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Abstract

We present a histogram-inspired visualization scheme for numeric data. The resulting
visualizations are shown to have several advantages over ordinary histograms. The scheme
is based on the minimum description length principle from information theory and hinges
on a novel generalization of the Kraft—McMillan theorem. Effectively, the scheme performs
binning by compression. An implementation is made available in the form of the R package
histmdl.
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1. Introduction

The classical histogram is a useful tool for getting an impression of the distribution of data.
Its graphical nature gives it a considerable advantage over textual representation in the form
of tables. By its simplicity, the classical histogram is computationally easy to work with and
more sensitive to non-smooth structural properties such as outliers than smoothing methods
such as those involving kernels.

Once normalized, a histogram can be thought of as a piecewise constant probability density
function. Thus, generating a histogram comes down to finding a piecewise constant probability
density function that is a reasonable estimate of a probability density function assumed to
have generated the data at hand. Usually, this estimation is done by settling on a set of
discontinuity points, which, in the context of histograms, are called breakpoints. The density
between breakpoints is then chosen in accordance with the maximum likelihood estimate,
that is, as the fraction of data that falls between the breakpoints. In this sense, generating a
histogram consists of a discretization step and the definition of a multinomial distribution on
the resulting bins.

Commonly, breakpoints are restricted to be equidistant and all effort is put in determining
the distance between consecutive breakpoints. Around 1980, methods were proposed, and
proven optimal under certain assumptions, to find a suitable bin width for given data (Scott
1979; Freedman and Diaconis 1981). However, histograms with constant bin width are known
to be overly smooth at high density regions and they do not respond well to spikes (Denby
and Mallows 2009). Moreover, histograms with constant bin width can be suggestive of
features that are insignificant. These effects are demonstrated in Figure 1, which shows
regular histograms of data sampled as follows, using R (R Core Team 2014).

R> x1 <- ¢ (rnorm (1000, -6), rnorm (1000, 6))
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R> x2 <- ¢ (runif (50), runif (50, max=3))

For the bimodal distribution underlying x1, the binning of the histogram is too coarse. For
the mixed uniform distribution underlying x2, the histogram gives an overly complex image.
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Figure 1: Regular histograms of data sampled according to mixed distributions. The gener-
ating density functions are shown using dashed lines.

As a remedy to the shortcomings just identified, we propose a method of determining break-
points and densities that is based on local features of the data, instead of on global features
such as the number of data points, the standard deviation (Scott 1979), or the inter-quartile
range (Freedman and Diaconis 1981). Rather than looking at breakpoints in isolation, we will
take the density between potential breakpoints into consideration too. Our piecewise constant
density function will come about as a series of nested closed intervals to which densities are
associated. Thus, our type of histogram is generated by the iterative selection of closed in-
tervals, until some stopping criterion is met. The selection and stopping criteria are based
on the compression of the data attainable using the constructed density function. While the
application of complexity-based reasoning to density estimation is not new (Hall and Hannan
1988), we apply a novel generalization of the Kraft—-McMillan theorem that allows us to accu-
rately penalize the addition of extra breakpoints. In doing so, our approach is an application
of the minimum description length principle (MDL) (Griinwald 2007).

2. Encoding with densities

In probability theory, MDL-based reasoning depends on the Kraft—-McMillan theorem (Cover
and Thomas 1991), which relates probabilities to code lengths. Although the usual formu-
lation of the Kraft—-McMillan theorem is about probability mass functions, the theorem can
be generalized to cover probability density functions (Witteveen, Duivesteijn, Knobbe, and
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Griinwald 2014). In effect, this allows MDL-based reasoning in settings with continuous ran-
dom variables. We include the generalization of the Kraft-McMillan theorem here, together
with an informal proof.

Theorem 1. A function £ : R — R that behaves like a code length is induced by a density
function p on R as follows:
l(z) = —logp(x) + k,

where k is a discretization constant that goes to infinity as the fineness of the discretization
increases.

Proof. By the Radon—Nikodym theorem, we can think of the probability of x € R under p as
p(x)dA(z), where A\ denotes the Lebesgue measure on R. The Lebesgue measure is translation
invariant, thus we can drop the dependency on z. This yields p(x)d\ as an expression for
the probability of z under p. The Kraft-McMillan theorem now prescribes a function that
behaves like a code length, of the form ¢(x) = —log(p(z)d\) = —logp(z) — logdA. It is
common to think of dA as a limit of a sequence monotonically approaching zero from above.
Using this convention, —log d is the limit of a sequence monotonically approaching infinity.
As the sequence does not depend on z, the term does not influence the behavior of ¢(z), which
justifies the expression in the theorem. O

