
Package envnames helps navigate through user-defined
and function execution environments and find objects in

nested environments
Daniel Mastropietro (mastropi@uwalumni.com)

2018-07-20

Introduction

The main goal of this package is to overcome the limitation of the environmentName() function in the
base package which does not return the name of an environment unless it is a package, a namespace or a
pre-defined environment (e.g. the global environment, the base environment). In fact, the environmentName()
function returns an empty string when the argument is a user-defined environment. On the other hand, the
environment itself is identified solely by its memory address, which makes it difficult to track an environment
once we have defined a number of them. These limitations can be seen by running the following code snippet:
env1 <- new.env()
cat("The name of the environment just defined is: ", environmentName(env1), "(empty)\n")

The name of the environment just defined is: (empty)
cat("Simply referencing the environment just defined yields its memory address,

which is not so helpful:"); print(env1)

Simply referencing the environment just defined yields its memory address,
which is not so helpful:

<environment: 0x000000000f3da610>

The envnames package solves this problem by creating a lookup table that maps environment names to their
memory addresses. Using this lookup table, it is possible to retrieve the name of any environment where an
object resides, including function execution environments.

Why do we care about knowing the name of user-defined environments? That piece of information may be
handy for example under the following scenarios:

• working in a package where user-defined environments have been defined in a nested structure.
This package facilitates the navigation through those environments and their connection between them
(eliminating the use of ls() as a rudimentary tool to identify the human-understandable environment
(e.g. env1) referred by an environment given by its memory address (e.g. normally <environment:
0x063dbc90> in 32-bit systems or <environment: 0x00000000063dbc90> in 64-bit systems), as
already seen above). For more information and examples, see the get_env_names() function that
returns a map of currently defined environments and the way they are connected or nested.

• debugging an application.
This package makes it easier to retrieve variables in different environments; for instance, retrieve the
value of a variable in the parent environment to the environment where the debugger is currently
positioned. For more information and examples, see function get_obj_value().

Apart from this core functionaliy, additional tools were added during the package development process which
include:

1

mailto:mastropi@uwalumni.com

• an enhancement of the built-in exists() function with the capability of searching objects recursively
–i.e. in environments defined inside other environments–, as well as searching objects that are the result
of expressions. This functionality is provided by the obj_find() function.

• a simplification of the output obtained when retrieving the calling function name and the stack of
calling functions, currently provided by the built-in function sys.call(). This functionality is provided
by the get_fun_calling() and get_fun_calling_chain() functions which return simple strings or
array of strings with the function names of interest.

• the retrieval of the memory address of an object. This functionality is provided by the
get_obj_address() function.

Currently the package has 11 functions directly accessible to the user (plus one function that is an alias).

Naming convention: Function names are all small caps and the underscore is used to separate keywords (e.g.
environment_name(), get_obj_address(), etc.)

Description of selected functions

This section describes the functionality of 6 selected functions (sorted by relevance):

1) get_env_names(), to retrieve the name of all the environments defined in the workspace together with
their memory address. This is an address-name lookup table, the core element of the package that
allows the “magic” to happen.

2) environment_name() / get_env_name() (its alias), to get the name of user-defined and execution
environments.

3) obj_find(), to find an object in the workspace and recursively within environments.

4) get_fun_calling_chain(), to get the function calling stack displayed in an easier format than
sys.calls().

5) get_obj_address() to get the memory address of an object by first looking for it (using obj_find()).

6) address(), to return the memory address of an object existing in the environment where the function
is run.

The following 5 functions are not covered by the vignette at this point:

• get_fun_calling(), which returns the last function call in the calling chain returned by
get_fun_calling_chain().

• get_fun_env(), which returns the execution environment(s) of a function matching a name or a memory
address.

• get_fun_name(), which returns the name of the function called at a given level of the function calling
chain.

• get_obj_name(), which returns the name of the object at a specified parent generation leading to a
function’s parameter.

