
An Introduction to the fifer Package in R

Dustin A. Fife
Department of Arthritis and Clinical Immunology

Oklahoma Medical Research Foundation

Introduction

The development of this package began in July of 2013. I found myself spending the
majority of my time manipulating the dataset and very little of my time actually analyzing
the data. As I did, Figure 1 came to mind, and I thought “There’s got to be a more efficient
way of doing this.” Since then I have diligently labored to create an R package for basic
data manipulation, as well as preliminary analyses and plotting.

The purpose of this paper is to introduce the fifer package and familiarize the reader
with the basic functions and how they can be used to simplify data analysis. In the first
part, I talk about installing the package. In the second part, I introduce some of the basic
data manipulation functions. Next, I show some of the basic functions for data analysis.
I end by introducing several plotting functions. Throughout the paper, I try to keep the
commentary to a minimum so the user can easily breeze through this without having to
digest my witty banter.

Installation

Code

1. first the package devtools must be installed

install.packages("devtools")

2. then we must load the package

require(devtools)

3. all that rigamarole to get the function install_github,

which is how we will install fifer

install_github("fifer", username="dustinfife")

4. now load the fifer package

require(fifer)

Explanation of Code

Currently, fifer is located on github and to install from github requires a special
function called install_github that is a part of another package devtools. The first two
steps are simply there to install the devtools package so fifer can be installed.

Dustin Fife may be contacted at email:fife.dustin@gmail.com

email:fife.dustin@gmail.com

FIFER PACKAGE IN R 2

Figure 1. Relationship between time spent and the size of the task for nerds and non-nerds. Pulled
from http://www.globalnerdy.com/2012/04/24/geeks-and-repetitive-tasks/

Data Manipulation

Introduction

Most of the data manipulation I do involves retrieving an excel file with 16.4 × 1018

columns. In reality, I only need about ten of those columns. In the past, this required
opening a massive excel file, waiting, waiting, watching my computer crash, waiting for a
restart, opening again, rinse and repeat. When I finally get it open, then I started deleting
columns I didn’t need until I only had the ten remaining columns.

This method is problematic for two reasons: (1) it is time consuming, and (2) (more
importantly) if a change is made at the excel file level, those changes are not reflected in
my condensed matrix. With this in mind, I created a series of functions that make it simple
to extract only the columns you need.

The r Function

Often times, the variables of interest are listed consecutively (e.g., there’s a section
of demographics that covers 8 columns, there’s a section of certain types of biomarkers for
60 columns, then there’s a section of clinical information for 18 columns). The r function
is used to select a consecutive range of columns and requires three arguments: the name of
the starting variable, the name of the ending variable, and the names of the dataset. An
optional argument tells the computer to return the string names or the column indices.

http://www.globalnerdy.com/2012/04/24/geeks-and-repetitive-tasks/

FIFER PACKAGE IN R 3

first load the fakeMedicalData dataset

data(fakeMedicalData)

show all the column names (well, the first 60 at least)

names(fakeMedicalData)[1:60]

[1] "ID" "disease" "gender" "ethnicity" "age"

[6] "B_regs_10A" "B_regs_10B" "B_regs_10C" "B_regs_10D" "B_regs_10E"

[11] "B_regs_1A" "B_regs_1B" "B_regs_1C" "B_regs_1D" "B_regs_1E"

[16] "B_regs_2A" "B_regs_2B" "B_regs_2C" "B_regs_2D" "B_regs_2E"

[21] "B_regs_3A" "B_regs_3B" "B_regs_3C" "B_regs_3D" "B_regs_3E"

[26] "B_regs_4A" "B_regs_4B" "B_regs_4C" "B_regs_4D" "B_regs_4E"

[31] "B_regs_5A" "B_regs_5B" "B_regs_5C" "B_regs_5D" "B_regs_5E"

[36] "B_regs_6A" "B_regs_6B" "B_regs_6C" "B_regs_6D" "B_regs_6E"

[41] "B_regs_7A" "B_regs_7B" "B_regs_7C" "B_regs_7D" "B_regs_7E"

[46] "B_regs_8A" "B_regs_8B" "B_regs_8C" "B_regs_8D" "B_regs_8E"

[51] "B_regs_9A" "B_regs_9B" "B_regs_9C" "B_regs_9D" "B_regs_9E"

