
Su
bm
itt
ed

JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

Ecosystem Network Analysis with R: A guide for

using enaR

Matthew K. Lau
Harvard Forest

Harvard University

Stuart R. Borrett
Department of Biology and Marine Biology
University of North Carolina Wilmington

and
Duke Network Analysis Center

Social Science Research Institute
Duke University

Pawandeep Singh
Department of Biology and Marine Biology
University of North Carolina Wilmington

Abstract

Ecosystem Network Analysis (ENA) provides a framework for investigating the struc-
ture, function and dynamics of ecological systems, primarily ecosystem models with phys-
ically conserved units. This paper documents the enaR R package that collects the core
ENA functions including those developed by the Ulanowicz and Patten schools. We detail
how to use the primary functions for the analysis of single models as well as simultaneous,
synthetic analysis of multiple ecosystem models.
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1. Introduction

Network models have provided an in-road to a variety of complex systems (Watts and Strogatz,

http://www.jstatsoft.org/
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1998; Newman, 2001; Barabási, 2012; Newman, Barabási, and Watts, 2006; Wasserman and
Faust, 1994), and although the network approach has deep roots (Newman et al., 2006), its use
has been expanding rapidly in a variety of disciplines including ecology (Borrett, Moody, and
Edelmann, 2014; Ings, Montoya, Bascompte, Blüthgen, Brown, Dormann, Edwards, Figueroa,
Jacob, Jones, Lauridsen, Ledger, Lewis, Olesen, van Veen, Warren, and Woodward, 2009);
and investigators are currently building a science of networks (National Research Council,
Committee on Network Science for Army Applications, 2006; Brandes, Robins, McCranie,
and Wasserman, 2013). This is due in part to the flexibility of the core representation, its
utility in answering relational questions, and its applicability to “Big Data” problems.

Ecosystem ecologists have developed and used network modeling and analysis for several
decades (Borrett, Christian, and Ulanowicz, 2012; Ulanowicz, 1986; Fath and Patten, 1999).
The network models map transfers of thermodynamically conserved energy or matter (rep-
resented by weighted, directed graph edges) between nodes that represent species, groups of
species, or non-living components (e.g., dead organic matter) of the ecosystem. These anal-
yses, collectively known as Ecosystem Network Analysis (ENA), have been used in a variety
of ways including to reveal the relative importance of indirect effects in ecosystems (Patten,
1983; Higashi and Patten, 1989; Salas and Borrett, 2011) and their capacity to effectively
transform the relations among organisms (Ulanowicz and Puccia, 1990; Patten, 1991; Fath
and Patten, 1998; Bondavalli and Ulanowicz, 1999). From these applications a new theoret-
ical understanding of ecosystems has emerged (Higashi and Burns, 1991; Belgrano, Scharler,
Dunne, and Ulanowicz, 2005; Jørgensen, Fath, Bastianoni, Marques, Müller, Nielsen, Patten,
Tiezzi, and Ulanowicz, 2007). Recently, scientists have applied these methods to understand
trophic dynamics in the Sylt-Rømø Bight (Baird, Asmus, and Asmus, 2004a, 2008), biogeo-
chemical cycling in lakes and estuaries (Christian and Thomas, 2003; Small, Sterner, and
Finlay, 2014; Hines, Lisa, Song, Tobias, and Borrett, 2015), and urban sustainability (Zhang,
Yang, and Fath, 2010; Chen and Chen, 2012).

Two major schools of ENA have developed (Scharler and Fath, 2009). The first is based on Dr.
Robert E. Ulanowicz’s work with a strong focus on trophic dynamics and a use of information
theory (Ulanowicz, 1986, 1997, 2004). The second school has an environment focus and is
built on the environ concept introduced by Dr. Bernard C. Patten (Patten, Bosserman, Finn,
and Cale, 1976; Patten, 1978; Fath and Patten, 1999). Patten’s approach has been collectively
referred to separately as Network Environ Analysis. At the core the two approaches are very
similar; however, they make some different starting assumptions and follow independent yet
braided development tracks.

Disparate software packages have been created to support ENA. Initially algorithms were de-
veloped and distributed as the DOS based NETWRK4 (Ulanowicz and Kay, 1991), which is
still available from http://www.cbl.umces.edu/~ulan/ntwk/network.html. Some of these
algorithms were re-implemented in a Microsoft Excel based toolbox, WAND (Allesina and
Bondavalli, 2004). The popular Ecopath with Ecosim software that assists with model con-
struction (Christensen and Walters, 2004) also provides multiple ENA algorithms. The algo-
rithms for flow analysis – one component of ENA – were collected into a stand-alone software
tool (Latham II, 2006). Fath and Borrett (2006) published NEA.m that collects most of the
Patten School ENA algorithms together in a single MATLAB© function. Similarly, the on-
line tool EcoNet (Kazanci, 2007) has made many of the ENA algorithms available in an easy
access framework. Although these packages collectively provide access to a large set of pow-
erful analytical tools, the fragmented distribution of the key algorithms among the software

http://www.cbl.umces.edu/~ulan/ntwk/network.html
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tools has inhibited the development of theory and the further implementation of important
algorithms.

The enaR package brings together the ENA algorithms into one common software framework
that is readily available and extensible. The package is written in the R language, which is
free and open-source. Due largely to this, R is now one of the most widely used analytical
programming languages in the biological sciences. enaR builds on existing R packages for
network analysis. For example, it uses the network data structure developed by Butts (2008a)
and the network analysis tools built into the network, sna (social network analysis) (Butts,
2008b), and statnet (Handcock, Hunter, Butts, Goodreau, and Morris, 2008) packages. While
Borrett and Lau (2014) introduced the enaR package, here we provide a richer documentation
of the software and illustrate its use.

2. Getting Started

In this section we describe the data necessary for Ecosystem Network Analysis and show how
to build the central network data object in R that contains the model data for subsequent
analysis. To start, the current stable version can be installed from CRAN:

> install.packages('enaR')

The beta version can be installed from GitHub:

> library(devtools)

> install_github('SEELab/enaR',ref='beta')

You can now load the package:

> library(enaR)

2.1. Ecosystem Network Model

ENA is applied to a network model of energy–matter exchanges among system components.
The system is modeled as a set of n compartments or nodes that represent species, species-
complexes (i.e., trophic guilds or functional groups), or non-living components of the system
in which energy–matter is stored. Nodes are connected by L observed fluxes, termed directed
edges or links. This analysis requires an estimate of the energy–matter flowing from node
i to j over a given period, Fn×n = [fij ], i, j = 1, 2, . . . , n. These fluxes can be generated
by any process such as feeding (like a food web), excretion, and death. As ecosystems are
thermodynamically open, there must also be energy or matter inputs into the system z1×n =
[zi], and output losses from the system y1×n = [yi]. While the Patten School treats all outputs
the same, the Ulanowicz School typically partitions outputs into respiration r1×n = [ri] and
export e1×n = [ei] to account for differences in energetic quality. Note that yi = ri + ei,∀i.
Some analyses also require the amount of energy–matter stored in each node (e.g., biomass),
X1×n = [xi]. The final required information is a categorization of each node as living or not,
which is essential for algorithms from the Ulanowicz School. For our implementation, we have
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created a logical vector Living1×n that indicates whether the ith node is living (TRUE) or
not (FALSE). This obviates the need to order the nodes in a specific way (i.e., living before
non-living). Together, the model dataM can be summarized asM = {F, z, e, r,X,Living}.
Notice the row-to-column orientation of the flow matrix: F. This is consistent with the
Ulanowicz School of network analysis, as well as the orientation commonly used in Social
Network Analysis and used in the statnet packages. However, this is the opposite orientation
typically used in the Patten School of analysis that conceptually builds from a system of
differential equations and thus uses the column-to-row orientation common in this area of
mathematics. Even though the difference is only a matrix transpose, this single difference
may be the source of much confusion in the literature and frustration on the part of users.
We have selected to use row-to-column orientation for our primary data structure, as it is
the dominant form across network analytics as evidenced by it use in the statnet packages.
The package algorithms also return the results in the row-to-column orientation by default;
however, we have built in functionality with get.orient and set.orient that allows users to
return output in the Patten School row-to-column orientation (see Section 3.13 for details).

There are multiple methods for constructing ecosystem network models and tools for assisting
with this process (Fath, Scharler, Ulanowicz, and Hannon, 2007). One approach is to con-
struct a dynamic, processes-based, mathematical model of the system typically using ordinary
differential equations. For example, the EcoPath with EcoSim (Christensen and Pauly, 1992;
Christensen, 1995) software assists scientists with constructing food-web focused ecosystem
models using an underlying bioenergetic approach. Alternatively, Ulanowicz (1986) has called
for a more phenomenologial approach to the model construction. This modeling process starts
with a conceptual network model of the system and then the node and edge weights are es-
timated directly from observations. Its phenomenologial in the sense that it focuses on what
the flows are, rather than the forms of the mechanistic processes that generate the flows. As
this approach is essentially an inverse problem, some have developed inverse linear modeling
methods to assist with inferring the network weights from data (Vézina and Platt, 1988; van
Oevelen, Van den Meersche, Meysman, Soetaert, Middelburg, and Vézina, 2010). The lim-
Solve R pacakge can assist with this modeling approach (Soetaert, Van den Meersche, and van
Oevelen, 2009). Ulanowicz and Scharler (2008) also introduced two least-inference algorithms
to assist with this kind of model constuction. These methods focus on constructing models to
represent specific empirical systems. Algorithms also exist for constructing simulated ecosys-
tems, including Fath’s (2004) Cyber Models that use a community assembly type approach.
Currently, the enaR software focuses on the analysis of network models and assumes that the
user has a network model to be analyzed.

2.2. Network Data Class

The enaR package stores the model data in the network class defined in the network pack-
age (see Butts, 2008a, for details). In this software, a complete ecosystem network model
description includes:

F is the flow matrix, oriented row-to-column

z a vector of inputs

r a vector of respirations
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e a vector of exports

y a vector of outputs, which are respirations plus exports

X a vector ofbiomass or storage values

Living = logical vector indicating if the node is living (TRUE) or non-living (FALSE)

2.3. Building a Network Object

Users can assemble the necessary data elements and then use the pack function to create the
network data object. Here is an example of doing this with hypothetical data.