• get_obj_value(), which returns the value of the object at a specified parent generation leading to a
function’s parameter value.

The title of each sub-section is a sentence stating what can be accomplished with the presented function.

2

1) get_env_names(): retrieve the address-name lookup table of defined environ-
ments

The get_env_names() function is used to retrieve the address-name lookup table that is used by the other
functions in the package to perform their magic. Essentially this magic is obtained by looking up the memory
address of an environment in this lookup table and returning the environment’s name.

The signature of the function is the following:
get_env_names(envir = NULL, include_functions = FALSE).

Examples

Let’s start with the definition of a few environments

We define a couple of environments and nested environments.
env1 <- new.env()
env_of_envs <- new.env()
with(env_of_envs, env21 <- new.env())

Note that environment env21 is nested in environment env_of_envs.

Basic operation

The following call returns a data frame containing the address-name lookup table:
get_env_names()

type location locationaddress address
1 user R_GlobalEnv <NA> <000000000EDA52F0>
2 user R_GlobalEnv <NA> <000000000D35D060>
3 user R_GlobalEnv <NA> <000000000D2FD0C8>
4 function tools <000000000B4AB078> <000000000B82B0A8>
5 function base <0000000004520638> <000000000BB43788>
6 function tryCatch <000000000BB43788> <000000000BB42F60>
7 function tryCatch <000000000BB43788> <000000000BB42348>
8 function tryCatchOne <000000000BB42348> <000000000BB42818>
9 function knitr <000000000A7705E0> <000000000BB41DF8>
10 function knitr <000000000A7705E0> <000000000BB360B8>
11 function rmarkdown <000000000BAC7260> <000000000CED32C0>
12 function knitr <000000000A7705E0> <000000000CEF0880>
13 function knitr <000000000A7705E0> <000000000CF94C68>
14 function base <0000000004520638> <000000000D2512B8>
15 function knitr <000000000A7705E0> <000000000D2517F8>
16 function knitr <000000000A7705E0> <000000000D250B38>
17 function knitr <000000000A7705E0> <000000000D250C50>
18 function knitr <000000000A7705E0> <000000000D2226A8>
19 function knitr <000000000A7705E0> <000000000D1D36C0>
20 function knitr <000000000A7705E0> <000000000D1D0FB8>
21 function evaluate <000000000CBEA8B0> <000000000D1CB2E0>
22 function evaluate <000000000CBEA8B0> <000000000D12F3F8>
23 function evaluate_call <000000000D12F3F8> <000000000D0E7E40>
24 function evaluate_call <000000000D12F3F8> <000000000D0E7F20>
25 function base <0000000004520638> <000000000D0E7458>
26 function base <0000000004520638> <000000000D0E6FE8>

