IV, II, I

Variety = Golden Rain, Marvellous, Victory

nitro = multivariate response levels: 0.0, 0.2, 0.4, 0.6

Now we can obtain LS means and such just as we did previously

R> ( MOats.lsm <- lsmeans(MOats.rg, ~ nitro | Variety) )

Variety = Golden Rain:

nitro lsmean SE df lower.CL upper.CL

0.0 80.000 5.5406 10 67.655 92.345

0.2 98.500 6.6020 10 83.790 113.210

0.4 114.667 8.6954 10 95.292 134.041

0.6 124.833 7.3032 10 108.561 141.106

Variety = Marvellous:

nitro lsmean SE df lower.CL upper.CL

0.0 86.667 5.5406 10 74.321 99.012

0.2 108.500 6.6020 10 93.790 123.210

0.4 117.167 8.6954 10 97.792 136.541

0.6 126.833 7.3032 10 110.561 143.106

Variety = Victory:

nitro lsmean SE df lower.CL upper.CL

0.0 71.500 5.5406 10 59.155 83.845

0.2 89.667 6.6020 10 74.956 104.377

0.4 110.833 8.6954 10 91.459 130.208

0.6 118.500 7.3032 10 102.227 134.773

Results are averaged over the levels of: Block

Confidence level used: 0.95

R> ( MOats.pcon <- contrast(MOats.lsm, "poly") )
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Variety = Golden Rain:

contrast estimate SE df t.ratio p.value

linear 150.6667 24.2087 10 6.224 0.0001

quadratic -8.3333 9.5169 10 -0.876 0.4018

cubic -3.6667 31.9574 10 -0.115 0.9109

Variety = Marvellous:

contrast estimate SE df t.ratio p.value

linear 129.1667 24.2087 10 5.336 0.0003

quadratic -12.1667 9.5169 10 -1.278 0.2300

cubic 14.1667 31.9574 10 0.443 0.6670

Variety = Victory:

contrast estimate SE df t.ratio p.value

linear 162.1667 24.2087 10 6.699 0.0001

quadratic -10.5000 9.5169 10 -1.103 0.2957

cubic -16.5000 31.9574 10 -0.516 0.6169

Results are averaged over the levels of: Block

We can even obtain contrasts of contrasts to obtain interaction contrasts. In the following,
we compare the polynomial contrasts among the varieties:

R> pairs(MOats.pcon, by = "contrast")

contrast = linear:

contrast1 estimate SE df t.ratio p.value

Golden Rain - Marvellous 21.5000 34.236 10 0.628 0.8085

Golden Rain - Victory -11.5000 34.236 10 -0.336 0.9401

Marvellous - Victory -33.0000 34.236 10 -0.964 0.6147

contrast = quadratic:

contrast1 estimate SE df t.ratio p.value

Golden Rain - Marvellous 3.8333 13.459 10 0.285 0.9565

Golden Rain - Victory 2.1667 13.459 10 0.161 0.9858

Marvellous - Victory -1.6667 13.459 10 -0.124 0.9916

contrast = cubic:

contrast1 estimate SE df t.ratio p.value

Golden Rain - Marvellous -17.8333 45.195 10 -0.395 0.9184

Golden Rain - Victory 12.8333 45.195 10 0.284 0.9567

Marvellous - Victory 30.6667 45.195 10 0.679 0.7809

Results are averaged over the levels of: Block

P value adjustment: tukey method for a family of 3 means
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2.10. GLMM example

The dataset cbpp in the lme4 package, originally from Lesnoff, Laval, Bonnet, Abdicho,
Workalemahu, Kifle, Peyraud, Lancelot, and Thiaucourt (2004), provides data on the inci-
dence of contagious bovine pleuropneumonia in 15 herds of zebu cattle in Ethiopia, collected
over four time periods. These data are used as the primary example in lme4 for the glmer

function, and it is found that a model that accounts for overdisperion is advantageous; hence
the addition of the (1|obs) in the model fitted below. lsmeans may be used as in linear
models to obtain marginal linear predictions for a generalized linear model or, in this case, a
generalized linear mixed model.

R> cbpp$obs <- 1:nrow(cbpp)

R> cbpp.glmer <- glmer(cbind(incidence, size - incidence)

+ ~ period + (1 | herd) + (1 | obs), family = binomial, data = cbpp)

Here are the LSmeans for the four periods

R> (cbpp.lsm <- lsmeans(cbpp.glmer, ~ period))

period lsmean SE df asymp.LCL asymp.UCL

1 -1.5003 0.29671 NA -2.0819 -0.91868

2 -2.7268 0.39924 NA -3.5094 -1.94420

3 -2.8291 0.41800 NA -3.6485 -2.00977

4 -3.3665 0.53373 NA -4.4128 -2.32031

Confidence level used: 0.95

These LSmeans are on the scale of the linear predictor, so the units are on the logit scale. If
you want to see the predicted incidences, simply summarize the results and ask for "response"
predictions:

R> summary(cbpp.lsm, type = "response")

period prob SE df asymp.LCL asymp.UCL

1 0.182382 0.044245 NA 0.110869 0.285226

2 0.061411 0.023012 NA 0.029047 0.125187

3 0.055771 0.022012 NA 0.025370 0.118181

4 0.033358 0.017210 NA 0.011976 0.089455

Confidence level used: 0.95

The response| predictions for certain contrasts come out on the odds-ratio scale:

R> summary(contrast(cbpp.lsm, "trt.vs.ctrl1"), type = "response")

contrast odds.ratio SE df z.ratio p.value

2 - 1 0.29332 0.140879 NA -2.5536 0.0317

3 - 1 0.26479 0.130777 NA -2.6905 0.0213
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4 - 1 0.15470 0.091829 NA -3.1441 0.0050

P value adjustment: sidak method for 3 tests

P values are asymptotic

Tests are performed on the linear-predictor scale

When degrees of freedom are not available, as in this case, lsmeans emphasizes that fact by
displaying NA for degrees of freedom and in the column headings.

3. Conclusions

lsmeans helps extend R’s capabilities for the analysis of experimental data, especially for
those users who have relied on SAS’s least-squares means provisions. It goes beyond SAS in
a few useful ways—for example, allowing for factor combinations even when an interaction is
not in the model, and estimating trends. It provides a flexible and relatively simple way to
obtain predictions from a linear model, or marginal averages thereof; and it also provides an
extension of multcomp’s capabilities along these lines.
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