> ## Generate the flow matrix

> flow.mat <- array(abs(rnorm(100,4,2))*sample(c(0,1),100,replace=TRUE),

+ dim=c(4,4))

> ## Name the nodes

> rownames(flow.mat) <- colnames(flow.mat) <- paste('node',(1:nrow(flow.mat)),sep='')
> ## Generate the inputs

> inputs <- runif(nrow(flow.mat),0,4)

> ## Generate the exports

> exports <- inputs

> ## "Pack" the model into a network object

> fake.model <- pack(flow=flow.mat,

+ input=inputs,

+ export=exports,

+ living=TRUE)

[1] "respiration" "storage"

> ## The model network object contents

> fake.model

Network attributes:

vertices = 4

directed = TRUE

hyper = FALSE

loops = TRUE

multiple = FALSE

bipartite = FALSE

balanced = FALSE

total edges= 8

missing edges= 0

non-missing edges= 8

Vertex attribute names:

export input living output respiration storage vertex.names
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Edge attribute names:

flow

The individual components can be extracted from the data object using the form specified in
the network package. For example, we can pull out ”vertex” (i.e. node) attributes as follows:

> fake.model%v%'output'

[1] 3.31224122 0.05082792 0.93603094 2.03415858

> fake.model%v%'input'

[1] 3.31224122 0.05082792 0.93603094 2.03415858

> fake.model%v%'living'

[1] TRUE TRUE TRUE TRUE

The network flows are stored as edge weights in the network object, which lets users fully
manipulate the network object with the network functions. The flow matrix can be extracted
from the object with:

> as.matrix(fake.model,attrname="flow")

node1 node2 node3 node4

node1 0.00000 0.000000 1.896386 4.077463

node2 0.00000 0.000000 7.811643 2.444950

node3 0.00000 0.000000 4.981009 0.000000

node4 3.50226 4.555268 2.485130 0.000000

There are times that it is useful to extract all of the ecosystem model data elements from
the network data object. This can be accomplished using the unpack function. The unpack

output is as follows:

> unpack(fake.model)

$F

node1 node2 node3 node4

node1 0.00000 0.000000 1.896386 4.077463

node2 0.00000 0.000000 7.811643 2.444950

node3 0.00000 0.000000 4.981009 0.000000

node4 3.50226 4.555268 2.485130 0.000000

$z

[1] 3.31224122 0.05082792 0.93603094 2.03415858
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$r

[1] 0 0 0 0

$e

[1] 3.31224122 0.05082792 0.93603094 2.03415858

$y

[1] 3.31224122 0.05082792 0.93603094 2.03415858

$X

[1] NA NA NA NA

$Living

[1] TRUE TRUE TRUE TRUE

Note that we did not specify the storage values. In these instances pack produces NA values.
Although the package is designed to help users navigate missing data issues, be sure to check
that you are providing the appropriate input for a given function. For more information, see
the help file for the function in question.

2.4. Model Library

enaR includes a library of 100 empirically-based, previously published ecosystem models that
can be categorized into two general classes: trophic and biogeochemical cycling (Christian,
Fores, Comin, Viaroli, Naldi, and Ferrari, 1996; Baird et al., 2008; Borrett, Whipple, and
Patten, 2010; Borrett, Hines, and Carter, 2015). First, 58 of the models are trophically-based
models with food webs at their core (Tables 1). Second, there are 42 models focused on
biogeochemical cycling in ecosystems (Table 2). In summary, these models were originally
published for a number of different types of ecosystems, though predominantly aquatic, by a
number of author teams. Models in the library range in size from 4 nodes to 125 nodes with
connectance values ranging from 7% to 45%.

This collection of models overlaps with other extant data sets. For example, twenty-four
of the models are included in the set of forty-eight models compiled and distributed by Dr.
Ulanowicz (http://www.cbl.umces.edu/~ulan/ntwk/network.html). All 50 of the models
analyzed by Borrett and Salas (2010) and Salas and Borrett (2011) and the 45 models analyzed
in Borrett (2013) are included in this model library.

The trophic models are grouped as the troModels object and the biogeochemically-based
models are available as the bgcModels object. Both data objects return a list of the model
network objects. To use these models simply use the R base data function. This will load the
models into the working memory as a named list of network objects:

> ## Import the model sets

> data(bgcModels)

> data(troModels)

> ## Check the first few model names

> head(names(bgcModels))

http://www.cbl.umces.edu/~ulan/ntwk/network.html
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[1] "Hubbard Brook (Ca)(Waide)" "Hardwood Forest, NH (Ca)"

[3] "Duglas Fir Forest, WA (Ca)" "Duglas Fir Forest, WA (K)"

[5] "Puerto Rican Rain Forest (Ca)" "Puerto Rican Rain Forest (K)"

> head(names(troModels))

[1] "Marine Coprophagy (oyster)" "Lake Findley "

[3] "Mirror Lake" "Lake Wingra"

[5] "Marion Lake" "Cone Springs"

> ## Isolate a single model

> x <- troModels[[1]]

> x <- troModels$"Marine Coprophagy (oyster)"

> ## Check out the model

> summary(x)

Network attributes:

vertices = 4

directed = TRUE

hyper = FALSE

loops = TRUE

multiple = FALSE

bipartite = FALSE

balanced = TRUE

total edges = 4

missing edges = 0

non-missing edges = 4

density = 0.25

Vertex attributes:

export:

logical valued attribute

attribute summary:

Mode NA's
logical 4

input:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.00 62.05 94.90 157.00 255.50

living:

logical valued attribute

attribute summary:

Mode FALSE TRUE NA's
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logical 2 2 0

output:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.60 21.67 64.45 94.90 137.70 244.10

respiration:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.60 21.67 64.45 94.90 137.70 244.10

storage:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

vertex.names:

character valued attribute

4 valid vertex names

Edge attributes:

flow:

numeric valued attribute

attribute summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

15.30 20.25 37.40 42.42 59.58 79.60

Network adjacency matrix:

SHRIMP BENTHIC ORGANISMS

SHRIMP 0 0

BENTHIC ORGANISMS 0 0

SHRIMP FECES & BACTERIA 0 1

BENTHIC FECES & BACTERIA 0 1

SHRIMP FECES & BACTERIA

SHRIMP 1

BENTHIC ORGANISMS 0

SHRIMP FECES & BACTERIA 0

BENTHIC FECES & BACTERIA 0

BENTHIC FECES & BACTERIA

SHRIMP 0

BENTHIC ORGANISMS 1

SHRIMP FECES & BACTERIA 0

BENTHIC FECES & BACTERIA 0
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2.5. Network Visualization

Network plots are a useful tool to visualize patterns in complex datasets. Here, we present
one example of how to plot a network model using the plot tools in the network package.
The figure scaling may need to be adjusted depending on computer and the graphics devices.
Also, note that the graph only shows internal system flows.

> ## Load data

> data(oyster)

> m <- oyster

> ## Set the random seed to control plot output

> set.seed(2)

> ## Plot network data object (uses plot.network)

> plot(m)

>

We can use the powerful graphics capabilities of R to make a fancier plot of the same data
(Fig. 1).

> ## Set colors to use

> my.col <- c('red','yellow',rgb(204,204,153,maxColorValue=255),'grey22')
> ## Extract flow information for later use.

> F <- as.matrix(m,attrname='flow')
> ## Get indices of positive flows

> f <- which(F!=0, arr.ind=T)

> opar <- par(las=1,bg=my.col[4],xpd=TRUE,mai=c(1.02, 0.62, 0.82, 0.42))

> ## Set the random seed to control plot output

> set.seed(2)

> plot(m,

+ ## Scale nodes with storage

+ vertex.cex=log(m%v%'storage'),
+ ## Add node labels

+ label= m%v%'vertex.names',
+ boxed.labels=FALSE,

+ label.cex=0.65,

+ ## Make rounded nodes

+ vertex.sides=45,

+ ## Scale arrows to flow magnitude

+ edge.lwd=log10(abs(F[f])),

+ edge.col=my.col[3],

+ vertex.col=my.col[1],

+ label.col='white',
+ vertex.border = my.col[3],

+ vertex.lty = 1,

+ xlim=c(-4,1),ylim=c(-2,-2))

> ## Lastly, remove changes to the plotting parameters

> rm(opar)
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Filter Feeders

Microbiota

Meiofauna

Deposit Feeders

Predators

Deposited Detritus

Figure 1: Two networks for the Oyster Reef model (Dame and Patten, 1981) showing a simple
(left) and more elaborate (right) implementation of the network plotting function.

2.6. Data Input: Reading Common Data File Formats

Several software packages exist in the literature for running ENA. We have written functions
to read in a few of the more common data formats used by them to help enaR users to import
models formatted for these other packages. Example data files can be found in the data folder
here: https://github.com/SEELab/enaR_development.

SCOR

The read.scor function reads in data stored in the SCOR format specified by Ulanowicz
and Kay (1991) that is the input to the NETWRK4 programs. This function can be run as
follows.

> scor.model <- readLines('../data/oyster.dat')
> m <- read.scor(scor.model,from.file=FALSE)

This constructs the network data object from the SCOR file that stores the ecosystem model
data for an oyster reef model (Dame and Patten, 1981). The individual model elements are

> unpack(m)

$F

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 0.0000 0.0000 0.0000

Microbiota 0 0.0000 1.2060 1.2060

Meiofauna 0 0.0000 0.0000 0.6609

Deposit Feeders 0 0.0000 0.0000 0.0000

Predators 0 0.0000 0.0000 0.0000

Deposited Detritus 0 8.1721 7.2745 0.6431

Predators Deposited Detritus

Filter Feeders 0.5135 15.7910

https://github.com/SEELab/enaR_development
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Microbiota 0.0000 0.0000

Meiofauna 0.0000 4.2403

Deposit Feeders 0.1721 1.9076

Predators 0.0000 0.3262

Deposited Detritus 0.0000 0.0000

$z

[1] 41.47 0.00 0.00 0.00 0.00 0.00

$r

[1] 25.1650 5.7600 3.5794 0.4303 0.3594 6.1759

$e

[1] 0 0 0 0 0 0

$y

[1] 25.1650 5.7600 3.5794 0.4303 0.3594 6.1759

$X

[1] 2000.0000 2.4121 24.1210 16.2740 69.2370 1000.0000

$Living

[1] TRUE TRUE TRUE TRUE TRUE FALSE

This same data is stored as a network data object that is distributed with this package, which
can be accessed as:

> data(oyster)

> m <- oyster

WAND

In part to make ENA more accessible to biologists, Allesina and Bondavalli (2004) recoded
some of Ulanowicz’s NETWRK4 algorithms into a Microsoft Excel based tool called WAND.
For this tool, the model data is stored as a separate Excel file with two worksheets. The
first contains many of the node attributes and the second contains the flow matrix. The
read.wand function will create an R network data object from a WAND model file.

> m <- read.wand('../data/MDmar02_WAND.xls')

This code creates a network data object for enaR from the WAND formatted Mdloti ecosystem
model data (Scharler, 2012). This data is courtesy of U.M. Scharler.

NEA

For their Matlab function to perform network environ analysis (Patten School), Fath and
Borrett (2006) packaged the model flows, inputs, outputs, and storage values into what they
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called a system matrix S =

[
F ~z ~X
~y 0 0

]
(n+1)×(n+2)

. Flows in the system matrix are oriented

from column to row.

The enaR function read.nea reads in data with this format stored as a comma separated
value file (CSV). The function write.nea() will write any network model to a CSV file with
this format.

While convenient, this data format does not enable inclusion of the full range of model in-
formation included in the enaR network data object. This format does not partition outputs
into exports and respiration values, nor does it identify the node labels or their living status.
This missing information will prevent the use of some enaR functions.

