
Vignette for fanplot package

Guy J. Abel

Wittgenstein Centre (IIASA, VID/ÖAW, WU),
Vienna Institute of Demography/Austrian Academy of Sciences

g.j.abel@gmail.com

February 27, 2013

1 Introduction

The fanplot package contains a collection of R (R Development Core Team, 2012) func-
tions to effectively display plots of sequential distributions such as probabilistic forecasts.
The plotting of distributions are based around two functions. The first, pn, calculates the
percentiles for a set of sequential distributions over a specified time period. The second,
fan, plots the calculated percentiles of the sequential distributions. The resulting plot is
a set of coloured polygon, with shadings corresponding to the percentile values.

This document illustrates these two core functions using MCMC simulation results
from fitted stochastic volatility models. These MCMC simulations can be recreated from
data and BUGS model also contained in the fanplot package, via the R2OpenBUGS
package of (Sturtz et al., 2005). These are first shown for dataframe type object where
there is no time series type attributes, followed by plots based on a ts object.

2 Volatility Plots

To illustrate the basics of the fanplot package consider the svpdx data contained in the
tsbugs (Abel, 2013) package. This contains information on the log return of the Pound-
Dollar exchange rate from 2nd October 1981 to 28th June 1985. For a view of the first
part of the data, use the head function, after loading the fanplot package.

> library("tsbugs")

> head(svpdx)

date pdx

1 1981-10-02 -0.3555316

2 1981-10-05 1.4254090

3 1981-10-06 -0.4439399

4 1981-10-07 1.0256500

5 1981-10-08 1.6775790

6 1981-10-09 0.3690041

This data is a dataframe object, and is difficult to express it as a standard ts object due
to the irregular nature of the data. It is best plot initially without an x-axis, which can
then be added later using the axis function:

1

> #plot

> plot(svpdx$pdx, type = "l", xaxt = "n", xlab = "Time", ylab = "Return")

> #x-axis

> svpdx$rdate <- format(svpdx$date, format = "%b %Y")

> mth <- unique(svpdx$rdate)

> qtr <- mth[seq(1,length(mth),3)]

> axis(1, at = match(qtr, svpdx$rdate), labels = qtr, cex.axis = 0.55)

> axis(1, at = match(mth, svpdx$rdate), labels = FALSE, tcl = -0.2)

If the xaxt argument was not used in the plot function and the labels not added later,
the x-axis would be based on the row number of each observation in the svpdx data, i.e.
an index sequence from 1 to 945.

To produce the x-axis with date information in the above code, a new column is added
to svpdx for the month-year combination of each observation. Objects mth and qtr are
then created to mark each month and quarter in the data series respectively. Major axis
ticks are then plotted on the unseen 1 to 945 index for the beginning of every quarter
with a corresponding label, whilst minor axis tick are also plotted for beginning of every
month.

Meyer and Yu (2002) used the above Pound-Dollar exchange rate data to fit various
stochastic volatility models in WinBUGS (Lunn et al., 2000). One such stochastic model
they fitted to the data is contained in my1.txt in the model directory of the fanplot
package. The model of Meyer and Yu (2002) can be refitted in BUGS via R, using the
R2OpenBUGS package (Sturtz et al., 2005):

> library("R2OpenBUGS")

> # write model file:

> my1.bug <- dget(system.file("model", "my1.txt", package = "fanplot"))

> write.model(my1.bug, "my1.txt")

2

> # take a look:

> file.show("my1.txt")

> # run openbugs

> my1<-bugs(data=list(n=length(svpdx$pdx),y=svpdx$pdx),

inits=list(list(phistar=0.975,mu=0,itau2=50)),

param=c("mu","phi","tau","theta"),

model="my1.txt",

n.iter = 11000, n.burnin = 1000, n.chains = 1)

Here, the same initial parameter values as Meyer and Yu (2002) are set. One chain of
the MCMC simulation is run for 11000 iterations, with the first 1000 used for burn in.
The resulting bugs object contains the MCMC simulation results for the parameters in
the stochastic volatility model, including the time dependent volatility parameters (θt).
This set of sequential posterior distributions are of interest when studying the variation
in the data over time.

The fanplot package can effectively display the entire posterior distribution of θt. The
separate MCMC simulation of the volatility be obtained from my1 using1,

> th.mcmc <- my1$sims.list$theta

A plot of the entire posterior distribution of θt first requires a calculation of the percentiles
over all t using the pn function,

> library("fanplot")

> th.pn <- pn(sims = th.mcmc)

This produces a pn type object, where rows represent the time index and columns the
percentiles calculated.