[56] "BCI_10A" "BCI_10B" "BCI_10C" "BCI_10D" "BCI_10E"

extract all column indices between B_regs_10A and B_regs_9B

bregs = r("B_regs_10A", "B_regs_9E", data.names=names(fakeMedicalData))

bregs

[1] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

[26] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

return the names instead of the column indices

bregs = r("B_regs_10A", "B_regs_9E", data.names=names(fakeMedicalData), names=T)

bregs

[1] "B_regs_10A" "B_regs_10B" "B_regs_10C" "B_regs_10D" "B_regs_10E"

[6] "B_regs_1A" "B_regs_1B" "B_regs_1C" "B_regs_1D" "B_regs_1E"

[11] "B_regs_2A" "B_regs_2B" "B_regs_2C" "B_regs_2D" "B_regs_2E"

[16] "B_regs_3A" "B_regs_3B" "B_regs_3C" "B_regs_3D" "B_regs_3E"

[21] "B_regs_4A" "B_regs_4B" "B_regs_4C" "B_regs_4D" "B_regs_4E"

[26] "B_regs_5A" "B_regs_5B" "B_regs_5C" "B_regs_5D" "B_regs_5E"

[31] "B_regs_6A" "B_regs_6B" "B_regs_6C" "B_regs_6D" "B_regs_6E"

[36] "B_regs_7A" "B_regs_7B" "B_regs_7C" "B_regs_7D" "B_regs_7E"

[41] "B_regs_8A" "B_regs_8B" "B_regs_8C" "B_regs_8D" "B_regs_8E"

[46] "B_regs_9A" "B_regs_9B" "B_regs_9C" "B_regs_9D" "B_regs_9E"

But we haven’t reached the cool part yet. So far, we have a vector of variable names
(or a vector of column indices). What we’d like to do is subset the dataset so that it only
gives us the names we want. That brings us to the make.null function.

The make.null Function

The make.null function takes a series of column names (or indices) and either retains
or deletes those columns.

FIFER PACKAGE IN R 4

keep only the demographic/b_regs data

newData = make.null("ID","gender", "ethnicity", "age",

bregs,

data=fakeMedicalData, keep=TRUE)

or we could drop everything between bregs and the end

newData2 = make.null(

r("BCI_10A", "TNF_9E", data.names=names(fakeMedicalData)),

data=fakeMedicalData, keep=FALSE)

check the dimensions of the dataset

dim(fakeMedicalData)

[1] 60 405

dim(newData)

[1] 60 54

dim(newData2)

[1] 60 55

For more information, type ?make.null to access the documentation for this function.

The excelMatch Function

Sometimes when people give me data requests, it goes something like this:

Can you see if disease activity, Column BQ, is related to Blood Pressure (Column
MX), Red Blood Cell counts (Column AF), and/or age (Column F)?

The excelMatch function allows the user to specify a string (or a vector of strings)
corresponding to Excel columns. It will then return the column indices or the actual names
of the variables.

extract the variable names corresponding to Excel Columns AA, CD, and FF

excel.names = excelMatch("AA", "CD", "FF", names=names(fakeMedicalData))

excel.names

[1] "B_regs_4B" "BCI_5B" "Glucose_1B"

or, we can extract the column indices instead

(note it does not require names in original dataset)

excel.names = excelMatch("AA", "CD", "FF", n=length(names(fakeMedicalData)))

excel.names

[1] 27 82 162

FIFER PACKAGE IN R 5

now subset the matrix to just those using make.null

new.dat = make.null(excel.names, data=fakeMedicalData, keep=T)

head(new.dat)

B_regs_4B BCI_5B Glucose_1B

1 5.438953 7.358441 24.81897

2 7.633085 10.370046 31.46726

3 5.929818 9.916064 22.31351

4 4.703581 7.921184 25.94599

5 5.732308 10.078530 31.70801

6 5.617234 8.341014 27.15707

The subsetString function

Often when I import a dataset, the names are just miserable to look at. This is often
because the researchers I work with make strange notes to themselves in the columns (e.g.,
“ANA by IFA 0=neg >40=pos”). R does its best to make sense of it, but it inevitably
comes out looking like this: ANA.by.IFA.0.neg...40.pos. Often, only the first chunk of
information is useful to me (in this case ANA). So, I created a function that looks for a
separator (in this case a period), then extracts only the first (or only the second, third, etc.)
element of a string.

generate random data (normally this would come from importing a file)

data = data.frame(matrix(rnorm(10*3), ncol=3))

names(data) = c("ANA.by.IFA.0.neg.40...pos",

"dsDNA....Calculated.",

"IgG..10.neg..10.19.low..20.89.mod...90.high")

print the names (so we can see how messy they are)

names(data)

[1] "ANA.by.IFA.0.neg.40...pos"

[2] "dsDNA....Calculated."