Here is an example of using these functions:

> data(oyster)

> ## Write oyster reef model to a CSV file

> write.nea(oyster, file.name="oyster.csv")

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 41.47 2000.0000

[2,] 0.0000 0.000 0.0000 0.0000 0.0000 8.1721 0.00 2.4121

[3,] 0.0000 1.206 0.0000 0.0000 0.0000 7.2745 0.00 24.1210

[4,] 0.0000 1.206 0.6609 0.0000 0.0000 0.6431 0.00 16.2740

[5,] 0.5135 0.000 0.0000 0.1721 0.0000 0.0000 0.00 69.2370

[6,] 15.7910 0.000 4.2403 1.9076 0.3262 0.0000 0.00 1000.0000

[7,] 25.1650 5.760 3.5794 0.4303 0.3594 6.1759 0.00 0.0000

> ## Read in oyster reef model data from NEA.m formatted CSV file

> m <- read.nea("oyster.csv")

[1] "export" "living"

>

> ## Again, this model object does NOT contain all

> ## of the information in the "oyster" data object.

ENAM

Another commonly used data format stores the necessary model data in a CSV or Excel
formatted file. We include an example Excel file of the Mdloti estuary stored in this form
(“MDMAR02.xlsx”, courtesy of U. M. Scharler). This format has not been described tech-
nically in the literature nor has it been named. We refer to it as ENAM as it is the ENA
model data stored primarily as a square matrix with several preliminary rows that include
meta-data, the number of nodes, and number of living nodes (similar to SCOR). The data
format is generally similar in concept, if not exact form, to the data system matrix used as the
input to the NEA.m function (Fath and Borrett, 2006). However, the ENAM format includes
information on whether nodes are living and partitions output into respiration and exports.

Using an example data file, MDMAR02.xlsx, this data format can be read into the enaR
package as:
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> m <- read.enam('../data/MDMAR02.xlsx')

The current read.enam function assumes the data are stored on the first worksheet of an Excel
file. In the future, we expect to expand this function’s capabilities to read the data from a
CSV file.

3. Analyzing Ecosystem Models

ENA is often applied to investigate the structure and function of a single ecosystem model.
Here, we walk through an example of applying multiple ENA algorithms to the South Carolina
oyster reef model (Dame and Patten, 1981). Table 3 summarizes the main ENA algorithms
encoded in enaR.

Again, in this package results are reported in the row-to-column orientation by default –
including the algorithms from the Patten school. Please see Section 3.13 for how to change
this default if needed.

3.1. Balancing for Steady-State

Many of the ENA functions assume that the network model is at steady-state (node inputs
equal node outputs). Thus, this package has functions for (1) checking to see if the assumption
is met and (2) automatically balancing the model so that input equal outputs.

To determine if the model is balanced and then balance it if necessary:

> ## Check to see if the model is balanced

> ssCheck(fake.model)

[1] FALSE

> ## To BALANCE a model if needed

> fake.model <- balance(fake.model,method="AVG2")

[1] AVG2

> ## To FORCE BALANCE a model if needed

> fake.model <- force.balance(fake.model)

The automated balancing routines are based on those presented in Allesina and Bondavalli
(2003) and include Input, Output, AVG, and AVG2. These authors compare these alternative
balancing algorithms and further discuss the implications of using automated procedures.
Caution is warranted when using these techniques, as they indiscriminately alter the model
flow rates. A more neuanced appraoch may be desired when the uncertainty in estimates of
model fluxes are known.

3.2. Structural Network Analysis

Structural network analysis is common to many types of network analysis. The structural
analyses applied here are based on those presented in NEA.m (Fath and Borrett, 2006) fol-
lowing the Patten School. Output of the enaStructure function is summarized in Table 4.
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> data(oyster)

> St <- enaStructure(oyster)

> attributes(St)

$names

[1] "A" "ns"

> St$ns

n L C LD ppr lam1A mlam1A rho R

[1,] 6 12 0.3333333 2 2.147899 2.147899 1 2.147899 0.4655712

d no.scc no.scc.big pscc

[1,] 0.147899 2 1 0.8333333

The number of nodes, number of links, link density, and connectance (density) are common
statistics used to describe networks like food webs (Martinez, 1992; Dunne, Williams, and
Martinez, 2002; Eklöf and Ebenman, 2006; Estrada, 2007; Brandes and Erlebach, 2005). The
pathway proliferation rate quantifies if and how fast the number of pathways increases with
path length in the network (Borrett and Patten, 2003; Borrett et al., 2007). This rate is
equivalent to the dominant eigenvalue of the adjacency matrix (λ1(A)) if the network is
comprised of a single strongly connected component (Borrett et al., 2007).

The structural network statistics for the oyster reef model shows that it has 6 nodes, a pathway
proliferation rate of 2.14 (ppr), and that the model is comprised of two strongly connected
components (no.scc) but that only one has more than one node (no.scc.big). Thus, 83% of
the nodes are participating in a strongly connected component (pscc).

3.3. Flow Analysis

Flow analysis is one of the core ENA analyses for both the Ulanowicz and Patten Schools
(Fath and Patten, 1999; Latham II, 2006; Fath and Borrett, 2006; Schramski, Kazanci, and
Tollner, 2011). The enaR implementation enaFlow mostly follows the NEA.m function, with
small updates (e.g. calculating the ratio of indirect-to-direct flows Borrett and Freeze, 2011;
Borrett, Freeze, and Salas, 2011). Results returned by enaFlow are summarized in Table 5

To validly apply flow analysis, the network model must meet two analytical assumptions.
First, the model must trace a single, thermodynamically conserved currency, such as energy,
carbon, or nitrogen. Second, the model must be at steady-state for many of the analyses.

Flow analysis has been used in a variety of ways. For example, Finn (1980) used ENA flow
analysis to compare the cycling of multiple nutrients through the Hubbard Brook Ecosystem,
New Hampshire, USA, and van Oevelen, Duineveld, Lavaleye, Mienis, Soetaert, and Heip
(2009) used the technique to show how different marine canyon conditions change the flow
of carbon through the food webs in Nazaré Canyon. Gattie, Schramski, Borrett, Patten,
Bata, and Whipple (2006) applied the analysis to characterize N cycling in the Neuse River
Estuary (North Carolina, USA), and Zhang et al. (2010) used flow analysis to help assess the
sustainability of the urban water metabolism of Beijing, China. Borrett (2013) showed that
the throughflow vector T can be considered as a type of centrality measure that indicates the
relative importance of each node to the generation of the total system throughflow or activity.
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Here, we extract the flow statistics and then isolate and remove the output-oriented direct
flow intensity (G) matrix. Recall that ENA is partially derived from Input–Output analysis;
the input and output orientations provide different information about the system. We also
show the input-oriented integral flow matrix N′.

> F <- enaFlow(oyster)

> attributes(F)

$names

[1] "T" "G" "GP" "N" "NP" "ns"

> F$ns

Boundary TST TSTp APL FCI BFI DFI

[1,] 41.47 83.5833 125.0533 2.015512 0.1101686 0.4961517 0.1950689

IFI ID.F ID.F.I ID.F.O HMG.I HMG.O AMP.I AMP.O

[1,] 0.3087794 1.582925 1.716607 1.534181 2.051826 1.891638 3 1

mode0.F mode1.F mode2.F mode3.F mode4.F

[1,] 41.47 32.90504 9.208256 32.90504 41.47

> ## Output-oriented direct flow matrix

> F$G

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 0.0000000 0.0000000 0.00000000

Microbiota 0 0.0000000 0.1475753 0.14757529

Meiofauna 0 0.0000000 0.0000000 0.07793173

Deposit Feeders 0 0.0000000 0.0000000 0.00000000

Predators 0 0.0000000 0.0000000 0.00000000

Deposited Detritus 0 0.3670363 0.3267221 0.02888377

Predators Deposited Detritus

Filter Feeders 0.01238245 0.3807813

Microbiota 0.00000000 0.0000000

Meiofauna 0.00000000 0.5000059

Deposit Feeders 0.06856574 0.7600000

Predators 0.00000000 0.4757876

Deposited Detritus 0.00000000 0.0000000

> ## Input-oriented integral flow matrix

> F$NP

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 1 1.0000000 1.0000000 1.0000000

Microbiota 0 1.1018630 0.2440716 0.6197856

Meiofauna 0 0.2971032 1.2971032 0.5604100

Deposit Feeders 0 0.1240688 0.1240688 1.1240688
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Predators 0 0.0203426 0.0203426 0.0203426

Deposited Detritus 0 1.3885039 1.3885039 1.3885039

Predators Deposited Detritus

Filter Feeders 1.0000000 1.0000000

Microbiota 0.1555792 0.1018630

Meiofauna 0.1406747 0.2971032

Deposit Feeders 0.2821649 0.1240688

Predators 1.0051064 0.0203426

Deposited Detritus 0.3485436 1.3885039

Note that you can use the attach function to have access to the objects nested within an
object. Since some objects may conflict in name, it’s best to detach an object once it’s not
in use.

> attach(F)

> G

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 0.0000000 0.0000000 0.00000000

Microbiota 0 0.0000000 0.1475753 0.14757529

Meiofauna 0 0.0000000 0.0000000 0.07793173

Deposit Feeders 0 0.0000000 0.0000000 0.00000000

Predators 0 0.0000000 0.0000000 0.00000000

Deposited Detritus 0 0.3670363 0.3267221 0.02888377

Predators Deposited Detritus

Filter Feeders 0.01238245 0.3807813

Microbiota 0.00000000 0.0000000

Meiofauna 0.00000000 0.5000059

Deposit Feeders 0.06856574 0.7600000

Predators 0.00000000 0.4757876

Deposited Detritus 0.00000000 0.0000000

> detach(F)

3.4. Ascendency

A key contribution of the Ulanowicz School to ENA is the Ascendency concept and the
development of several information based network-level statistics (Ulanowicz, 1986, 1997).
This analysis is based on all of the flows in the system and does not assume the modeled
system is at steady-state. The enaAscendency function returns several of these information
based measures (Table 6). This is run as follows:

> enaAscendency(oyster)

AMI ASC OH CAP ASC.CAP OH.CAP robustness

[1,] 1.330211 166.3473 211.0979 377.4452 0.4407191 0.5592809 0.3611021

ELD TD

[1,] 1.79506 2.514395
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3.5. Storage Analysis

Storage ENA was developed in the Patten School (Barber, 1978b,a). It is similar to flow ENA,
but divides the flows by storage (e.g., biomass) instead of throughflow. Several papers provide
an overview of this methodology Fath and Patten (1999); Gattie et al. (2006); Schramski et al.
(2011). Output of this function is summarized in Table 7. What follows is an example of
applying the storage analysis to the oyster reef model.

> S <- enaStorage(oyster)

> attributes(S)

$names

[1] "X" "C" "P" "S" "Q" "CP" "PP" "SP" "QP" "dt" "ns"

> S$ns

TSS CIS BSI DSI ISI ID.S

[1,] 3112.044 0.9940252 0.003331412 0.003320932 0.9933477 299.1171

ID.S.I ID.S.O HMG.S.O HMG.S.I NAS NASP mode0.S mode1.S

[1,] 454.227 294.1527 1.115985 1.464503 20 21 10.3675 8.226261

mode2.S mode3.S mode4.S

[1,] 3093.45 8.226261 10.3675

This storage analysis of the oyster reef model indicates that the total energy stored in the
system on an average day is 3112 kcal m−2, and that 99.3% of this storage is generated by
energy flowing over indirect pathways (ISI).