3

27 function base <0000000004520638> <000000000D0E7218>
28 function base <0000000004520638> <00000000045206E0>
29 system/package <NA> <NA> <00000000045206E0>
30 system/package <NA> <NA> <000000000FB83488>
31 system/package <NA> <NA> <000000000AD82860>
32 system/package <NA> <NA> <000000000B8E5888>
33 system/package <NA> <NA> <000000000B704D20>
34 system/package <NA> <NA> <000000000B4FE4F8>
35 system/package <NA> <NA> <000000000B0415B8>
36 system/package <NA> <NA> <000000000B3C1F08>
37 system/package <NA> <NA> <000000000A684C18>
38 system/package <NA> <NA> <00000000044F0718>
39 namespace <NA> <NA> <000000000FB34C20>
40 namespace <NA> <NA> <000000000A9311A0>
41 namespace <NA> <NA> <000000000B78D328>
42 namespace <NA> <NA> <000000000B58D9F0>
43 namespace <NA> <NA> <000000000AEB6078>
44 namespace <NA> <NA> <000000000B0DC420>
45 namespace <NA> <NA> <000000000AA3A688>
46 namespace <NA> <NA> <0000000004520638>
pathname path name
1 env1 env1
2 env_of_envs env_of_envs
3 env_of_envs$env21 env_of_envs env21
4 tools::buildVignettes tools::buildVignettes
5 tryCatch tryCatch
6 tryCatchList tryCatchList
7 tryCatchOne tryCatchOne
8 doTryCatch doTryCatch
9 engine$weave engine weave
10 vweave_rmarkdown vweave_rmarkdown
11 rmarkdown::render rmarkdown::render
12 knitr::knit knitr::knit
13 process_file process_file
14 withCallingHandlers withCallingHandlers
15 process_group process_group
16 process_group.block process_group.block
17 call_block call_block
18 block_exec block_exec
19 in_dir in_dir
20 evaluate evaluate
21 evaluate::evaluate evaluate::evaluate
22 evaluate_call evaluate_call
23 timing_fn timing_fn
24 handle handle
25 withCallingHandlers withCallingHandlers
26 withVisible withVisible
27 eval eval
28 eval eval
29 .GlobalEnv .GlobalEnv
30 package:envnames package:envnames
31 package:stats package:stats
32 package:graphics package:graphics
33 package:grDevices package:grDevices

4

34 package:utils package:utils
35 package:datasets package:datasets
36 package:methods package:methods
37 Autoloads Autoloads
38 package:base package:base
39 package:envnames package:envnames
40 package:stats package:stats
41 package:graphics package:graphics
42 package:grDevices package:grDevices
43 package:utils package:utils
44 package:datasets package:datasets
45 package:methods package:methods
46 package:base package:base

The main columns defining the lookup are address (containing the memory address of the environment) and
name (containing the name of the environment).

We can also restrict the lookup table to the environments defined within another environment:
get_env_names(envir=env_of_envs)

type location locationaddress address
1 user env_of_envs <NA> <000000000D2FD0C8>
2 function tools <000000000B4AB078> <000000000B82B0A8>
3 function base <0000000004520638> <000000000BB43788>
4 function tryCatch <000000000BB43788> <000000000BB42F60>
5 function tryCatch <000000000BB43788> <000000000BB42348>
6 function tryCatchOne <000000000BB42348> <000000000BB42818>
7 function knitr <000000000A7705E0> <000000000BB41DF8>
8 function knitr <000000000A7705E0> <000000000BB360B8>
9 function rmarkdown <000000000BAC7260> <000000000CED32C0>
10 function knitr <000000000A7705E0> <000000000CEF0880>
11 function knitr <000000000A7705E0> <000000000CF94C68>
12 function base <0000000004520638> <000000000F666718>
13 function knitr <000000000A7705E0> <000000000F666C58>
14 function knitr <000000000A7705E0> <000000000F665F98>
15 function knitr <000000000A7705E0> <000000000F6660B0>
16 function knitr <000000000A7705E0> <000000000D175D88>
17 function knitr <000000000A7705E0> <000000000CB7C428>
18 function knitr <000000000A7705E0> <000000000CB356E8>
19 function evaluate <000000000CBEA8B0> <000000000CB1DF18>
20 function evaluate <000000000CBEA8B0> <000000000BE977E0>
21 function evaluate_call <000000000BE977E0> <000000000BB5FAE0>
22 function evaluate_call <000000000BE977E0> <000000000BB5FBC0>
23 function base <0000000004520638> <000000000BB5F018>
24 function base <0000000004520638> <000000000BB5D8B8>
25 function base <0000000004520638> <000000000BB5DB20>
26 function base <0000000004520638> <00000000045206E0>
pathname path name
1 env21 env21
2 tools::buildVignettes tools::buildVignettes
3 tryCatch tryCatch
4 tryCatchList tryCatchList
5 tryCatchOne tryCatchOne
6 doTryCatch doTryCatch
7 engine$weave engine weave