Given some data and a probability density function, Theorem 1 enables us to determine, up
to a constant, the code length needed to describe the data with respect to the probability
density function. Denoting the data by w and the probability density function by H, we will
use Lyata(w | H) for this code length. Note that lgaa(w | H) is thus only defined up to an
additive constant. If we restrict to piecewise constant H, we could say that lgata(w | H)
captures the complexity of data w under histogram-like probability density function H. In
order to apply MDL for the selection of a histogram-like probability density function, we
confine our attention to a class of piecewise constant probability density functions for which
we will define a complexity measure fp;et. Selection then proceeds by trying to find a function
H in this class that minimizes the two-part code length

ghist(H) + gdata(w | H) (1)

As said, our class will consist of probability density functions defined by nested closed intervals,
where each interval is provided with a density. For mathematical convenience, we will not
consider the specification of densities in our complexity measure fp;st. In Section 4 we will
see that our implementation allows for the reservation of a code length for the specification
of densities up to some precision. Thus, we define {54 recursively as the code length of a
specification of nested intervals. Given a closed interval I C R, we use a single bit to encode
whether or not there is an additional closed interval, I’ C I. If there is, we encode it and
recurse on it. Moreover, we also recurse on the outside of I’. That is, we transform I by
contracting I’ to a point and recurse on this transformed interval. For the specification of I’
inside I, we use a uniform distribution on the space of possible interval endpoints inside I.
2

The corresponding probability density function takes on the value Xz On intervals inside I,

hence, by Theorem 1, the code length of specifying I’ this way is

2
—log ——— + Enist-
Og)\(I)2+ hist
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Thus, if the root of the nested intervals of some H is I and we designate, if applicable, the
two constituents of the recursion by Hj, and Hyy, we get, in bits,

fs () {1 —log # + Ehist + Chist(Hin) + Chist (Hout)  with further nesting
hist =
1 otherwise

Note that the above defines a proper code length to the class of nested intervals, instead of
to the class of probability density functions based on nested intervals. However, we feel that
this code adequately balances representing our interests and being mathematically pleasant
to work with.

3. Estimation

For data w, we are after histogram-like probability density functions H that minimize (1).
We can approximate such H greedily, one interval at a time. Therefore, we want to find an H
with only one level of nesting that minimizes lhist (H f ) + Lgata(w | H ). Since Chist (f[ ) takes on
the same value for all H that have only one level of nestmg, only Lgata(w | H ) is relevant for
our minimization. Now, let I be the root interval of H and assume I covers all of w. Further,
let I’ be the interval inside I in H , let n be the size of w, and n;, the number of elements
of w that fall within I’. Setting nowt = n — ni, and denoting by pi, and pout the probability
densities inside and outside I’ respectively, we obtain, by Theorem 1,

Lata (W | ﬁ) = —MNin lOg Pin — Nout 10g Pout + nkdata-

Note that probability densities are maximized, and the code length thus minimized, by taking
I as small as possible and taking maximum likelihood estimates for pi, and Pout - Therefore
we take the extreme values of w as endpoints of I and set pi, and poys to /\( I/) and X7 ) /\( 0

respectively. The main variable in our minimization thus becomes I’. Finding an optimal I’
given w is simplified by the following.

Assumption. We assume that the optimal I’ is so that we have py, > pout. This holds for
instance when a sufficiently smooth distribution with concave features underlies w.

With this assumption in place, the optimal I’ has elements of w as its endpoints. Indeed,
intervals of this kind maximize the inside data density. Under the above assumption, finding
the interval with the lowest corresponding code length is possible using an algorithm based
on Kruskal’s Minimum Spanning Tree algorithm (Cormen, Leiserson, and Rivest 1991). Our
algorithm, Algorithm 1, uses a disjoint-set data structure to keep track of locally optimal
intervals and merges them to get to a globally optimal interval. As it is based on Kruskal’s
algorithm, our algorithm has a running time in O(nlogn), which we consider attractive.

We want to apply Algomthm 1 recursively and for that we need to know When to stop our
recursion. Given an H that has a smgle level of nesting, we compare it to H which has no
nesting, and prefer the H € {H, H} that roughly minimizes lyist(H) + laata(w | H). We
say roughly, since we will discard the cost of recursion in f;5; because our candidate H was
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Algorithm 1 BEST-INTERVAL(w)

for each z in w do
MAKE-SET(z)
best[z] < the interval covering only z
end for
{we assume w is sorted}
for each neighbouring =,y in w, in increasing order of distance between them, do
I, < best[FIND-SET(x)]
I, < best[FIND-SET(y)]
I,, < the smallest interval covering I, and I,
u < UNION(z,y)
{we abuse notation slightly by using I’ in place of H }
best[u] < argmingcry, 1, 1.} fdata(w | 1)
end for
return best[u]

restricted to a single level of nesting a priori. With I, I, n, ny, and noy as before, we have

