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Kernel density estimation is a popular tool for visualising the distribution of data. See
Simonoff (1996), for example, for an overview. When multivariate kernel density estimation is
considered it is usually in the constrained context with diagonal bandwidth matrices, e.g. in the
R packages sm (Bowman and Azzalini, 2005) and KernSmooth (Wand, 2006). We introduce a new
R package ks which implements diagonal and unconstrained data-driven bandwidth matrices for
kernel density estimation, which can also be used for multivariate kernel discriminant analysis.
The ks package implements selectors for 2- to 6-dimensional data.

This vignette contains only a brief introduction to using ks for kernel density estimation for
2-dimensional data. See Duong (2007) for a more detailed account.

For a bivariate random sample X1,X2, . . . ,Xn drawn from a density f , the kernel density
estimate is defined by

f̂(x;H) = n−1
n∑

i=1

KH(x − Xi)

where x = (x1, x2)T and Xi = (Xi1, Xi2)T , i = 1, 2, . . . , n. Here K(x) is the kernel which is
a symmetric probability density function, H is the bandwidth matrix which is symmetric and
positive-definite, and KH(x) = |H|−1/2K(H−1/2x). The choice of K is not crucial: we take
K(x) = (2π)−1 exp(−1

2xT x) the standard normal throughout. In contrast, the choice of H
is crucial in determining the performance of f̂ . The most common parameterisations of the
bandwidth matrix are the diagonal and the general or unconstrained which has no restrictions
on H provided that H remains positive definite and symmetric, that is

H =
[
h2

1 0
0 h2

2

]
or H =

[
h2

1 h12

h12 h2
2

]
.

This latter parameterisation allows kernels to have an arbitrary orientation whereas the former
only allows kernels which are oriented to the co-ordinate axes.

For our target density, we use the ‘dumbbell’ density, given by the normal mixture
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displayed on the left in Figure 1. This density is unimodal. On the right is a sample of 200 data
points.
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> library(ks)

> set.seed(8192)

> samp <- 200

> mus <- rbind(c(-2, 2), c(0, 0), c(2, -2))

> Sigmas <- rbind(diag(2), matrix(c(0.8, -0.72, -0.72, 0.8), nrow = 2),

+ diag(2))

> cwt <- 3/11

> props <- c((1 - cwt)/2, cwt, (1 - cwt)/2)

> x <- rmvnorm.mixt(n = samp, mu = mus, Sigma = Sigmas, props = props)
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Figure 1: Target ‘dumbbell’ density. (Left) contour plot. (Right) Scatter plot.

We use Hpi for unconstrained plug-in selectors and Hpi.diag for diagonal plug-in selectors.

> Hpi1 <- Hpi(x = x)

[,1] [,2]
[1,] 0.4054542 -0.2778998
[2,] -0.2778998 0.3349442

> Hpi2 <- Hpi.diag(x = x)

[,1] [,2]
[1,] 0.1859013 0.0000000
[2,] 0.0000000 0.1312804

To compute a kernel density estimate, the command is kde, which creates a kde class object

> fhat.pi1 <- kde(x = x, H = Hpi1)

> fhat.pi2 <- kde(x = x, H = Hpi2)
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We use the plot command to display these kernel density estimates. This generic plot command
calls plot.kde. The default is a contour plot with the upper 25%, 50% and 75% contours of the
(sample) highest density regions. These regions are also plotted by the sm library.

> plot(fhat.pi1)

> plot(fhat.pi2)

The respective kernel density estimates are produced in Figure 2. The diagonal bandwidth
matrix constrains the smoothing to be performed in directions parallel to the co-ordinate axes,
so it is not able to apply accurate levels of smoothing to the obliquely oriented central portion.
The result is a multimodal density estimate. The unconstrained bandwidth matrix correctly
produces a unimodal density estimate.
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Figure 2: Kernel density estimates with plug-in selectors

The unconstrained SCV (Smoothed Cross Validation) selector is Hscv and its diagonal version
is Hscv.diag. In Figure 3, the most reasonable density estimate is from the unconstrained SCV
selector.

> Hscv1 <- Hscv(x = x)

[,1] [,2]
[1,] 0.5647800 -0.4044703
[2,] -0.4044703 0.4934641

> Hscv2 <- Hscv.diag(x = x)

[,1] [,2]
[1,] 0.284455 0.0000000
[2,] 0.000000 0.2460504

So far the calls to kde compute f̂ exactly. This exact computation is O(n2) complexity
which becomes infeasible for large sample sizes, say n = 10 000 on a current desktop PC. One
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Figure 3: Kernel density estimates with cross validation selectors

common technique for increasing computational speed for these large samples is binned kernel
estimation, as implemented in KernSmooth (Wand, 2006). Binning converts the data sample of
size n to a grid of size m, so binned estimation remains O(m) regardless of the sample size. A
suitable binning grid size for bivariate data is m = 1512.

Binned estimation is only defined with diagonal bandwidth matrices. Applicable cases in-
clude kernel density estimators with diagonal bandwidth matrices and the pilot estimators for
the plug-in and SCV selectors. In the Hpi, Hpi.diag, Hscv, Hscv.diag and kde commands, we
set binned=TRUE, e.g.

> x <- rmvnorm.mixt(10000, mus, Sigmas, props)

> H <- Hpi(x = x, binned = TRUE)

> Hdiag <- Hscv.diag(x = x, binned = TRUE)

> fhatdiag <- kde(x = x, H = Hdiag, binned = TRUE)

The different bandwidth selectors available in ks may now pose a problem of too much choice.
The unconstrained bandwidth selectors will be better than their diagonal counterparts when the
data have large mass oriented obliquely to the co-ordinate axes, like for the dumbbell data. The
unconstrained plug-in and the SCV selectors can be viewed as generally recommended selectors.
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