5

8 vweave_rmarkdown vweave_rmarkdown
9 rmarkdown::render rmarkdown::render
10 knitr::knit knitr::knit
11 process_file process_file
12 withCallingHandlers withCallingHandlers
13 process_group process_group
14 process_group.block process_group.block
15 call_block call_block
16 block_exec block_exec
17 in_dir in_dir
18 evaluate evaluate
19 evaluate::evaluate evaluate::evaluate
20 evaluate_call evaluate_call
21 timing_fn timing_fn
22 handle handle
23 withCallingHandlers withCallingHandlers
24 withVisible withVisible
25 eval eval
26 eval eval

2) environment_name(): retrieve name of user-defined and function execution
environments

The environment_name() function (or its alias get_env_name) extends the functionality of the built-in
environmentName() function by also retrieving the name of user-defined environments and func-
tion execution environments. Although the name of an environment can be easily retrieved with
deparse(substitute(env1)) where env1 is a user-defined environment, the most useful scenario for
the use of environment_name() is when some function tells us that an object is part of a user-defined
environment, but this environment is only given as a memory address (as in e.g. normally <environment:
0x0437fb40> in 32-bit systems or <environment: 0x000000000437fb40> in 64-bit systems). In this
scenario, environment_name() can tell us the name of the environment having that memory address.

The address-to-name conversion also works for function execution environments.

The signature of the function is the following:
environment_name(env, envir = NULL, envmap = NULL, matchname = FALSE, ignore = NULL,
include_functions = FALSE).

Examples

Basic operation

Let’s retrieve the names of the environments just defined using the environment_name() function. This may
sound trivial because we are already typing the environment name! However, look at the output from the
second call: it contains the path to the environment being searched for stating that env21 is found inside
environment env_of_envs.
environment_name(env1)

[1] "env1"
environment_name(env21)

[1] "env_of_envs$env21"

6

If we already know in which environment the environment we are after is defined, we can specify it in the
envir parameter and get their name without any path information:
environment_name(env1, envir=globalenv())

[1] "env1"
environment_name(env21, envir=env_of_envs)

[1] "env21"

More advanced examples

Suppose now that we define another environment that points to one of the already defined environments.
e <- env_of_envs$env21

Now, let’s retrieve its name:
environment_name(e)

R_GlobalEnv env_of_envs
"e" "env21"

What we get is the names of all the environments (in alphabetical order) that point to the same memory
address. We can disable such behaviour of matching environments by memory address by setting the
matchname parameter to TRUE so that the returned environments must match both the memory address and
the given name:
environment_name(e, matchname=TRUE)

[1] "e"

Note that the result of this last call could actually return more than one environment when environments
sharing the same name (e in the above example) are defined in different environments all pointing to the
same environment. In the above example we could have this situation if we defined an environment called
"e" in environment env_of_envs pointing to environment e defined in the global environment (with the
command env_of_envs$e <- e).

Finally, if we try to retrieve the environment name of a non-existing environment, we get NULL.
environment_name(non_existing_env)

NULL

Retrieving the environment name associated with a memory address

Now suppose we have a memory address and we would like to know if that memory address represents an
environment. We can simply call environment_name() with the memory address as argument, as shown in
the following example:
env1_obj_address = get_obj_address(env1)
environment_name(env1_obj_address)

[1] "env1"

Of course, in practice we would not call the get_obj_address() function to get the environment’s memory
address; we would simply type in the memory address we are after. Note that this memory address depends
on the architecture (32-bit or 64-bit) and it can be given in one of the following four ways:

7

• an 8-digit (32-bit) / 16-digit (64-bit) address, e.g. "0000000011D7A150" (64-bit architecture)

• a 10-digit (32-bit) / 18-digit (64-bit) address, e.g. "0x0000000011D7A150" (64-bit architecture)

• either of the above addresses enclosed in < >, e.g. "<0000000011D7A150>" or "<0x0000000011D7A150>"
(64-bit archiecture)

• a 10-digit (32-bit) / 18-digit (64-bit) address preceeded by the environment: keyword and enclosed in
< >, e.g.: "<environment: 0x0000000011D7A150>" (64-bit architecture)

(note: Linux Debian distributions may have a 12-digit memory address representation. The best way to know
what the memory address representation is in a particular system is to call e.g. address("x").)