Whipple, Patten, and Borrett (2014) provides a detailed example of applying storage analysis
to characterize the dynamic organization of an ecosystem. They investigated how the stor-
age analysis properties changed across sixteen consecutive seasonal N cycling models of the
Neuse River Estuary. They found that from this storage perspective NOx was the dominant
compartment, and thus a primary controller of the system dynamics. Note that this work
provides an example of applying this analysis at multiple levels of analysis (e.g., Hines and
Borrett, 2014).

3.6. Utility Analysis

Utility analysis describes the relationship between node pairs in the ecosystem model when
considering both direct and indirect interactions. It developed in the Patten School (Patten,
1991; Fath and Patten, 1999) and is similar to yet distinct from the Ulanowicz School mixed
trophic impacts analysis (Ulanowicz and Puccia, 1990). Utility analysis can be conducted
from both the flow and storage perspectives, so the “type” argument needs to be set to suit
the user’s needs. This is again implemented as in NEA.m. Table 8 summarizes the function
output for the flow and storage versions. These analyses are executed as:

> UF <- enaUtility(oyster, eigen.check=TRUE,type="flow")

> US <- enaUtility(oyster, eigen.check=TRUE,type="storage")

> attributes(UF)
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$names

[1] "D" "U" "Y" "ns"

Please note the function argument “eigen.check=TRUE”. For this analysis to work, the power
series of the direct utility matrices must converge, which is only true if the dominant eigenvalue
of the direct utility matrix is less than 1. The function default prevents the analysis from
being performed if this condition is not met. Users that wish to perform the analysis anyway
can set “eigen.check=FALSE”. Care should be used when doing this, as the meaning of the
underlying mathematics is uncertain.

3.7. Environ Analysis

Environ Analysis finds the n unit input and output environs for the model (Patten, 1978; Fath
and Patten, 1999). These unit environs are returned by the environ function as in NEA.m.
They indicate the flow activity in each subnetwork generated by pulling a unit out of a node
(input environs) or pushing a unit into a node (output environ). These unit environs can
be converted into “realized” environs by multiplying each by the relevant observed input or
output (Borrett and Freeze, 2011; Whipple, Borrett, Patten, Gattie, Schramski, and Bata,
2007; Whipple et al., 2014).

> E <- enaEnviron(oyster)

> attributes(E)

$names

[1] "input" "output"

> E$output[1]

$`Filter Feeders`
Filter Feeders Microbiota Meiofauna

Filter Feeders -1 0.0000000 0.00000000

Microbiota 0 -0.1970605 0.02908126

Meiofauna 0 0.0000000 -0.20449723

Deposit Feeders 0 0.0000000 0.00000000

Predators 0 0.0000000 0.00000000

Deposited Detritus 0 0.1970605 0.17541596

z 1 0.0000000 0.00000000

Deposit Feeders Predators Deposited Detritus

Filter Feeders 0.00000000 0.012382445 0.380781288

Microbiota 0.02908126 0.000000000 0.000000000

Meiofauna 0.01593682 0.000000000 0.102249819

Deposit Feeders -0.06052568 0.004149988 0.045999518

Predators 0.00000000 -0.016532433 0.007865927

Deposited Detritus 0.01550760 0.000000000 -0.536896552

z 0.00000000 0.000000000 0.000000000

y

Filter Feeders 0.606836267
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Microbiota 0.138897999

Meiofauna 0.086310586

Deposit Feeders 0.010376176

Predators 0.008666506

Deposited Detritus 0.148912467

z 0.000000000

The TET function returns vectors of the unit and realized input and output total environ
throughflow. The realized total environ throughflow is an environ based partition of the total
system throughflow (Whipple et al., 2007).

> tet <- TET(oyster)

> show(tet)

$realized.input

[1] 25.165000 22.647638 14.582798 2.028052 1.053786 18.107007

$realized.output

[1] 83.5833 0.0000 0.0000 0.0000 0.0000 0.0000

$unit.input

[1] 1.000000 3.931882 4.074090 4.713111 2.932069 2.931882

$unit.output

[1] 2.015512 1.836089 2.540670 3.124836 2.234317 2.594261

The TES functions returns the both the realized and unit total environ storage for the input
and output environs. Again, the realized TES is a partition of the total system storage (TSS).

> tes <- TES(oyster)

> show(tes)

$realized.input

Filter Feeders Microbiota Meiofauna

2000.00000 2.41209 24.12171

Deposit Feeders Predators Deposited Detritus

16.27440 69.23803 1000.03118

$realized.output

[1] 3112.044 0.000 0.000 0.000 0.000 0.000

$unit.input

Filter Feeders Microbiota Meiofauna

289.3658066 0.6561948 7.3735209

Deposit Feeders Predators Deposited Detritus

11.5308112 109.7205293 265.1036470
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$unit.output

Filter Feeders Microbiota Meiofauna

75.04326 16.06273 41.03146

Deposit Feeders Predators Deposited Detritus

65.81279 132.44451 66.11575

Realized TET and TES might be considered network centrality measures that indicate the
relative importance of the environs in generating the observed flow or storage, respectively.

3.8. Control Analysis

Control analysis was implemented as in the NEA.m function, but we also include recent
updates to control analysis (e.g., Schramski, Gattie, Patten, Borrett, Fath, Thomas, and
Whipple, 2006; Schramski, Gattie, Patten, Borrett, Fath, and Whipple, 2007). In general,
these analyses determine the pairwise control relationships between the nodes in the network.
Table 9 summarizes the function output.

> C <- enaControl(oyster)

> attributes(C)

$names

[1] "CN" "CQ" "CR" "CD" "sc"

> C$sc

Filter Feeders Microbiota Meiofauna

0.120569086 -0.063395416 -0.042707703

Deposit Feeders Predators Deposited Detritus

0.002631762 -0.069124796 0.052027067

The elements of the sc vector indicate the relative control exherted by each node on the system
functioning.

3.9. Mixed Trophic Impacts

Mixed Trophic Impacts is a popular analysis from the Ulanowicz School of ENA (Ulanowicz
and Puccia, 1990). The enaMTI function generates comparable results to the calculations in
Ulanowicz and Puccia (1990). These are implemented as follows; Table 10 summarizes the
function output.

> mti <- enaMTI(oyster)

> attributes(mti)

$names

[1] "G" "FP" "Q" "M"
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> mti$M

[1] NA

In this case, the power series of the direct trophic impacts matrix does not converge (dominant
eigenvalue is greater than one). Thus, the function returns the mti$M = NA. Like with
Utility analysis, however, we can use the eigen.check argument to do the calculation despite
the mathematical problem.

> mti <- enaMTI(oyster,eigen.check=FALSE)

> attributes(mti)

$names

[1] "G" "FP" "Q" "M"

> mti$M

Filter Feeders Microbiota Meiofauna

Filter Feeders -0.0250635283 0.16956382 0.431493557

Microbiota -0.0015848556 -0.30675078 -0.182458391

Meiofauna -0.0001241781 -0.47413204 -0.070959618

Deposit Feeders -0.0069255188 -0.26769125 -0.007062628

Predators -0.0301817448 0.02000515 -0.004028911

Deposited Detritus -0.0034657973 0.21795628 0.612654910

Deposit Feeders Predators Deposited Detritus

Filter Feeders 0.26144106 0.795834137 0.516016759

Microbiota 0.20520368 0.050323410 -0.295378609

Meiofauna 0.01607831 0.003942987 -0.001592286

Deposit Feeders -0.10329881 0.219903765 0.177109591

Predators -0.07586335 -0.041648786 -0.019939324

Deposited Detritus 0.44874394 0.110048344 -0.251366300

The mixed trophic impacts analysis has been usefully applied to discover interesting and
sometimes unexpected ecological relationships. For example, although alligators directly eat
frogs in the Florida Everglades (USA), it appears that their net relationship when considering
the whole food web is actually mutualistic (Bondavalli and Ulanowicz, 1999). This is in part
because the alligators also eat other key predators of the frogs such as snakes.

3.10. Cycle Analysis

The Cycle Analysis provides the detailed account of the cycling present in the network. It
follows the algorithm by the DOS-based NETWRK 4.2b software by Ulanowicz (Ulanowicz
and Kay, 1991; Ulanowicz, 1983) and provides results similar to NETWRK’s ‘Full Cycle
Analysis’. Cycles in a network are grouped together into disjoint nexuses and each nexus is
characterized by a weak arc. This function gives details of the individual cycles along with
the disjoint nexuses present in the network. Table 11 summarizes the function output.
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> cyc <- enaCycle(oyster)

> attributes(cyc)

$names

[1] "Table.cycle" "Table.nexus" "CycleDist"

[4] "NormDist" "ResidualFlows" "AggregatedCycles"

[7] "ns"

> ## The individual cycles

> names(cyc$Table.cycle)

[1] "CYCLE" "NEXUS" "NODES"

> ## The disjoint nexuses

> names(cyc$Table.nexus)

[1] "NEXUS" "CYCLES" "W.arc.From" "W.arc.To" "W.arc.Flow"

3.11. Trophic Aggregations

The Trophic Aggregation algorithm identifies the trophic structure of the given network based
on the Lindeman’s trophic concepts (Lindeman, 1942). The algorithm is implemented as in
NETWRK 4.2b by Ulanowicz (Ulanowicz and Kemp, 1979) and provides similar results as
NETWRK’s ‘Lindeman Trophic Aggregations’ (Ulanowicz and Kay, 1991). It apportions the
nodes into integer trophic levels and estimates the corresponding inputs, exports, respirations
and the grazing chain and trophic spine which represent the transfers between integer trophic
levels. This analysis assumes that the ecosystem network model being analyzed represents a
food web.

It is crucial for this algorithm that the cycles among the living nodes of the network (Feeding
Cycles) be removed beforehand to assign trophic levels to nodes. Thus, the output for this
function contains the Cycle Analysis for the Feeding Cycles in the network.

Following Ulanowicz and Kay (1991), the non-living nodes are grouped together for this
analysis and referred to as the detrital pool.

Table 12 summarizes the function output except the outputs for the feeding cycles which are
similar to the enaCycle outputs.

> trop <- enaTroAgg(oyster)

> attributes(trop)

$names

[1] "Feeding_Cycles" "A" "ETL" "CE"

[5] "CR" "GC" "RDP" "LS"

[9] "TE" "ns"

> ## Cycle analysis output for Feeding Cycles

> trop$Feeding_Cycles
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$ResidualFlows

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 0 0.000 0.0000

Microbiota 0 0 1.206 1.2060

Meiofauna 0 0 0.000 0.6609

Deposit Feeders 0 0 0.000 0.0000

Predators 0 0 0.000 0.0000

Predators

Filter Feeders 0.5135

Microbiota 0.0000

Meiofauna 0.0000

Deposit Feeders 0.1721

Predators 0.0000

3.12. Other Analyses

There are a number of additional tools in the package. Here selected a subset of these to
highlight.

Quickly Return Multiple Analyses

There are two functions that aggregate multiple analyses and report selected results. A quick
way to get a list of the global network statistics reported in Structure, Flow, Ascendency,
Storage, and Utility analysis is to use the get.ns function.