> head(th.pn[,c(1:3, 97:99)])

1% 2% 3% 97% 98% 99%

[1,] -1.05400 -0.999006 -0.9811 -0.2069 -0.1615000 -0.091476

[2,] -1.00907 -0.947200 -0.9127 -0.2230 -0.1829000 -0.116800

[3,] -1.01600 -0.945000 -0.9030 -0.1869 -0.1776000 -0.151200

[4,] -1.02800 -0.932900 -0.8911 -0.1714 -0.1466000 -0.082590

[5,] -1.00600 -0.917500 -0.8740 -0.1367 -0.0973464 -0.047270

[6,] -1.05101 -0.935700 -0.8998 -0.1297 -0.0543700 0.029130

Every percentile between 1st and 99th are calculated by default, however, more or less
percentiles can be calculated via the p argument in the pn function. The number of
percentiles calculated has a direct impact on the plotting of the sequential distributions,
as we shall see later. Additional arguments to control the indexing of the rows, which is
of use when the time series are from regular intervals, will also be discussed later.

In order to plot the th.pn percentile object the plot area must be first set. This can
be done using type = "n" argument in plot. Both the xlim and ylim arguments need to
be set appropriately. In the code below, the xlim argument is set between 1 and 945, the
length of th.pn. The ylim argument is set to the range of th.pn to enable all percentiles
calculated to be included in the plot area.

1The fanplot package contains a shorter MCMC simulation (due to overall package size constraints)
of θt, which is overwritten when creating a new th.mcmc object

3

Once the plot area is set up, the fan function can be used to add the th.pn object.
Each percentile in the plot is represented by a different shade of the default colour scale
in the fan.col argument of fan. In addition, contour lines are drawn on every decile,
with labels for these decides add to the right hand side.

> #empty plot

> plot(NULL, type = "n", xlim = c(1, 945), ylim = range(th.pn), ylab = "Theta")

> #add fan

> fan(th.pn)

The fan.txt function can be add more labels to a set of sequential distributions
plotted using fan. When used in addition to the fan function, labels for closely spaced
deciles can be controlled to allow a more spacious display of labels in comparison to those
shown in the above plot. It can also be used to add text labels to percentiles that are not
of a unit of 10, such as the 1st or 99th. The code below demonstrates these features. First
a empty plot area is created with the x-axis changed to dates using the same method as
in the plot of the original data. Second, the percentiles of the sequential distribution is
plotted for θt with no text labels (setting txt = NA) and contour lines for the 1st and
99th percentiles alongside some selected deciles. The ln argument in the fan function is
set to include contour lines at percentiles where future text labels are to be added.

> #empty plot with x-axis added later

> plot(NULL, type = "l", xlim = c(1, 945), xlab = "Time", xaxt = "n",

ylim = range(th.pn), ylab = "Theta")

> axis(1, at = match(qtr, svpdx$rdate), labels = qtr, cex.axis = 0.55)

> axis(1, at = match(mth, svpdx$rdate), labels = FALSE, tcl = -0.2)

> #add fan

> fan(th.pn, txt = NA, ln = c(1,10,30,50,70,90,99))

4

> #add text labels for percentiles

> fan.txt(th.pn, pn.r = c(1,10,50,90,99))

> fan.txt(th.pn, pn.l = c(1,30,70,99))

The colour of the percentiles in the sequential distributions can be easily altered from
the default heat.colors scheme. A new set of graded colours can be passed to the fan

function using the fan.col argument. The number of colours should be half the number
of percentiles (columns) in the pn object. New graded colour schemes can be constructed
in a number of ways. For example, using the colorRampPalette a new shading from
blue to white, via grey can be created.

> pal <- colorRampPalette(c("royalblue", "grey", "white"))

Using this palette, 50 colours (approximately half the number of percentiles calculated in
pn) can be defined:

> fancol <- pal(50)

For a change, this new colour scheme is used to plot the posterior distribution of the
standard deviation over time, σt, which is derived as such:

> sigma.pn <- pn(sims = sqrt(exp(th.mcmc)))

The new colour scheme can then be passed to the fan function for sigma.pn, with contour
lines on selected percentiles:

> #empty plot with x-axis added later

> plot(NULL, type = "l", xlim = c(1, 945), xlab = "Time", xaxt = "n",

ylim = range(sigma.pn), ylab = "Standard Deviation")

> axis(1, at = match(qtr, svpdx$rdate), labels = qtr, cex.axis = 0.55)

5

> axis(1, at = match(mth, svpdx$rdate), labels = FALSE, tcl = -0.2)

> #add fan

> fan(sigma.pn, fan.col = fancol, ln = c(1, 10, 50, 90, 99))

3 Model Fits

To illustrate plots in the fanplot package that use time series objects (ts) based on
regularly spaced data, a stochastic volatility model is fitted to the change of population
growth rate of England and Wales, similar to that in Abel et al. (2010).

