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Abstract

expectreg is an R package for estimating expectile curves from univariate and multivariate data.
Expectile curves are a valuable least squares alternative to quantile regression which is based on
linear programming techniques. expectreg provides a number of functions for different approaches
taken to estimate expectiles investigated since their introduction in [NEWEY and POWELL(1987)]
using asymmetric least squares.

1 Overview

This section offers an overview over the functions implemented in expectreg. It assumes that the user
already installed the package successfully.

> library(expectreg)

> help(package = "expectreg")
> data(package = "expectreg")

will give you a short overview about the available help files of the package as well as the data that will
be provided with expectreg. The package includes the following functions:

base

dkoenker

ebeta

ekoenker

enorm

eunif
expectile.boost
expectile.laws
expectile.restricted
expectile.bundle
pkoenker
gkoenker

quant .boost
rkoenker

Creates bases for a regression based on covariates

Density of a special distribution developed by Roger Koenker [KOENKER(1992)]
Expectiles of the beta distribution

Expectiles of a special distribution developed by Roger Koenker

Expectiles of the normal distribution

Expectiles of the uniform distribution

Expectile regression using boosting

Expectiles regression of additive models

Algorithm proposed by [HE(1997)] for restricted regression quantiles
Location-scale type model for non-crossing expectiles

Distribution function for a special distribution developed by Roger Koenker
Quantile function for a special distribution developed by Roger Koenker
Quantile regression using boosting

Random variable generated from a special distribution developed by Roger Koenker

2 Expectiles in a nutshell

2.1 Introduction to expectiles using LAWS

Asymmetric least squares or least asymmetrically weighted squares (LAWS) is a weighted generalization
of ordinary least squares (OLS) estimation. LAWS minimizes

S = Zwi(p)(ywm(p))Q,



with

oy J P if y; > pi(p)
wi(p) = { 1—p ify <pilp) e

where y; is the response and p;(p) is the population expectile for different values of an asymmetry param-
eter p with 0 < p < 1. The model is fitted by alternating between weighted regression and recomputing
weights until convergence (when the weights do not change anymore). Equal weights (p = 0.5) give a
convenient starting point.

For the expectile curve p(p) several choices for the functional form are possible. The original proposal
in [NEWEY and POWELL(1987)] favored a linear model. We suggest a more flexible functional form for
the expectile curve. [SCHNABEL and EILERS(2009)] proposed to model expectile curves with P—splines.
Other types such as other splines, markov random field or other options are also possible.

2.2 Expectile bundle model

In theory it is not possible that expectile curves cross, but in estimation practise it is often encountered
due to sampling variation. The expectile bundle model is a location-scale type of model that allows
for the simultaneous estimation of a set of expectiles. By its construction crossing over of curves is not
possible.

In the expectile bundle model the expectiles p(z,p) are defined by

plz,p) = tz) +cp)s(z) (2)

where t(x) is a common smooth trend of all expectile curves specified by a P-spline. ¢(p) is the asymmetry
function of the bundle describing the spread, i.e. the set of standardized expectiles. s(z) represents the
local width of the expectile bundle and is also formulated as a P-spline. The estimation procedure
consists of two steps. In Step 1 the common trend #(x) is estimated. Then in step 2 we use the detrended
response y — t(z) to estimate s(z) and ¢(p) in an iterative procedure.

The expectiles bundle model is explained in more detail in [SCHNABEL and EILERS(2010)].

2.3 Restricted regression quantiles

In [HE(1997)] proposed a version of restricted regression quantiles to avoid the crossing of quantile curves.
His model for computing non-parametric conditional quantile functions takes the following form

y= f(a)+ s(@)e.

[HE(1997)] takes a three-step procedure where he determines first the conditional median function and
then in a second step estimate the smooth non-negative amplitude function. The third step consists of
the step wise calculation of the “asymmetry factor” ¢, for each a—quantile curve separately.

2.4 Expectile and quantile estimation using boosting

A

1. Initialize all model components as fg ](z) =0,j=1,...,r. Set the iteration index to m = 1.

2. Compute the current negative gradient vector u with elements

, t=1,...,n.

0
ui = = - p(yi,n)
n n=Alm=11(z;)

3. Choose the base-learner g;. that minimizes the Lo-loss, i.e. the best-fitting function according to

n

j* = argmin Z:(uz —§;(2):)
1<j<r i=1

2

where g, = S;u.



- Alm—1
4. Update the corresponding function estimate to fg:l] = fgm }

P,
s JFT

5. Increase m by one. If m < mgop g0 back to step 2., otherwise terminate the algorithm.

+ vg;-, where v € (0,1] is a step

o Alm—1
size. For all remaining functions set fg-m] = fg-m

For expectile regression, the empirical risk is given the asymmetric least squares criterion (1) and the
appropriate loss function is defined as p(y,n) = w(7)(y — n,)%. The corresponding negative gradient is
therefore obtained as

u; = 2w (7)(yi — 1)

3 Example and available data

Expectile estimation can be used in a almost any type of situation where one is interested in estimating
smooth curves in non-central parts of the data under consideration. The data provided with the package
are

> data(india)
> data(dutchboys)

india consists of a data sample of 4000 observations with 6 variables from a 'Demographic and Health
Survey’ about malnutrition of children in India. Data set only contains 1/10 of the observations and
some basic variables to enable first analyses. Details are given in [FENSKE et al.(2009)].

dutchboys contains data from the Fourth Dutch growth study and includes 6848 observations on 10
variables. More information can be found in [VAN BUUREN and FREDRIKS(2001)].

3.1 Basic examples

The basic function expectiles.laws can be used to estimate 11 expectiles curves for different levels of
asymmetry parameter p. The results are shown in the following graph.

> data(dutchboys)

> exp.l <- expectile.laws(dutchboys[, 3] ~ base(dutchboys[, 2],
+ "pspline"), smooth = "acv")

Due to the large number of observations in the data set crossing of curves is already unlikely to hap-
pen. Nevertheless we apply also the expectile bundle model implemented in expectile.bundle to this
example.

> exp.b <- expectile.bundle(dutchboys[, 3] ~ base(dutchboys[, 2],
+ "pspline"), smooth = "none")

Additionally we analyze the data with the algorithm proposed in [HE(1997)] implemented in expec-
tile.restricted.

> exp.r <- expectile.restricted(dutchboys[, 3] ~ base(dutchboys/[,
+ 2], "pspline"), smooth = "schall")

3.2 Applied boosting

> exp.boost <- expectile.boost(hgt ~ bbs(age, df = 5, degree = 2),
+ dutchboys, mstop = rep(500, 11))
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Figure 1: Expectile curves estimated using expectile.laws
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Figure 2: Expectile curves estimated using expectile.bundle

Figure 3: Expectile curves estimated using expectile.restricted
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Figure 4: Expectile curves estimated using expectile.boost