A . 2
Ehist(H) + Edata(w | H) =1-1log ——+75 + Fnist

I)?
Nin Nout
- ll’l1 N7 ou 1 N7 TN N7 TN atas
Min 108 X ry ~ Mowt 108 Xy Ty K

o O n
Ehist(H) + Edam(w | H) =1- nlog ﬁ + nkdata.
Note how a comparison of H and H is possible without deciding on kgata, as it influences both
code lengths in the same way. We set kpijt to —2log %, for which Witteveen et al. (2014)
give a rationale. Consequently, the difference between the above two code lengths becomes
Nin Nout

2
— log ﬁ — Nin log m — Nout log m

n
nlog —-—. 2
+nlog T (2)
If, for some I’, this difference turns out negative, I’ is deemed informative and we will proceed
with our recursion. The resulting procedure is included as Algorithm 2, which computes a

histogram-like probability density function fitting data w.

4. Analysis

The method outlined in Algorithm 2 follows the divide and conquer paradigm. Precisely how
often the algorithm recurses depends on the whimsicality of the data. The more there is to
show about the data, the longer it takes to generate our nested intervals. Nevertheless, the
running time of Algorithm 1 ensures that our method has a worst case running time that is
polynomial in the number of data points.

The procedure of estimating histogram-like probability density functions as described in the
previous section is implemented in the R package histmdl. Using two parameters, it is possible
to tune the behavior of the histmdl function. These parameters mainly serve to filter spurious
spikes. The first parameter is support=, which is responsible for lower bounding the number
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Algorithm 2 RECURSIVE-INTERVALS(w)

Initialize H with the smallest interval covering w
I' + BEST-INTERVAL(w)
if I’ makes (2) negative then
recurse on w N I’
contract w N I’ to a single point and recurse
undo the contraction and add the recursion outcomes to H
else
ignore I’ as it is not informative
end if
return H

of data points in every interval. The second parameter is gain=, which is added to (2) and thus
places a lower bound on the compression obtained per additional interval. This parameter
enables us to account for the code length needed to specify the densities inside intervals, which
we ignored in our framework.

Even though our examples in Section 1 were somewhat contrived, it is nice to see that our
new visualization successfully addresses the shortcomings we have identified.

R> library (histmdl)
R> histmdl (x1, gain=2)
R> histmdl (x2)
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Figure 2: Our new histogram-like visualizations added to Figure 1.

In generating the Figure 2, we have increased the gain= parameter a little for data x1 to
filter two spikes covering 4 and 8 elements respectively. Using only 9 bins instead of 11, as
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used by the classical histogram, our new visualization for x1 follows the generating density
function more closely than the classical histogram. The new visualization manages to increase
detail precisely where relevant. For x2, the new visualization closely reconstructs the density
function that was used to generate the data. This is not entirely surprising, as the class
of piecewise constant probability density functions which our method deals with consists of
probability density functions just like the one we used to generate x2. Yet the new visual-
ization slightly overestimates the densities. This is to be expected by the greedy nature of
Algorithm 1, which was motivated by an urge to maximize the likelihood of the data. Conse-
quently, the new visualization for x2 is based on an interval [0.019,2.934] with a subinterval
[0.019,0.981]. Indeed, these intervals are a little narrower than [0, 3] and [0, 1], respectively.

For a less contrived demonstration, we turn to a small real-world dataset: eruption data of
the Old Faithful geyser. It is known that the dataset is a little distorted. Rounding and
measurement errors are both present. To overcome the rounding, we reconstruct the eruption
duration in seconds. Although the data is thus discrete, there are 124 different values, most
occurring only once, which is enough to favor our approach for continuous data. The resulting
Figure 3 does not give an indication to worry much about measurement errors.

R> histmdl (round (60 * faithful$eruptions))
R> hist (round (60 * faithful$eruptions))

What catches the eye in Figure 3 is the spike between 107 and 113 seconds. This spike covers
30 eruptions and is hardly present in the ordinary histogram. Contrary to seeing similar
spikes in ordinary histograms, such spikes in histogram-like visualizations of our new kind
deserve attention. After all, they survived a filter on their contribution to compressibility. In
other words, they were deemed significant by the method. We will not research this particular
spike further, but do remark that such observations add to the value of our histogram-like
visualizations.

5. Summary

We identified two shortcomings in ordinary histograms, namely that they easily become too
coarse for data sampled from multimodal distributions, and that they can present an overly
complex image depicting insignificant density fluctuations. As a remedy, we introduced a class
of histogram-like probability density functions and an associated method for the estimation
of such functions given some data. This method is implemented in the R package histmdl and
is shown able to overcome the shortcomings identified.
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