Population data from 1841 to 2007 from Human Mortality Database (2012) are in-
cluded in the fanplot package (ew). The growth rate, that the stochastic volatility model
is based on can be derived following Rogers (1995) as such

> r <- ts(ew[2:167]/ew[1:166]-1, start=1841)

Mean stationarity can be obtained by differencing the series

> y <- diff(r)

Using this differenced growth rate time series, we can build a BUGS stochastic volatility
model using the tsbugs package Abel (2013).

> pop.bug <- sv.bugs(y, k=25, sim=TRUE,

sv.mean.prior2 = "dgamma(0.000001,0.000001)",

sv.ar.prior2 = "dunif(-0.999, 0.999)")

The sv.bugs function specifies for 25 future values to be forecast and simulations of the
model to be taken. Specifications for alternative prior distributions for the parameters in
the volatility process are also stated. This BUGS model can be run using R2OpenBUGS,

6

> library("R2OpenBUGS")

> # write model file:

> writeLines(pop.bug$bug, "pop.txt")

> # take a look:

> file.show("pop.txt")

> # run openbugs

> pop <- bugs(data = pop.bug$data,

inits = list(list(psi0.star=exp(12), psi1=0.5, itau2=0.5)),

param = c("psi0", "psi1", "tau", "y.new", "y.sim"),

model = "pop.txt",

n.iter = 11000, n.burnin = 1000, n.chains = 1)

As was the case with the exchange rate data, one chain of the MCMC simulation is run
for 11000 iterations, with the first 1000 used for burn in. The resulting bugs object
contains the MCMC simulation results for the parameters in the stochastic volatility
model, including the time dependent model fits (E(yt)), forecasts of the future population
growth rate (r̂t+h|t) and population (p̂t+h|t).

The fanplot package can efficiently display these sequential distributions in a number
of ways. Consider the MCMC simulation of the model fit, which can be extracted from
the pop using,

> y.mcmc <- pop$sims.list$y.sim

A plot of the entire posterior distribution of the model fits requires the calculation of
percentiles over all t using the pn function.

> y0 <- tsp(y)[1]

> y.pn <- pn(sims = y.mcmc, start = y0)

Here, the corresponding start date is also given so that the pn object takes the relevant
time series properties when plotted. This saves on the previous effort for the non-regularly
spaced exchange rate data, in setting up date labels on the x-axis. The time series
properties are stored in the tsp attributes of the new y.pn object.

> str(y.pn)

pn [1:165, 1:99] -0.00343 -0.00368 -0.00389 -0.00454 -0.00517 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:99] "1%" "2%" "3%" "4%" ...

- attr(*, "tsp")= num [1:3] 1842 2006 1

These attributes can be directly used to set up the x-axis limits in the plot area, alongside
y-axis limits based on the difference in the growth rate, which was the basis for the
stochastic variance model. The fan function can then be used to add the sequential
posterior distributions with contour lines at the 1st, 10th, 90th and 99th percentiles
using the ln argument. Note, the fan function will automatically only draw and label
contour lines given in the ln argument. If the user wishes to subdue this and add text
labels later, they can do so by adding the txt = NA as was demonstrated earlier. The
original data can also be plotted on top of the posterior distributions using the lines

function:

7

> #empty plot

> plot(NULL, type = "l", xlim = range(time(y.pn)), xlab = "Time",

ylim = range(y), ylab = "Expected Model Fit")

> #add fan

> fan(y.pn, ln = c(1, 10, 90, 99))

> #add data

> lines(diff(r), lwd = 2)

A coarser set of colours can be plotted by creating a pn object with fewer percentiles.
This is done by defining the p argument of the pn function with the only the percentiles
for which colour changes are desired.

> y.pn2 <- pn(sims = y.mcmc, p = c(1, 20, 40, 60, 80, 99), start = y0)

Note, that elements of p will ultimately be adjusted to be symmetric around 50. For
example if a user set p = c(1, 40, 80) a pn object identical the one above would be
returned. This allows the user, if desired, to only define percentiles either above or below
50.

The new y.pn2 object can be plotted using the default arguments for contour lines
and text labels. Lines are never drawn for percentiles not calculated in the pn object. As
a result, in the plotting of y.pn2 there are no contour lines on the 10th, 30th, 50th, 70th
and 90th deciles.