The latter format is particularly useful when copying & pasting the result of querying an environment object,
for example when typing env1 at the R command prompt, assuming that env1 is a user-defined environment.

If the memory address does not match any of the above formats or does not represent an environment
environment_name() returns NULL. Ex:
x = 2
environment_name(get_obj_address(x))

NULL

Retrieving the execution environment of a function

If called inside a function, environment_name() returns the name of the function and the environment where
the function is defined. The following example shows this use of environment_name().
with(env1,

f <- function() {
cat("1) We are inside function", environment_name(), "\n")

}
)
env1$f()

1) We are inside function env1$f

3) obj_find(): check the existence of an object

With the obj_find() function we can check if an object exists in any existing environment. All environments
–including system environments, packages, user-defined environments, and optionally function execution
environments– are crawled to search for the object. This includes any environments that are defined within
other environments (nested), and it represents an enhancement to the built-in exists() function. The
function returns a character array with all the environments where the object has been found.

Objects to search for can be specified either as a symbol or as a string. Ex: obj_find(x) and obj_find("x")
both look for an object called “x”. They can also be the result of an expression as in v[1].

The function returns NULL if the object is not found or if the expression is invalid. For instance
obj_find(unquote(quote(x))) returns NULL because the unquote() function does not exist in R.

The signature of the function is the following:
obj_find(obj, envir = NULL, envmap = NULL, globalsearch = TRUE, n = 0, return_address =
FALSE, include_functions = FALSE, silent = TRUE)

8

Examples

Let’s start with a few object definitions

We define a couple of objects in the environments previously defined:
x <- 5
env1$x <- 3
with(env_of_envs, env21$y <- 5)
with(env1, {

vars_as_string <- c("x", "y", "z")
})

Basic operation

Now let’s look for these objects:
environments_where_obj_x_is_found = obj_find(x)
cat("Object 'x' found
in the following environments:"); print(environments_where_obj_x_is_found)

Object 'x' found
in the following environments:

[1] "R_GlobalEnv" "env1"
environments_where_obj_y_is_found = obj_find(y)
cat("Object 'y' found
in the following environments:"); print(environments_where_obj_y_is_found)

Object 'y' found
in the following environments:

[1] "e" "env_of_envs$env21"

(if your are seeing more environments than you expected in the above output, recall that environment e
points to the same environment as env_of_envs$env21)
environments_where_obj_is_found = obj_find(vars_as_string)
cat("Object 'vars_as_string' found
in the following environments:"); print(environments_where_obj_is_found)

Object 'vars_as_string' found
in the following environments:

[1] "env1"

Let’s also look for the objects defined in vars_as_string and vars_quoted.
environments_where_obj_1_is_found = obj_find(env1$vars_as_string[1])

Here we are looking for the object 'x'
cat(paste("Object '", env1$vars_as_string[1], "' found
in the following environments:")); print(environments_where_obj_1_is_found)

Object ' x ' found
in the following environments:

[1] "R_GlobalEnv" "env1"
environments_where_obj_2_is_found = obj_find(env1$vars_as_string[2])

Here we are looking for the object 'y'

9

cat(paste("Object '", env1$vars_as_string[2], "' found
in the following environments:")); print(environments_where_obj_2_is_found)

Object ' y ' found
in the following environments:

[1] "e" "env_of_envs$env21"
environments_where_obj_3_is_found = obj_find(env1$vars_as_string[3])

Here we are looking for the object 'z' which does not exist
cat(paste("Object '", env1$vars_as_string[3], "' found
in the following environments:")); print(environments_where_obj_3_is_found)