[3] "IgG..10.neg..10.19.low..20.89.mod...90.high"

rename the column names, taking only the first element

names(data) = subsetString(names(data), sep=".", position=1)

names(data)

[1] "ANA" "dsDNA" "IgG"

Here, I specified that the separator is a period and that I should take the first element.

I do recommend using caution with this one. Sometimes the naming isn’t consistent
and applying the same rule across the entire dataset may not work. For example, if the
original name was something like “anti-dsDNA, pos>10, neg<10”, it would come out as
anti.dsDNA..pos.10..neg.10, and using the code above would produce anti, which isn’t
what we want.

FIFER PACKAGE IN R 6

The write.fife and read.fife functions

Let us suppose that we have used the above functions to create a subsetted dataset
(we’ll call it formattedMatrix.csv). Let us also suppose that some unsavory researcher in
our lab decided to update the data matrix and didn’t tell us. Unbeknownst to us, our entire
analysis is wrong because we are using an outdated matrix. After basking in pride when we
see our publication in print, some young arrogant biostatistician accuses you of fabricating
your data because he cannot reproduce your results. It isn’t until then that you realize
with horror the error that you made. After dozens of lawsuits, several public addresses of
apology, a half-dozen grant funding removals, and moving to Haiti, you decide something
needs to change. So you start using the write.fife and read.fife functions!

What write.fifer does is create a separate file (kinda like meta data) that allows the
user to specify the location of the original data file. Then, read.fifer will output that
information. This way, the statistician is never too far removed from knowing what the
original data file was that created the subsetted matrix.

The example below shows how one might use it.

original.path = "documents/research/medical_data_apr_2014.xlsx"

require(xlxx)

d = read.xlsx(original.path, sheetIndex=1, startRow=3)

do some data manipulation and create a dataset

called d_new (not actually shown)

write.fife(d_new, newfile="documents/research/medicalFormatted.csv",

originalfile=original.path, fullpath=T)

Now, when we read that file back in, we get the following message:

Loading objects:

original.file

Original File Name: documents/research/medical_data_apr_2014.xlsx

Hopefully this will lead to less confusion (and zero lawsuits).

FIFER PACKAGE IN R 7

Basic Data Analysis

Hopefully that brief introduction will make data manipulation easier. In this section,
I will introduce a series of function that make basic data analysis easier.

The missing.vals Function

My background is in handling missing data, so often the first thing I want to know
is what variables have missing information. I created a function called missing.vals that
does just that. It only requires one argument (a dataset) and it will return a list that
indicates which variables have missing values (and how many are missing).

missing.vals(fakeMedicalData)

Number Missing

B_regs_2C 18

B_regs_6D 18

B_regs_8B 18

BCI_2E 18

BCI_6A 18

BCI_6C 18

Glucose_4E 18

Glucose_7E 18

HemoLeptin_4A 18

HemoLeptin_6C 18

TGF_3C 18

TGF_5E 18

TGF_9B 18

TGF_9D 18

TNF_1D 18

B_regs_1B 6

HemoLeptin_6B 6

TGF_1D 6

TGF_9C 6

TNF_10D 6

The demographics Function

Often times, the first step in any paper is to display the demographics. I borrowed a
demographics function from the day2day package. The user specifies a formula (in this case
disease = age + gender + ethnicity) and the function returns the demographics, with disease
on the columns and the other variables on the rows. Note the command latex=FALSE. When
latex=TRUE, this function can be easily used to export into a LATEXdocument for easy table
display (see Table 1).

demographics(disease~age + gender + ethnicity, data=fakeMedicalData, latex=FALSE)

FIFER PACKAGE IN R 8

case control

age 40.50 sd = 6.96 42.13 sd = 6.64

gender

Female 15 (50 percent) 11 (37 percent)

Male 15 (50 percent) 19 (63 percent)

ethnicity

AA 8 (27 percent) 3 (10 percent)

EA 7 (23 percent) 11 (37 percent)

His 12 (40 percent) 8 (27 percent)

NA 3 (10 percent) 8 (27 percent)

Table 1: Demographics of the Fake Medical Dataset

case (n=30) control (n=30)

age 40.50 ± 6.96 42.13 ± 6.64
gender
Female 15 (50%) 11 (37%)