> #empty plot

> plot(NULL, type = "l", xlim = range(time(y.pn)), xlab = "Time",

ylim = range(diff(r)), ylab = "Expected Model Fit")

> #add fan

> fan(y.pn2)

> #add data

> lines(diff(r), lwd = 2)

8

4 Forecast Fans

To illustrate the plotting of forecast fans we use the MCMC predictive distributions in the
pop object. These are used to derive posterior predictive distributions of the population
growth rate and population total using the diffinv function,

> ynew.mcmc <- pop$sims.list$y.new

> rnew.mcmc <- apply(ynew.mcmc, 1, diffinv, xi = tail(r,1))

> rnew.mcmc <- t(rnew.mcmc[-1,])

> pnew.mcmc <- apply(1+rnew.mcmc, 1, cumprod) * tail(ew,1)

> pnew.mcmc <- t(pnew.mcmc)

Percentiles for rnew.mcmc can be derived as

> r0 <- tsp(r)[2]

> rnew.pn <- pn(sims = rnew.mcmc, start = r0 + 1)

Note, that as rnew.mcmc is a simulation of forecasts, the start argument set to the year
after the last observation of the population growth rate. Forecast fans are plotted after
estimating the percentile objects, much in the same way as they were for the volatility
and model fit in the previous sections. However, some extra care must be taken in setting
up the xlim to allow space for the fan to appear in the right hand side of plotting area.
For the population growth rate this is demonstrated alongside a small section of the
underlying simulation data (the first 30 MCMC samples of predictive distribution) that
are represent a small part of the underlying data used to calculate the percentiles.

> par(mfrow = c(1 ,2))

> #sample of underlying simulation data

9

> plot(r, ylim = range(r), xlim = c(1940, 2040), lwd = 2,

ylab = "Population Growth Rate")

> for (i in 1:30) lines(ts(rnew.mcmc[i,], r0 + 1), col = "grey")

> #plot r

> plot(r, ylim = range(r), xlim = c(1940, 2040), lwd = 2,

ylab = "Population Growth Rate")

> #add fan

> fan(rnew.pn)

The anchor argument in pn can be utilised to bridge the gap between the predictive
distribution fan and the final data point. The associated starting point for creating an
time series type object for plotting must also be adjusted to account for the anchoring.
For the pnew.mcmc the two alternative sets of percentile calculations, with or without an
anchoring can be derived as such:

> p0 <- tsp(ew)[2]

> pnew.pn <- pn(sims = pnew.mcmc/1e+06, start = p0 + 1)

> pnew.pn2 <- pn(sims = pnew.mcmc/1e+06, p = c(1, 10, 40, 50),

anchor = tail(ew,1)/1e+06, start = p0)

For the pnew.pn2 only a few percentiles are calculated, which will provide a coarser set
of shade in the plotting of the predictive distribution. In addition, the anchor is set to
the last observed population count, hence the start point is now on the last observation
p0, not at p0 + 1. In both calculations simulations are divided by one million to provide
easier interpretation.

Both pn objects can be plotted side by side using the fan function. Contour line
colours can be altered directly using the ln.col argument for the display of pnew.pn2
on the right hand side below, in comparison to the default plot on the left hand side.

10

> par(mfrow = c(1 ,2))

> #plot ew

> plot(ew/1e+06, ylim = c(40, 80), xlim = c(1940, 2040), lwd = 2,

ylab = "Population (m)")

> #add fan

> fan(pnew.pn)

> #plot ew

> plot(ew/1e+06, ylim = c(40, 80), xlim = c(1940, 2040), lwd = 2,

ylab = "Population (m)")

> #add fan

> fan(pnew.pn2, ln.col = "black")

References

Abel, G. J. (2013). tsbugs: Create time series BUGS models. Retrieved 26 February 2013,
from http://cran.r-project.org/web/packages/tsbugs.

Abel, G. J., J. Bijak, and J. Raymer (2010, October). A comparison of official population
projections with Bayesian time series forecasts for England and Wales. Population

Trends , 95–114.

Human Mortality Database (2012). Available at http://www.mortality.org. University
of California, Berkeley (USA) and Max Planck Institute for Demographic Research
(Germany).

Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter (2000, October). WinBUGS - A

11

http://cran.r-project.org/web/packages/tsbugs
http://www.mortality.org

Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and

Computing 10 (4), 325–337.

Meyer, R. and J. Yu (2002). BUGS for a Bayesian analysis of stochastic volatility models.
Econometrics Journal 3 (2), 198–215.

R Development Core Team (2012). R: A Language and Environment for Statistical Com-

puting. Vienna, Austria: R Foundation for Statistical Computing.

Rogers, A. (1995). Multiregional Demography: Principles, Methods and Extensions (1
ed.). John Wiley & Sons.

Sturtz, S., U. Ligges, and A. Gelman (2005). R2WinBUGS: a package for running Win-
BUGS from R. Journal of Statistical Software 12 (3), 1–16.

12

	Introduction
	Volatility Plots
	Model Fits
	Forecast Fans