Object ' z ' found
in the following environments:

NULL

or using sapply():
environments_where_objs_are_found = with(env1, sapply(vars_as_string, obj_find))
cat("The objects defined in the 'env1$vars_as_string' array are found

in the following environments:\n");

The objects defined in the 'env1$vars_as_string' array are found
in the following environments:
print(environments_where_objs_are_found)

$x
[1] "R_GlobalEnv" "env1"
##
$y
[1] "e" "env_of_envs$env21"
##
$z
NULL

Note how calling obj_find() from within the env1 environment still searches for the objects everywhere.
This is because parameter globalsearch is set to TRUE. If we set it to FALSE and we add envir=env1 as
searching environment, we would get:
environments_where_objs_are_found = with(env1,

sapply(vars_as_string, obj_find, globalsearch=FALSE, envir=env1))
cat("The objects defined in the 'env1$vars_as_string' array are found

in the following environments (no globalsearch):\n");

The objects defined in the 'env1$vars_as_string' array are found
in the following environments (no globalsearch):
print(environments_where_objs_are_found)

$x
[1] "env1"
##
$y
NULL
##
$z

10

NULL

NOTE: Even if we are running sapply() inside environment env1, it’s important to add parameter
envir=env1 to the call to obj_find(); if we don’t add it, the objects are not found because the par-
ent environmnt of the call to obj_find() is not env1 but the sapply() execution environment, where the
objects do not exist.

We can also search for objects given as a symbol:
environments_where_obj_x_is_found = obj_find(as.name("x"))
cat("Object 'x' found
in the following environments:"); print(environments_where_obj_x_is_found)

Object 'x' found
in the following environments:

[1] "R_GlobalEnv" "env1"

Finally, we can also search for objects defined in packages:
environments_where_obj_is_found = obj_find(aov)
cat("Object 'aov' found
in the following environments:"); print(environments_where_obj_is_found)

Object 'aov' found
in the following environments:

[1] "package:stats"

4) get_fun_calling_chain(): retrieve the function calling chain (stack)

Following is an example that shows the difference between using the built-in sys.call() function and the
package function get_fun_calling_chain() to retrieve the calling stack.

In particular note:
- How easy it is to check what the calling function is (just do a string comparison as in e.g. get_fun_calling()
== "env1$f"). On the contrary, when using sys.call() we first need to parse the output before making
such a comparison. See this link for more details.
- We get a data frame containing the chain of calling functions, from the most recent call to least recent,
including function parameters if desired.

The signature of the function is the following:
get_fun_calling_chain(n = NULL, showParameters = FALSE, silent = TRUE)

Examples

Let’s start with a few object definitions

1) First we define a couple of new environments:
env11 <- new.env()
env12 <- new.env()

2) Now we define an example function h to be called by two different functions f defined in two different
user-environments. This function h does something different depending on which function f was
responsible for calling it.

11

http://stackoverflow.com/questions/15595478/how-to-get-the-name-of-the-calling-function-inside-the-called-routine

with(globalenv(),
h <- function(x, silent=TRUE) {

fun_calling_chain = get_fun_calling_chain(silent=silent)

Do a different operation on input parameter x depending on the calling function
fun_calling = get_fun_calling(showParameters=FALSE)
if (fun_calling == "env11$f") { x = x + 1 }
else if (fun_calling == "env12$f") { x = x + 2 }

return(x)
}
)

3) Finally we define the two functions f that call h, respectively in environments env11 and env12:
with(env11,

f <- function(x, silent=TRUE) {
fun_calling_chain = get_fun_calling_chain()
return(h(x, silent=silent))

}
)

with(env12,
f <- function(x, silent=TRUE) {

fun_calling_chain = get_fun_calling_chain()
return(h(x, silent=silent))

}
)

Basic operation

We now run these functions f and take note of their output.