Male 15 (50%) 19 (63%)
ethnicity

AA 8 (27%) 3 (10%)
EA 7 (23%) 11 (37%)
His 12 (40%) 8 (27%)
NA 3 (10%) 8 (27%)

The make.formula Function

I probably use the make.formula function more than anything else. With many
analyses, a formula is required to perform the analysis (e.g., lm(y x + z)). Oftentimes,
I am doing data mining where the list of variables is quite extensive. Rather than writing
a big long formula, I use the make.formula function. It requires two strings as arguments:
the response variable name and the name of the predictor variable(s). Combining this with
the r function makes formula specification quite easy.

list all the variables I want to use using the r function

predictors = r("Glucose_10A", "Glucose_9E", names(fakeMedicalData), names=T)

make sure it worked!

predictors

[1] "Glucose_10A" "Glucose_10B" "Glucose_10C" "Glucose_10D" "Glucose_10E"

[6] "Glucose_1A" "Glucose_1B" "Glucose_1C" "Glucose_1D" "Glucose_1E"

[11] "Glucose_2A" "Glucose_2B" "Glucose_2C" "Glucose_2D" "Glucose_2E"

[16] "Glucose_3A" "Glucose_3B" "Glucose_3C" "Glucose_3D" "Glucose_3E"

[21] "Glucose_4A" "Glucose_4B" "Glucose_4C" "Glucose_4D" "Glucose_4E"

[26] "Glucose_5A" "Glucose_5B" "Glucose_5C" "Glucose_5D" "Glucose_5E"

FIFER PACKAGE IN R 9

[31] "Glucose_6A" "Glucose_6B" "Glucose_6C" "Glucose_6D" "Glucose_6E"

[36] "Glucose_7A" "Glucose_7B" "Glucose_7C" "Glucose_7D" "Glucose_7E"

[41] "Glucose_8A" "Glucose_8B" "Glucose_8C" "Glucose_8D" "Glucose_8E"

[46] "Glucose_9A" "Glucose_9B" "Glucose_9C" "Glucose_9D" "Glucose_9E"

now write the formula

formula = make.formula("disease", predictors)

and look at it

formula

disease ~ Glucose_10A + Glucose_10B + Glucose_10C + Glucose_10D +

Glucose_10E + Glucose_1A + Glucose_1B + Glucose_1C + Glucose_1D +

Glucose_1E + Glucose_2A + Glucose_2B + Glucose_2C + Glucose_2D +

Glucose_2E + Glucose_3A + Glucose_3B + Glucose_3C + Glucose_3D +

Glucose_3E + Glucose_4A + Glucose_4B + Glucose_4C + Glucose_4D +

Glucose_4E + Glucose_5A + Glucose_5B + Glucose_5C + Glucose_5D +

Glucose_5E + Glucose_6A + Glucose_6B + Glucose_6C + Glucose_6D +

Glucose_6E + Glucose_7A + Glucose_7B + Glucose_7C + Glucose_7D +

Glucose_7E + Glucose_8A + Glucose_8B + Glucose_8C + Glucose_8D +

Glucose_8E + Glucose_9A + Glucose_9B + Glucose_9C + Glucose_9D +

Glucose_9E

<environment: 0x7fe63354eb18>

The univariate.tests Function

In biostatistics, we often deal with large p/small n datasets (i.e., lots of variables
with few people). Often a first filtering step is to perform univariate tests on each of
the predictor variables, then narrow down to those that pass statistical significance. The
univariate.tests function automatically detects which test to use (t-test, ANOVA, or
chi-square). See documentation (?univariate.tests) for details.

compute significance tests for each variable in dataset but the ID column

p.values = univariate.tests(dataframe=fakeMedicalData, exclude.cols=1, group="disease")

adjust those p-values using FDR (false discovery rate)

p.adjusted = p.adjust(p.values, method="fdr")

display only those that exceed statistical significance

p.adjusted[p.adjusted<.05]

Glucose_6A HemoLeptin_5A

0.001515263 0.015493634

FIFER PACKAGE IN R 10

Plotting

Rather than talking about each plotting function individually, I’ve included a table
(Table 2) that lists many of the plotting functions in the fifer package. What follows is
sample code showing the many plotting functions.

Table 2: List of functions and their purposes in the fifer package.