> ns <- get.ns(oyster)

> ## Examine the structure of ns

> str(ns)

'data.frame': 1 obs. of 65 variables:

$ n : num 6

$ L : num 12

$ C : num 0.333

$ LD : num 2

$ ppr : num 2.15

$ lam1A : num 2.15

$ mlam1A : num 1

$ rho : num 2.15

$ R : num 0.466

$ d : num 0.148

$ no.scc : num 2

$ no.scc.big : num 1

$ pscc : num 0.833

$ Boundary : num 41.5

$ TST : num 83.6

$ TSTp : num 125

$ APL : num 2.02
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$ FCI : num 0.11

$ BFI : num 0.496

$ DFI : num 0.195

$ IFI : num 0.309

$ ID.F : num 1.58

$ ID.F.I : num 1.72

$ ID.F.O : num 1.53

$ HMG.I : num 2.05

$ HMG.O : num 1.89

$ AMP.I : num 3

$ AMP.O : num 1

$ mode0.F : num 41.5

$ mode1.F : num 32.9

$ mode2.F : num 9.21

$ mode3.F : num 32.9

$ mode4.F : num 41.5

$ AMI : num 1.33

$ ASC : num 166

$ OH : num 211

$ CAP : num 377

$ ASC.CAP : num 0.441

$ OH.CAP : num 0.559

$ robustness : num 0.361

$ ELD : num 1.8

$ TD : num 2.51

$ TSS : num 3112

$ CIS : num 0.994

$ BSI : num 0.00333

$ DSI : num 0.00332

$ ISI : num 0.993

$ ID.S : num 299

$ ID.S.I : num 454

$ ID.S.O : num 294

$ HMG.S.O : num 1.12

$ HMG.S.I : num 1.46

$ NAS : num 20

$ NASP : num 21

$ mode0.S : num 10.4

$ mode1.S : num 8.23

$ mode2.S : num 3093

$ mode3.S : num 8.23

$ mode4.S : num 10.4

$ lam1D : num 0.899

$ synergism.F: num 4.92

$ mutualism.F: num 2.27

$ lam1DS : num 0.302

$ synergism.S: num 13.1
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$ mutualism.S: num 2.6

It is also possible to instantly return all of the main ENA output with enaAll:

> oyster.ena <- enaAll(oyster)

> names(oyster.ena)

[1] "ascendency" "control" "environ" "flow" "mti"

[6] "storage" "structure" "utility"

Centrality

Centrality analysis is a large topic in network science (Brandes and Erlebach, 2005; Wasserman
and Faust, 1994). In general the goal is to describe the relative importance of parts of
the networks (nodes, edges, environs). Many different types of centrality measures exist in
network science (Freeman, 1979; Freeman, Borgatti, and White, 1991; Borgatti and Everett,
2006; Brandes and Erlebach, 2005). Environ centrality is unique to ENA (Fann and Borrett,
2012), but like eigenvector centrality, it is a degree-based centrality measure that considers
the equilibrium effect of all pathways of all lengths in the system and as such can be classified
as a global centrality measure. Both of these centralities can be calculated in enaR as follows:

> F <- enaFlow(oyster)

> ec <- environCentrality(F$N)

> show(ec)

$ECin

Filter Feeders Microbiota Meiofauna

0.1404961 0.1279889 0.1771034

Deposit Feeders Predators Deposited Detritus

0.2178241 0.1557484 0.1808391

$ECout

Filter Feeders Microbiota Meiofauna

0.06970737 0.19108709 0.20595483

Deposit Feeders Predators Deposited Detritus

0.12350944 0.07903903 0.33070223

$AEC

Filter Feeders Microbiota Meiofauna

0.1051017 0.1595380 0.1915291

Deposit Feeders Predators Deposited Detritus

0.1706668 0.1173937 0.2557707

> eigenCentrality(F$G)
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$EVCin

[1] 0.1207568 0.1093625 0.1876329 0.2518905 0.1470501 0.1833072

$EVCout

[1] 0.00000000 0.23325048 0.26566843 0.11130122 0.01286707 0.37691280

$AEVC

[1] 0.06037842 0.17130647 0.22665067 0.18159586 0.07995858 0.28011000

These centrality values have been normalized to sum to one. In addition, the throughflow
vector from flow analysis (Borrett, 2013), the total environ throughflow, and total environ
storage vectors might also be considered centrality metrics (Whipple et al., 2007, 2014).
Figure 2 shows one way to visualize the Average Environ and Throughflow Centralities.

> ## Set plotting parameters

> opar <- par(las=1,mfrow=c(1,2),mar=c(7,5,1,1),xpd=TRUE,bg="white")

> ## Find centrality order

> o <- order(ec$AEC,decreasing=TRUE)

> ## Creating a barplot

> bp <- barplot(ec$AEC[o],

+ names.arg=NA,

+ ylab="Average Environ Centrality",

+ col="black",border=NA)

> ## Adding labels

> text(bp,-0.008,

+ labels=names(ec$AEC)[o],

+ srt=35,adj=1,cex=1)

> # throughflow centrality

> T <- enaFlow(oyster)$T

> o <- order(T,decreasing=TRUE)

> bp2 <- barplot(T[o],

+ names.arg=NA,

+ ylab=expression(paste("Throughflow (kcal m"^-2, " y"^-1,")")),

+ col="black", border=NA)

> text(bp2,-1,

+ labels=names(T)[o],

+ srt=35,adj=1,cex=1)

> ## Remove the plotting parameters

> rm(opar)

3.13. Output Orientation

To facilitate package use by the existing ENA community, some of which use the column-to-
row orientation (e.g. the Patten School), we have created orientation functions that enable
the user to set the expected output orientation for functions written in a particular “school”
of analysis. Thus, functions from either school will receive network models with the stan-
dard row-to-column, but will return output with flow matrices oriented in the column-to-row
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Figure 2: Bar plots of the Oyster Reef model Average Environ Centralities (left) and Through-
flow Centralities (right).

orientation when appropriate (i.e. Patten school functions) and return them in that same
orientation.

Here is an example of how to use the model orientation functions to re-orient the output from
enaFlow:

> ## Check the current orientation

> get.orient()

[1] "rc"

> ## enaFlow output in row-column

> flow.rc <- enaFlow(oyster)$G

> ## Set the global orientation to school

> set.orient('school')
> ## Check that it worked

> get.orient()

[1] "school"

> ## enaFlow output in column-row

> flow.cr <- enaFlow(oyster)$G

> ## Check. Outputs should be transposed from each other.

> all(flow.rc == flow.cr)

[1] FALSE

> all(flow.rc == t(flow.cr))

[1] TRUE

> ## Now change back to the default orientation ('rc')
> set.orient('rc')



Su
bm
itt
ed

Journal of Statistical Software 29

Matrix powers – raising a matrix to a power is not a native operation in R . Thus, the enaR
package includes a function mExp to facilitate this matrix operation commonly used in ENA.

> mExp(F$G,2)

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 0.1397606 0.12440966 0.01099840

Microbiota 0 0.0000000 0.00000000 0.01150080

Meiofauna 0 0.1835203 0.16336297 0.01444205

Deposit Feeders 0 0.2789476 0.24830879 0.02195166

Predators 0 0.1746313 0.15545033 0.01374254

Deposited Detritus 0 0.0000000 0.05416549 0.07962750

Predators Deposited Detritus

Filter Feeders 0.000000000 0.005891414

Microbiota 0.010118608 0.185945731

Meiofauna 0.005343446 0.059228112

Deposit Feeders 0.000000000 0.032622730

Predators 0.000000000 0.000000000

Deposited Detritus 0.001980437 0.185314635

4. Multi-Model Analyses (Batch Processing)

While many investigators analyze single models, much of ENA is used to compare ecosys-
tem models (e.g., Baird et al., 1991; van Oevelen, Soetaert, Middelburg, Herman, Moodley,
Hamels, Moens, and Heip, 2006; Christian and Thomas, 2003; Niquil, Chaumillon, Johnson,
Bertin, Grami, David, Bacher, Asmus, Baird, and Asmus, 2012; Hines et al., 2015). Inves-
tigators have also analyzed large sets of models to determine the generality of hypothesized
ecosystem properties (e.g., Christensen, 1995; Borrett and Salas, 2010; Salas and Borrett,
2011). For both of these applications, investigators need to analyze multiple models. One
advantage of the enaR R package is that it simplifies this batch processing. Here we illustrate
how to batch analyze a selection of models.

Our first step is to build an R list data object with ecosystem network models to batch analyze
as the elements of the list. To illustrate batch processing, we will use a subset of the trophic
models distributed with enaR, which are already stored as a list.

> data(troModels)

Now that we have the models loaded, we can start to manipulate them. Once we have balanced
the models, we can run the flow analysis on them. We are using the lapply function to iterate
the analysis across the list of models stored in model.list. This approach is more compact
and computationally efficient than a using for-loop.

> # balance models as necessary

> m.list <- lapply(troModels[1:10],balance)
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[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

[1] BALANCED

> # check that models are balanced

> unlist(lapply(m.list,ssCheck))

Marine Coprophagy (oyster) Lake Findley

TRUE TRUE

Mirror Lake Lake Wingra

TRUE TRUE

Marion Lake Cone Springs

TRUE TRUE

Silver Springs English Channel

TRUE TRUE

Oyster Reef Baie de Somme

TRUE TRUE

> ## If balancing fails, you can use force.balance

> ## to repeatedly apply the balancing procedure

> ## although this is not the case with our model set

>

> m.list <- lapply(m.list,force.balance)

> ## Check that all the models are balanced

> all(unlist(lapply(m.list,ssCheck)))

[1] TRUE

> ## Example Flow Analysis

> F.list <- lapply(m.list, enaFlow)

> ## The full results of the flow analysis is now stored in the elements

> ## of the F.list. To get the results for just the first model:

> F.list[[1]]

$T

SHRIMP BENTHIC ORGANISMS

124.1 323.7

SHRIMP FECES & BACTERIA BENTHIC FECES & BACTERIA

21.9 79.6



Su
bm
itt
ed

Journal of Statistical Software 31

$G

SHRIMP BENTHIC ORGANISMS

SHRIMP 0 0.0000000

BENTHIC ORGANISMS 0 0.0000000

SHRIMP FECES & BACTERIA 0 0.6986301

BENTHIC FECES & BACTERIA 0 0.6645729

SHRIMP FECES & BACTERIA

SHRIMP 0.1764706

BENTHIC ORGANISMS 0.0000000

SHRIMP FECES & BACTERIA 0.0000000

BENTHIC FECES & BACTERIA 0.0000000

BENTHIC FECES & BACTERIA

SHRIMP 0.0000000

BENTHIC ORGANISMS 0.2459067

SHRIMP FECES & BACTERIA 0.0000000

BENTHIC FECES & BACTERIA 0.0000000

$GP

SHRIMP BENTHIC ORGANISMS

SHRIMP 0 0.00000000

BENTHIC ORGANISMS 0 0.00000000

SHRIMP FECES & BACTERIA 0 0.04726599

BENTHIC FECES & BACTERIA 0 0.16342292

SHRIMP FECES & BACTERIA

SHRIMP 1

BENTHIC ORGANISMS 0

SHRIMP FECES & BACTERIA 0

BENTHIC FECES & BACTERIA 0

BENTHIC FECES & BACTERIA

SHRIMP 0

BENTHIC ORGANISMS 1

SHRIMP FECES & BACTERIA 0

BENTHIC FECES & BACTERIA 0

$N

SHRIMP BENTHIC ORGANISMS

SHRIMP 1 0.1473716

BENTHIC ORGANISMS 0 1.1953471

SHRIMP FECES & BACTERIA 0 0.8351055

BENTHIC FECES & BACTERIA 0 0.7943953

SHRIMP FECES & BACTERIA

SHRIMP 0.1764706

BENTHIC ORGANISMS 0.0000000

SHRIMP FECES & BACTERIA 1.0000000

BENTHIC FECES & BACTERIA 0.0000000

BENTHIC FECES & BACTERIA
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SHRIMP 0.03623966