• Output from env11$f():

Function calling chain:
tools$tools::buildVignettes -> base$tryCatch -> $tryCatchList -> $tryCatchOne -> $doTryCatch -> engine$weave -> knitr$vweave_rmarkdown -> rmarkdown$rmarkdown::render -> knitr$knitr::knit -> knitr$process_file -> base$withCallingHandlers -> knitr$process_group -> knitr$process_group.block -> knitr$call_block -> knitr$block_exec -> knitr$in_dir -> knitr$evaluate -> evaluate$evaluate::evaluate -> evaluate$evaluate_call -> $timing_fn -> base$handle -> base$withCallingHandlers -> base$withVisible -> base$eval -> $eval -> base$cat -> env11$f -> R_GlobalEnv$h
##
When h(x) is called by env11$f(x=0) the output is: 1

• Output from env12$f():

Function calling chain:
tools$tools::buildVignettes -> base$tryCatch -> $tryCatchList -> $tryCatchOne -> $doTryCatch -> engine$weave -> knitr$vweave_rmarkdown -> rmarkdown$rmarkdown::render -> knitr$knitr::knit -> knitr$process_file -> base$withCallingHandlers -> knitr$process_group -> knitr$process_group.block -> knitr$call_block -> knitr$block_exec -> knitr$in_dir -> knitr$evaluate -> evaluate$evaluate::evaluate -> evaluate$evaluate_call -> $timing_fn -> base$handle -> base$withCallingHandlers -> base$withVisible -> base$eval -> $eval -> base$cat -> env12$f -> R_GlobalEnv$h
##
When h(x) is called by env12$f(x=0) the output is: 2

Note how easy it was (by using just a string comparison) to decide what action to take based on the f()
function calling h() and perform a different operation.

5 & 6) get_obj_address() and address(): retrieve the memory address of an
object

Following are examples of using the get_obj_address() function to retrieve the memory address of an
object, which is then checked by the address() function that calls the direct method (via a C function call)

12

to retrieve an object’s memory address. The differences between these two functions are also explained.

In the get_obj_address() function, the object can be given either as a symbol or as an expression. If given
as an expression, the memory address of the result of the expression is returned. If the result is yet another
expression, the process stops, i.e. the memory address of that final expression is returned.

Internally this funcion first calls obj_find() to look for the object (using globalsearch=TRUE) and then
retrieves the object’s memory address, showing the name of all the environments where the object was found,
or NULL if the object is not found.

The signature of the function is the following:
get_obj_address(obj, envir = NULL, envmap = NULL, n = 0, include_functions = FALSE)

Examples

The following two calls return the same result:
obj_address1 = get_obj_address(x)
cat("Output of 'get_obj_address(x)':\n"); print(obj_address1)

Output of 'get_obj_address(x)':

R_GlobalEnv env1
"<000000001112D330>" "<00000000134102D8>"
obj_address2 = with(env1, get_obj_address(x))
cat("Output of 'with(env1, get_obj_address(x))':\n"); print(obj_address2)

Output of 'with(env1, get_obj_address(x))':

R_GlobalEnv env1
"<000000001112D330>" "<00000000134102D8>"

Note especially the last case, where calling get_obj_address() from within the env1 environment still
searches for the object everywhere.

We can restrict the memory address returned by making the environment where the object is located explicit
–by either using the $ notation or the envir parameter of get_obj_address(). In this case only the address
of the specified object is returned, even if other objects with the same name exist within the specified
environment. A few examples follow:
get_obj_address(env1$x)

env1
"<00000000134102D8>"
get_obj_address(x, envir=env1)

[1] "<00000000134102D8>"
with(env1, get_obj_address(x, envir=env1))

[1] "<00000000134102D8>"

Note there is a slight difference between calling get_obj_address() using the $ notation and calling it with
the envir= parameter: in the latter case, the result is an unnamed array.