Function Name What it does

auto.layout Automatically sets the layout for multiple plots on one page.
Good for odd number of plots.

densityPlotR Plot the densities (distributions) of a quantitative variable,
conditional on a grouping variable.

par1 Automatically sets plotting parameters to my favorite default.
par2 Automatically sets plotting parameters to another default.
prism.plots Mimicks the behavior of prism plots where the jittered grouping variable

is located on the x-axis and the quantitative variable is on the y-axis,
with bars for means or medians

plotSigBars Used in conduction with prism.plots to mark which differences are
statistically significant.

string.to.colors Given a vector of group labels (e.g., “male”, “female”, “female”, “male”, etc.)
string.to.colors will automatically generate a vector of colors to correspond to
the group labels.

FIFER PACKAGE IN R 11

best.five = names(sort(p.adjusted)[1:5])

prepare the layout

auto.layout(5)

for (i in 1:length(best.five)){

do my favorite default plotting parameters

par1()

make a formula

formula = make.formula(best.five[i], "disease")

plot them

densityPlotR(formula, data=fakeMedicalData, main="")

}

1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Glucose_6A

D
en

si
ty

case
control

40 60 80 100 120

0.
00

0
0.

01
0

0.
02

0
0.

03
0

HemoLeptin_5A

D
en

si
ty

case
control

20 25 30 35 40 45 50

0.
00

0.
02

0.
04

0.
06

0.
08

CD_10E

D
en

si
ty

case
control

40 50 60 70 80 90 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

CD_7A

D
en

si
ty

case
control

40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

Glucose_2C

D
en

si
ty

case
control

Figure 2. The top five predictors for the fakeMedicalDataset

FIFER PACKAGE IN R 12

set layout again (but only first four)

auto.layout(4)

for (i in 1:4){

do my favorite default plotting parameters

par1()

make a formula

formula = make.formula(best.five[i], "disease")

plot them

prism.plots(formula, data=fakeMedicalData)

show significance bars

plotSigBars(formula, data=fakeMedicalData, type="tukey")

}

2.
0

2.
5

3.
0

3.
5

G
lu

co
se

_6
A ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

case control

p<.001 50
60

70
80

90
10

0
11

0

H
em

oL
ep

tin
_5

A

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

case control

p=1e−04

25
30

35
40

45

C
D

_1
0E

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

case control

p=5e−04

50
60

70
80

90

C
D

_7
A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

case control

p=5e−04

Figure 3. The top four predictors for the fakeMedicalDataset, plotted using densities instead of
prism plots

FIFER PACKAGE IN R 13

change default parameters

par2()

color code according to disease status

colors = string.to.colors(fakeMedicalData$disease, colors=c("blue", "red"))

change symbol according to disease status

pch = as.numeric(string.to.colors(fakeMedicalData$disease, colors=c(15, 16)))

plot it

plot(fakeMedicalData[,best.five[1]], fakeMedicalData[,best.five[2]], col=colors,

pch=pch, xlab = best.five[1], ylab=best.five[2])

legend("bottomright", c("Case", "Control"), pch=c(15,16),

col=c("blue", "red"), bty="n")

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

2.0 2.5 3.0 3.5

50
60

70
80

90
10

0
11

0

Glucose_6A

H
em

oL
ep

tin
_5

A

●

Case
Control

Figure 4. A scatterplot showing that color-codes (and codes with different symbols) the different
groups.

FIFER PACKAGE IN R 14

simulate skewed data (just for the demo)

x = rnorm(100)^2

y = rnorm(100)^2

induce a correlation of .6 (approx) with choselski decomp

cor = matrix(c(1, .6, .6, 1), nrow=2)

skewed.data = cbind(x,y)%*%chol(cor)

names(skewed.data) = c("x", "y")

show original plot

par2()

plot(skewed.data, xlab="x", ylab="y")

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

0 1 2 3 4 5 6

0
1

2
3

4
5

x

y

Figure 5. A scatter plot of the skewed data.

FIFER PACKAGE IN R 15

now show the spearman version of the plot

par2()

spearman.plot(skewed.data, xlab="rank(x)", ylab="rank(y)", pch=16)

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

rank(x)

ra
nk

(y
)

0 2.2 4.4 6.61

r=0.535

0.
01

1.
9

3.
78

5.
66

Figure 6. A spearman plot of the skewed data.

	Introduction
	Installation
	Code
	Explanation of Code

	Data Manipulation
	Introduction
	The r Function
	The make.null Function
	The excelMatch Function
	The subsetString function
	The write.fife and read.fife functions

	Basic Data Analysis
	The missing.vals Function
	The demographics Function
	The make.formula Function
	The univariate.tests Function

	Plotting