BENTHIC ORGANISMS 0.29394387

SHRIMP FECES & BACTERIA 0.20535805

BENTHIC FECES & BACTERIA 1.19534712

$NP

SHRIMP BENTHIC ORGANISMS

SHRIMP 1 0.05649926

BENTHIC ORGANISMS 0 1.19534712

SHRIMP FECES & BACTERIA 0 0.05649926

BENTHIC FECES & BACTERIA 0 0.19534712

SHRIMP FECES & BACTERIA

SHRIMP 1

BENTHIC ORGANISMS 0

SHRIMP FECES & BACTERIA 1

BENTHIC FECES & BACTERIA 0

BENTHIC FECES & BACTERIA

SHRIMP 0.05649926

BENTHIC ORGANISMS 1.19534712

SHRIMP FECES & BACTERIA 0.05649926

BENTHIC FECES & BACTERIA 1.19534712

$ns

Boundary TST TSTp APL FCI BFI DFI

[1,] 379.6 549.3 928.9 1.44705 0.1199863 0.6910614 0.1542493

IFI ID.F ID.F.I ID.F.O HMG.I HMG.O AMP.I

[1,] 0.1546893 1.002852 0.3603839 0.6126851 2.014161 1.891504 1

AMP.O mode0.F mode1.F mode2.F mode3.F mode4.F

[1,] 0 379.6 103.7915 65.90846 103.7915 379.6

We can use the same technique to extract specific information, like just the ratio of Indirect-
to-Direct flow for each model.

> ## Example of extracting just specific information - Indirect Effects Ratio

> IDs <- unlist(lapply(m.list, function(x) enaFlow(x)$ns[9]))

> ## Look at the first few ID's
> head(IDs)

Marine Coprophagy (oyster) Lake Findley

1.002852 1.723221

Mirror Lake Lake Wingra

1.861121 1.861719

Marion Lake Cone Springs

2.175878 1.023016

We can also collect the set of output-oriented integral flow matrices.
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> ## Here is a list containing only the

> ## output-oriented integral flow matrices

> N.list <- lapply(m.list,function(x) enaFlow(x)$N)

We can also apply the get.ns function to extract all of the network statistics for each model.
We then use the do.call function to reshape the network statistics into a single data frame.

> ## Collecting and combining all network statistics

> ns.list <- lapply(m.list,get.ns) # returns as list

> ns <- do.call(rbind,ns.list) # ns as a data.frame

> ## Let's take a quick look at some of the output

> colnames(ns) # return network statistic names.

[1] "n" "L" "C" "LD"

[5] "ppr" "lam1A" "mlam1A" "rho"

[9] "R" "d" "no.scc" "no.scc.big"

[13] "pscc" "Boundary" "TST" "TSTp"

[17] "APL" "FCI" "BFI" "DFI"

[21] "IFI" "ID.F" "ID.F.I" "ID.F.O"

[25] "HMG.I" "HMG.O" "AMP.I" "AMP.O"

[29] "mode0.F" "mode1.F" "mode2.F" "mode3.F"

[33] "mode4.F" "AMI" "ASC" "OH"

[37] "CAP" "ASC.CAP" "OH.CAP" "robustness"

[41] "ELD" "TD" "TSS" "CIS"

[45] "BSI" "DSI" "ISI" "ID.S"

[49] "ID.S.I" "ID.S.O" "HMG.S.O" "HMG.S.I"

[53] "NAS" "NASP" "mode0.S" "mode1.S"

[57] "mode2.S" "mode3.S" "mode4.S" "lam1D"

[61] "synergism.F" "mutualism.F" "lam1DS" "synergism.S"

[65] "mutualism.S"

> dim(ns) # show dimensions of ns matrix

[1] 74 65

> ns[1:5,1:5] # show selected results

n L C LD ppr

Marine Coprophagy (oyster) 4 4 0.250 1.0 1.000000

Lake Findley 4 6 0.375 1.5 1.004975

Mirror Lake 5 9 0.360 1.8 1.324718

Lake Wingra 5 10 0.400 2.0 2.000000

Marion Lake 5 9 0.360 1.8 1.324718

Given this data frame of network statistics, we can construct interesting plots for further
analysis. Here we focus on results of the St. Marks Seagrass ecosystem (Baird et al., 1998).
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Figure 3: Ratio of Indirect-to-Direct Flow for six ecosystem models (left) and relationship
between the Finn Cycling Index and the ratio of Indirect-to-Direct flow in the 74 ecosysetm
models.

> opar <- par(las=1,mar=c(9,7,2,1),xpd=TRUE,mfrow=c(1,2),oma=c(1,1,0,0))

> ## Number of models

> x=dim(ns)[1]

> m.select <- 26:31

> bp=barplot(ns$ID.F[m.select],ylab="Indirect-to-Direct Flow Ratio (I/D, Realized)",

+ col="darkgreen",border=NA,ylim=c(0,2))

> ## Add labels

> text(bp,-0.05,

+ labels=rownames(ns)[m.select],

+ srt=45,adj=1,cex=0.85)

> opar <- par(xpd=FALSE)

> abline(h=1,col="orange",lwd=2)

> #

> plot(ns$FCI,ns$ID.F,pch=20,col="blue",cex=2,

+ ylab="Indirect-to-Direct Flow Ratio (I/D, Realized)",

+ xlab="Finn Cycling Index (FCI)",

+ xlim=c(0,0.8),ylim=c(0,8))

> ## Remove the plotting parameters

> rm(opar)

A strength of this software is the ease with which users can apply ENA to multiple models.
We expect that this will simplify users’ analytic workflows and reduce the time required to
conduct the work.

5. Connecting to Other Useful Packages

Another advantage of building the enaR package in R is that it lets ecologists take advantage
of other types of network analysis and statistical tools that already exist in R. We highlight
three examples here.
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5.1. network

enaR uses the network data object introduced in the network package (Butts, 2008a). One
advantage of using this data object is that analysts can then use the tools for network con-
struction and manipulation that are part of the network package. For example, network can
import network models from Pajek project files, which is another widely used network mod-
eling and analysis software (Batagelj and Mrvar, 2007). The package also includes functions
to seamlessly add and delete nodes (edges). It also provides the capability to visualize the
network shown previously.

5.2. sna: Social Network Analysis

The sna package for Social Network Analysis is bundled in the statnet package and uses the
same network data object defined in network. Thus, the design decision to use the network
data object gives users direct access to sna tools.

As an example, the sna package provides a way of calculating several common centrality
measures. Thus, ecologists can now use the sna algorithms to determine different types of
centrality for their models. This includes betweenness and closeness centrality as follows:

> betweenness(oyster)

[1] 0.0 0.0 0.5 3.5 0.0 9.0

> closeness(oyster)

[1] 0.625 0.000 0.000 0.000 0.000 0.000

The sna package introduced new graphical capabilities as well. For example, it will create a
target diagram to visualize the centralities (Figure 4).

> m <- m.list[[17]] # Okefenokee Food Web

> ## Calculate betweenness centrality

> b <- betweenness(m)

> ## Get vertex names

> nms <- m%v%'vertex.names'
> show(nms)

[1] "Peat decomposers"

[2] "Detritus decomposers"

[3] "Nitrogen fixing and nitrifying bacteria"

[4] "Autotrophic macrophytes"

[5] "Carnivorous macrophytes"

[6] "Phytoplankton"

[7] "Periphyton"

[8] "Filamentous algae"

[9] "Herbivorous microinvertebrates"

[10] "Predaceaous microinvertebrates"
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[11] "Saprotrophic microinvertebrates"

[12] "Algae-eating macroinvertebrates"

[13] "Macrophyte-eating macroinvertebrates"

[14] "Microinvertebrate-eating macroinvertebrates"

[15] "Macroinvertebrate-eating macroinvertebrates"

[16] "Vertebrate-eating macroinvertebrates"

[17] "Saprotrophic macroinvertebrates"

[18] "Algae-eating vertebrates"

[19] "Macrophyte-eating vertebrates"

[20] "Microinvertebrate-eating vertebrates"

[21] "Macroinvertebrate-eating vertebrates"

[22] "Vertebrate-eating vertebrates"

[23] "Saprotrophic vertebrates"

[24] "Superficial peat"

[25] "Non-peat detritus"

[26] "Nutrients"

> ## Exclude less central node names

> nms[b<=(0.1*max(b))] <- NA

> set.seed(2)

> opar <- par(xpd=TRUE,mfrow=c(1,1))

> ## Create target plot showing only

> ## labels of most central nodes

> gplot.target(m,b,

+ circ.lab=FALSE,

+ edge.col="grey",

+ label=nms)

> ## Remove plot settings

> rm(opar)

In addition to the node-level measures, sna includes graph-level indices.

> centralization(oyster, degree)

[1] 0.45

> centralization(oyster,closeness)

[1] 0.75

> centralization(oyster,betweenness)

[1] 0.41

5.3. iGraph

The iGraph package can also be useful for analyzing network data. Here are a few examples of
using the package. Note that some functions in iGraph conflict with other functions already
defined, so care is required when using iGraph.
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[1] "Peat decomposers"

[2] "Detritus decomposers"

[3] "Nitrogen fixing and nitrifying bacteria"

[4] "Autotrophic macrophytes"

[5] "Carnivorous macrophytes"

[6] "Phytoplankton"

[7] "Periphyton"

[8] "Filamentous algae"

[9] "Herbivorous microinvertebrates"

[10] "Predaceaous microinvertebrates"

[11] "Saprotrophic microinvertebrates"

[12] "Algae-eating macroinvertebrates"

[13] "Macrophyte-eating macroinvertebrates"

[14] "Microinvertebrate-eating macroinvertebrates"

[15] "Macroinvertebrate-eating macroinvertebrates"

[16] "Vertebrate-eating macroinvertebrates"

[17] "Saprotrophic macroinvertebrates"

[18] "Algae-eating vertebrates"

[19] "Macrophyte-eating vertebrates"

[20] "Microinvertebrate-eating vertebrates"

[21] "Macroinvertebrate-eating vertebrates"

[22] "Vertebrate-eating vertebrates"

[23] "Saprotrophic vertebrates"

[24] "Superficial peat"

[25] "Non-peat detritus"

[26] "Nutrients"

Nitrogen fixing and nitrifying bacteria

Carnivorous macrophytes

Herbivorous microinvertebrates

Saprotrophic microinvertebrates

Macroinvertebrate−eating vertebrates

Non−peat detritus
Nutrients

Figure 4: Target plot of node betweenness centrality for the Okefenokee Swamp trophic model.