Suppose now the object is an expression referencing three potential existing objects as strings, more specifically
an array:

13

vars = c("x", "y", "nonexistent")
get_obj_address(vars[1], envir=env1)

[1] "<00000000134102D8>"
sapply(vars, get_obj_address)

$x
R_GlobalEnv env1
"<000000001112D330>" "<00000000134102D8>"
##
$y
e env_of_envs$env21
"<0000000013410278>" "<0000000013410278>"
##
$nonexistent
NULL

(if your are seeing more environments than you expected in the above output, recall that environment e
points to the same environment as env_of_envs$env21)

We can check that the memory address is correct by running the internal function address() which calls a C
function that retrieves the memory address of an object:
address(env1$x)

[1] "<00000000134102D8>"
address(e$y)

[1] "<0000000013410278>"

Finally: why would we use get_obj_address() instead of address() to retrieve the memory address of an
object? For two main reasons:
- get_obj_address() first searches for the object in all user-defined environments, while address() needs to
be called from within the environmnt where the object is defined.
- get_obj_address() returns NULL if the object does not exist, while address() returns the memory address
of the NULL object, which may be misleading.

To prove the second statement, we simply run the following two commands which yield the same result:
address(env1$nonexistent)

[1] "<00000000044F0788>"
address(NULL)

[1] "<00000000044F0788>"

while running get_obj_address() on the non-existent object yields NULL:
get_obj_address(env1$nonexistent)

NULL

Summing up

We have described the following 6 functions of the envnames package and shown examples of using them:

14

1) get_env_names() to retrieve all the environments defined in the workspace in the form of a lookup
table where the environment name can be looked up from its memory address.

2) environment_name() / get_env_name() (its alias) to retrieve the name of an environment. This
function extends the functionality of the built-in environmentName() function by retrieving:

• the name of a user-defined environment

• the name and path to environments defined inside other environments

• the name and path to the function associated to an execution environment

• the name of the environment associated to a memory address

3) obj_find() to find an object in the workspace. This function extends the functionality of the built-in
exists() function by:

• searching for the object in user-defined environments

• searching for the object recursively (i.e. in environments defined inside other environments)

4) get_fun_calling_chain() to get the stack of calling functions. This function returns the stack
information in a manner that is much simpler than the built-in sys.calls() function, making it easier
to check the names of the calling functions.

5) get_obj_address() to retrieve the memory address of an object. This function gives a functionality
that is not available in base R. Note that the data.table package also provides a function called
address() to retrieve the memory address of an object; however the object is not searched for in the
whole workspace as is the case with the get_obj_address() in this package.

6) address() to retrieve the memory address of an existing object, but without looking for it first.

We have not described the other 5 functions in the package:

• get_fun_calling(), which returns the last function call in the calling chain returned by
get_fun_calling_chain().

• get_fun_env(), which returns the execution environment(s) of a function matching a name or a memory
address.

• get_fun_name(), which returns the name of the function called at a given level of the function calling
chain.

• get_obj_name(), which returns the name of the object at a specified parent generation leading to a
function’s parameter.

• get_obj_value(), which returns the value of the object at a specified parent generation leading to a
function’s parameter value.

This vignette was generated under the following platform:

SystemInfo
sysname Windows
release 10 x64
version build 17134
machine x86-64

_
platform x86_64-w64-mingw32
arch x86_64

15

os mingw32
system x86_64, mingw32
status
major 3
minor 4.1
year 2017
month 06
day 30
svn rev 72865
language R
version.string R version 3.4.1 (2017-06-30)
nickname Single Candle

16

	Introduction
	Description of selected functions
	1) get_env_names(): retrieve the address-name lookup table of defined environments
	Examples

	2) environment_name(): retrieve name of user-defined and function execution environments
	Examples

	3) obj_find(): check the existence of an object
	Examples

	4) get_fun_calling_chain(): retrieve the function calling chain (stack)
	Examples
	Basic operation

	5 & 6) get_obj_address() and address(): retrieve the memory address of an object
	Examples

	Summing up