Su
bm
itt
ed

38 Ecosystem Network Analysis with R: A guide for using enaR

●

●

●

●
●

●

Filter Feeders

Microbiota

Meiofauna

Deposit Feeders

Predators

Deposited Detritus

Figure 5: Plot of Oyster reef model using iGraph

> library(igraph)

> ## The adjacency matrix

> A <- St$A

> ## Creating an iGraph graph

> g <- graph.adjacency(A)

> plot(g)

iGraph has a different set of visualization tools and generates a different looking graph (Fig. 5).

> ## Betweenness centrality (calculated by iGraph and sna)

> betweenness(g)

Filter Feeders Microbiota Meiofauna

0.0 0.0 0.5

Deposit Feeders Predators Deposited Detritus

3.5 0.0 9.0

> ## Shortest path between any two nodes

> shortest.paths(g)

Filter Feeders Microbiota Meiofauna Deposit Feeders

Filter Feeders 0 2 2 2

Microbiota 2 0 1 1

Meiofauna 2 1 0 1

Deposit Feeders 2 1 1 0

Predators 1 2 2 1

Deposited Detritus 1 1 1 1

Predators Deposited Detritus

Filter Feeders 1 1

Microbiota 2 1

Meiofauna 2 1
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Deposit Feeders 1 1

Predators 0 1

Deposited Detritus 1 0

> ## Average path length in the network (graph theory sense)

> average.path.length(g,directed=TRUE)

[1] 1.52

> ## Diameter of the graph

> diameter(g)

[1] 2

> ## Connectivity of the group and sub-components

> vertex.connectivity(g) # connectivity of a graph (group cohesion)

[1] 0

> subcomponent(g,1,'in') # subcomponent reachable from 1 along inputs

+ 1/6 vertex, named:

[1] Filter Feeders

> subcomponent(g,2,'in') # subcomponent reachable from 2 along inputs

+ 6/6 vertices, named:

[1] Microbiota Deposited Detritus Filter Feeders

[4] Meiofauna Deposit Feeders Predators

> subcomponent(g,1,'out') # subcomponent reachable from 1 along outputs

+ 6/6 vertices, named:

[1] Filter Feeders Predators Deposited Detritus

[4] Microbiota Meiofauna Deposit Feeders

> subcomponent(g,2,'out') # subcomponent reachable from 2 along output

+ 5/6 vertices, named:

[1] Microbiota Meiofauna Deposit Feeders

[4] Deposited Detritus Predators

> edge.connectivity(g)

[1] 0
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> ## Detach igraph package

> detach(package:igraph)

5.4. EcoNet

The EcoNet software is an online, web-interface that provides a tool box for dynamic modeling
and ENA analytics (Kazanci, 2007). We have provided a write function that enables enaR
users to output models for easy input into the EcoNet interface. The EcoNet package and
details on the model input syntax can be found at http://eco.engr.uga.edu. Here is an
example of how to use the write.EcoNet function in enaR in your current working directory:

> data(oyster)

> write.EcoNet(oyster,file='oyster.txt',mn='oyster_model')

6. Conclusion

These examples show how to use the key features of the enaR package that enables scientists
to perform Ecosystem Network Analysis in R. The vision for this package is that it provides
access to ENA algorithms from both the Ulanowicz and Patten Schools to facilitate theoreti-
cal synthesis and broader application. In its current form it replicates, updates, and extends
the functionality of the NEA.m function (Fath and Borrett, 2006) and replicates much of
the main analyses in NETWRK (Ulanowicz and Kay, 1991). Through the connections that
enaR provides to other R packages users can connect to other network analyses provided by
packages, such as sna and iGraph. There are other R packages that have graph and network
analysis tools, like Bioconductor, WGCNA, tnet and rmangal, that might also be useful for
ecologists. Our aim is for enaR to serve as a nexus for the introduction of analyses from
the broader field of network theory into ecology. In addition, we would like to invite users
to connect, collaborate and contribute to development of ENA theory and enaR. Program-
mers that are interested can visit https://github.com/SEELab/enaR_development for more
information on how to contribute to development of the enaR package.
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Table 1: Trophic ecosystem networks (58) included in the enaR model library.
Models Units n† C† Input† TST† FCI† Reference

Marine Coprophagy (oyster) kcal m−2 yr−1 4 0.25 379 549 0.12 Haven and Morales-Alamo (1966)

Lake Findley gC m−2 yr−1 4 0.38 21 50 0.30 Richey et al. (1978)

Mirror Lake gC m−2 yr−1 5 0.36 72 217 0.32 Richey et al. (1978)

Lake Wingra gC m−2 yr−1 5 0.40 478 1517 0.40 Richey et al. (1978)

Marion Lake gC m−2 yr−1 5 0.36 87 242 0.31 Richey et al. (1978)

Cone Springs kcal m−2 yr−1 5 0.32 11819 30626 0.09 Tilly (1968)

Silver Springs kcal m−2 yr−1 5 0.28 21296 29175 0.00 Odum (1957)

English Channel kcal m−2 yr−1 6 0.25 1096 2280 0.00 Brylinsky (1972)

Oyster Reef kcal m−2 yr−1 6 0.33 41 83 0.11 Dame and Patten (1981)

Baie de Somme mgC m−2 d−1 9 0.30 876 2034 0.14 Rybarczyk et al. (2003)

Bothnian Bay gC m−2 yr−1 12 0.22 44 183 0.23 Sandberg et al. (2000)

Bothnian Sea gC m−2 yr−1 12 0.24 117 562 0.31 Sandberg et al. (2000)

Ythan Estuary gC m−2 yr−1 13 0.23 1258 4181 0.24 Baird and Milne (1981)

Sundarban Mangrove (virgin) kcal m−2 yr−1 14 0.22 111317 440931 0.19 Ray (2008)

Sundarban Mangrove (reclaimed) kcal m−2 yr−1 14 0.22 38484 103056 0.05 Ray (2008)

Baltic Sea mg C m−2 d−1 15 0.17 603 1973 0.13 Baird et al. (1991)

Ems Estuary mg C m−2 d−1 15 0.19 282 1067 0.32 Baird et al. (1991)

Swartkops Estuary 15 mg C m−2 d−1 15 0.17 3544 13996 0.47 Baird et al. (1991)

Southern Benguela Upwelling mg C m−2 d−1 16 0.23 714 2545 0.31 Baird et al. (1991)

Peruvian Upwelling mg C m−2 d−1 16 0.22 14927 33491 0.04 Baird et al. (1991)

Crystal River (control) mg C m−2 d−1 21 0.19 7357 15062 0.07 Ulanowicz (1986)

Crystal River (thermal) mg C m−2 d−1 21 0.14 6018 12032 0.09 Ulanowicz (1986)

Charca de Maspalomas Lagoon mg C m−2 d−1 21 0.12 1486230 6010331 0.18 Almunia et al. (1999)

Northern Benguela Upwelling mg C m−2 d−1 24 0.21 2282 6611 0.05 Heymans and Baird (2000)

Swartkops Estuary mg C m−2 d−1 25 0.17 2859 8949 0.27 Scharler and Baird (2005)

Sunday Estuary mg C m−2 d−1 25 0.16 4440 11937 0.22 Scharler and Baird (2005)

Kromme Estuary mg C m−2 d−1 25 0.16 2571 11087 0.38 Scharler and Baird (2005)

Okefenokee Swamp g dw m−2 y−1 26 0.20 2533 12855 0.48 Whipple and Patten (1993)

Neuse Estuary (early summer 1997) mg C m−2 d−1 30 0.09 4385 13827 0.12 Baird et al. (2004b)

Neuse Estuary (late summer 1997) mg C m−2 d−1 30 0.11 4639 13035 0.13 Baird et al. (2004b)

Neuse Estuary (early summer 1998) mg C m−2 d−1 30 0.09 4568 14025 0.12 Baird et al. (2004b)

Neuse Estuary (late summer 1998) mg C m−2 d−1 30 0.10 5641 15031 0.11 Baird et al. (2004b)

Gulf of Maine g ww m−2 yr−1 31 0.35 5053 18381 0.15 Link et al. (2008)

Georges Bank g ww m−2 yr−1 31 0.35 4380 16889 0.18 Link et al. (2008)

Middle Atlantic Bight g ww m−2 yr−1 32 0.37 4869 17916 0.18 Link et al. (2008)

Narragansett Bay mgC m−2 yr−1 32 0.15 693845 3917246 0.51 Monaco and Ulanowicz (1997)

Southern New England Bight g ww m−2 yr−1 33 0.35 4717 17597 0.16 Link et al. (2008)

Chesapeake Bay mg C m−2 yr−1 36 0.09 888791 3227453 0.19 Baird and Ulanowicz (1989)

Mondego Estuary (Zostera sp. Meadows) g AFDW m−2 yr−1 43 0.19 4030 6822 0.03 Patŕıcio and Marques (2006)

St. Marks Seagrass, site 1 (Jan.) mg C m−2 d−1 51 0.08 514 1315 0.13 Baird et al. (1998)

St. Marks Seagrass, site 1 (Feb.) mg C m−2 d−1 51 0.08 601 1590 0.11 Baird et al. (1998)

St. Marks Seagrass, site 2 (Jan.) mg C m−2 d−1 51 0.07 602 1383 0.09 Baird et al. (1998)

St. Marks Seagrass, site 2 (Feb.) mg C m−2 d−1 51 0.08 800 1921 0.08 Baird et al. (1998)

St. Marks Seagrass, site 3 (Jan.) mg C m−2 d−1 51 0.05 7809 12651 0.01 Baird et al. (1998)

St. Marks Seagrass, site 4 (Feb.) mg C m−2 d−1 51 0.08 1432 2865 0.04 Baird et al. (1998)

Sylt-Rømø Bight mg C m−2 d−1 59 0.08 683448 1781028 0.09 Baird et al. (2004a)

Graminoids (wet) g C m−2 yr−1 66 0.18 6272 13676 0.02 Ulanowicz et al. (2000)

Graminoids (dry) g C m−2 yr−1 66 0.18 3472 7519 0.04 Ulanowicz et al. (2000)

Cypress (wet) g C m−2 yr−1 68 0.12 1418 2571 0.04 Ulanowicz et al. (1997)

Cypress (dry) g C m−2 yr−1 68 0.12 1035 1919 0.04 Ulanowicz et al. (1997)

Lake Oneida (pre-ZM) g C m−2 yr−1 74 0.22 1034 1697 0.00 Miehls et al. (2009a)

Lake Oneida (post-ZM) g C m−2 yr−1 76 0.22 810 1462 0.00 Miehls et al. (2009a)

Bay of Quinte (pre-ZM) g C m−2 yr−1 74 0.21 984 1509 0.00 Miehls et al. (2009b)

Bay of Quinte (post-ZM) g C m−2 yr−1 80 0.21 1129 2039 0.01 Miehls et al. (2009b)

Mangroves (wet) g C m−2 yr−1 94 0.15 1531 3265 0.10 Ulanowicz et al. (1999)

Mangroves (dry) g C m−2 yr−1 94 0.15 1531 3272 0.10 Ulanowicz et al. (1999)

Florida Bay (wet) mg C m−2 yr−1 125 0.12 738 2720 0.14 Ulanowicz et al. (1998)

Florida Bay (dry) mg C m−2 yr−1 125 0.13 547 1778 0.08 Ulanowicz et al. (1998)

† n is the number of nodes in the network model, C = L/n2 is the model connectance when L is the number of

direct links or energy–matter transfers, Input =
∑

zi is the total amount of energy–matter flowing into the system,

TST =
∑∑

fij +
∑

zi is the total system throughflow, and FCI is the Finn Cycling Index (Finn, 1980). Flow based

network statistics (Input, TST , and FCI) were calculated after models were balanced using the AVG2 algorithm.
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Table 2: Biogeochemical ecosystem networks (42) included in the enaR model library.
Model Units n† C† Input† TST† FCI† Reference

Hubbard Brook (Waide) kg Ca Ha−1 yr−1 4 0.25 11 168 0.76 Waide et al. (1974)

Hardwood Forest, NH kg Ca Ha−1 yr−1 4 0.31 11 200 0.80 Jordan et al. (1972)

Douglas Fir Forest, WA kg Ca Ha−1 yr−1 4 0.31 4 54 0.74 Jordan et al. (1972)

Douglas Fir Forest, WA kg K Ha−1 yr−1 4 0.31 0 45 0.97 Jordan et al. (1972)

Puerto Rican Rain Forest kg Ca Ha−1 yr−1 4 0.31 43 274 0.57 Jordan et al. (1972)

Puerto Rican Rain Forest kg K Ha−1 yr−1 4 0.31 20 433 0.86 Jordan et al. (1972)

Puerto Rican Rain Forest kg Mg Ha−1 yr−1 4 0.31 10 70 0.58 Jordan et al. (1972)

Puerto Rican Rain Forest kg Cu Ha−1 yr−1 4 0.31 0 2 0.37 Jordan et al. (1972)

Puerto Rican Rain Forest kg Fe Ha−1 yr−1 4 0.31 0 7 0.95 Jordan et al. (1972)

Puerto Rican Rain Forest kg Mn Ha−1 yr−1 4 0.38 0 7 0.98 Jordan et al. (1972)

Puerto Rican Rain Forest kg Na Ha−1 yr−1 4 0.31 64 140 0.24 Jordan et al. (1972)

Puerto Rican Rain Forest kg Sr Ha−1 yr−1 4 0.31 0 1 0.71 Jordan et al. (1972)

Tropical Rain Forest g N m−2 d−1 5 0.24 10 71 0.48 Edmisten (1970)

Neuse River Estuary (AVG) mmol N m−2 season−1 7 0.45 795 41517 0.89 Christian and Thomas (2003)

Neuse River Estuary (Spring 1985) mmol N m−2 season−1 7 0.45 133 9120 0.91 Christian and Thomas (2003)

Neuse River Estuary (Summer 1985) mmol N m−2 season−1 7 0.45 119 20182 0.96 Christian and Thomas (2003)

Neuse River Estuary Fall 1985) mmol N m−2 season−1 7 0.45 181 8780 0.88 Christian and Thomas (2003)

Neuse River Estuary Winter 1986) mmol N m−2 season−1 7 0.43 187 6880 0.85 Christian and Thomas (2003)

Neuse River Estuary (Spring 1986) mmol N m−2 season−1 7 0.45 128 12915 0.94 Christian and Thomas (2003)

Neuse River Estuary (Summer 1986) mmol N m−2 season−1 7 0.45 165 11980 0.91 Christian and Thomas (2003)

Neuse River Estuary (Fall 1986) mmol N m−2 season−1 7 0.45 100 9863 0.94 Christian and Thomas (2003)

Neuse River Estuary (Winter 1987) mmol N m−2 season−1 7 0.45 691 7907 0.62 Christian and Thomas (2003)

Neuse River Estuary (Spring 1987) mmol N m−2 season−1 7 0.45 334 11533 0.84 Christian and Thomas (2003)

Neuse River Estuary (Summer 1987) mmol N m−2 season−1 7 0.45 90 15621 0.96 Christian and Thomas (2003)

Neuse River Estuary (Fall 1987) mmol N m−2 season−1 7 0.45 85 7325 0.93 Christian and Thomas (2003)

Neuse River Estuary (Winter 1988) mmol N m−2 season−1 7 0.45 171 8680 0.89 Christian and Thomas (2003)

Neuse River Estuary (Spring 1988) mmol N m−2 season−1 7 0.45 176 6898 0.85 Christian and Thomas (2003)

Neuse River Estuary (Summer 1988) mmol N m−2 season−1 7 0.45 132 16814 0.95 Christian and Thomas (2003)

Neuse River Estuary (Fall 1988) mmol N m−2 season−1 7 0.45 128 5732 0.87 Christian and Thomas (2003)

Neuse River Estuary (Winter 1989) mmol N m−2 season−1 7 0.45 291 5739 0.75 Christian and Thomas (2003)

Cape Fear River Estuary (Oligohaline) nmol N cm−3 d−1 8 0.36 3802 7088 0.20 Hines et al. (2012)

Cape Fear River Estuary (Polyhaline) nmol N cm−3 d−1 8 0.36 3068 5322 0.17 Hines et al. (2015)

Lake Lanier (AVG) mg P m−2 day−1 11 0.21 95 749 0.40 Borrett and Osidele (2007)

Baltic Sea mg N m−3 day−1 16 0.15 2348 44510 0.67 Hinrichsen and Wulff (1998)

Chesapeake Bay mg N m−2 yr−1 36 0.12 73430 484325 0.33 Baird et al. (1995)

Chesapeake Bay mg P m−2 yr−1 36 0.12 9402 101091 0.51 Ulanowicz and Baird (1999)

Chesapeake Bay (Winter) mg P m−2 season−1 36 0.08 1009 11926 0.53 Ulanowicz and Baird (1999)

Chesapeake Bay (Spring) mg P m−2 season−1 36 0.10 1932 27325 0.57 Ulanowicz and Baird (1999)

Chesapeake Bay (Summer) mg P m−2 season−1 36 0.12 4184 42935 0.46 Ulanowicz and Baird (1999)

Chesapeake Bay (Fall) mg P m−2 season−1 36 0.10 2276 18904 0.40 Ulanowicz and Baird (1999)

Sylt-Rømø Bight mg N m−2 yr−1 59 0.09 99613 363693 0.23 Baird et al. (2008)

Sylt-Rømø Bight mg P m−2 yr−1 59 0.09 2508 57739 0.66 Baird et al. (2008)

† n is the number of nodes in the network model, C = L/n2 is the model connectance when L is the number of

direct links or energy–matter transfers, Input =
∑

zi is the total amount of energy–matter flowing into the system,

TST =
∑∑

fij +
∑

zi is the total system throughflow, and FCI is the Finn Cycling Index (Finn, 1980). Flow based

network statistics (Input, TST , and FCI) were calculated after models were balanced using the AVG2 algorithm.

Table 3: Primary Ecosystem Network Analysis algorithms in enaR.
Analysis Function Name School

Structure enaStructure foundational, Patten
Flow enaFlow foundational, Patten
Ascendency enaAscendency Ulanowicz
Storage enaStorage Patten
Utility enaUtility Patten
Mixed Trophic Impacts enaMTI Ulanowicz
Control enaControl Patten
Environ enaEnviron Patten
Cycle Basis enaCycle Ulanowicz
Canonical Trophic Aggregation enaTroAgg Ulanowicz
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Table 4: Resultant matrices and network statistics returned by the enaStructure function
in enaR.

Label Description

Matrices
A n× n adjacency matrix

Network statistics
n number of nodes
L number of directed edges
C connectance (C = L/n2); the proportion of possible directed edges connected.
LD Link Density (L/n)
ppr estimated rate of pathway proliferation (Borrett and Patten, 2003)
lam1A dominant eigenvalue of A (lambda1(A)), which is the

asymptotic rate of pathway proliferation (Borrett et al., 2007)
mlam1A multiplicity of the dominant eigenvalue (number of times repeated)
rho damping ratio, an indicator of how quickly [aij ]

(m)/[aij ]
(m−1) goes to lam1(A) (Caswell, 2001, , p. 95)

R distance of lam1(A) from the bulk of the eigen spectrum (Farkas et al., 2001)
d difference between dominant eigenvalue and link density (expected value for random graph)
no.scc number of strongly connected components (SCC)
no.scc.big number of SCC with more than one node
pscc fraction of network nodes included in a big SCC
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Table 5: Matrices and network statistics returned by the enaFlow function in enaR.
enaR label Description

Matrices
T n× 1 vector of node throughflows (M L−2 or −3 T−1)
G output-oriented direct throughflow intensity matrix
GP input-oriented direct throughflow intensity matrix
N output-oriented integral throughflow intensity matrix
NP input-oriented integral throughflow intensity matrix

Network statistics
Input Total input boundary flow
TST Total System ThroughFLOW
TSTp Total System ThroughPUT
APL Average Path Length (Finn, 1976)
FCI Finn Cycling Index (Finn, 1980)
BFI Boundary Flow Intensity, Boundary/TST
DFI Direct Flow Intensity, Direct/TST
IFI Indirect Flow Intensity, Indirect/TST (Borrett et al., 2006)
ID.F Ratio of Indirect to Direct Flow Borrett and Freeze (2011); Borrett et al. (2011)
ID.F.I input oriented ratio of indirect to direct flow intensity (as in Fath and Borrett, 2006)
IF.F.O output oriented ratio of indirect to direct flow intensity (as in Fath and Borrett, 2006)
HMG.F.I input oriented network homogenization to direct flow intensity
HMG.F.O output oriented network homogenization to direct flow intensity
AMP.F.I input oriented network amplification
AMP.F.O output oriented network amplification
mode0.F Boundary Flow
mode1.F Internal First Passage Flow
mode2.F Cycled Flow
mode3.F Dissipative Equivalent to mode1.F
mode4.F Dissipative Equivalent to mode0.F

Table 6: Graph-level network statistics returned by the enaR enaAscendency function (see
Ulanowicz, 1986, 1997, for interpretations).

Label Description

AMI average mutual information (bits)
ASC ascendency, AMI × TSTp
OH overhead
CAP capacity
ASC.CAP ascendency-to-capacity ratio (dimensionless)
OH.CAP overhead-to-capacity ratio (dimensionless)
robustness robustness of the network as in Fath (2014)
ELD effective link density of the network Ulanowicz et al. (2014)
TD trophic depth of the network as in Ulanowicz et al. (2014)
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Table 7: Matrices and graph-level network statistics returned by the enaR enaStorage func-
tion.

Label Description

Matrices
X n× 1 vector of storage values [M L−2]
C n× n donor-storage normalized output-oriented direct flow intensity matrix (T−1)
P n× n storage-normalized output-oriented direct flow matrix (dimensionless)
S n× n donor-storage normalized output-oriented integral flow intensity matrix (T−1)
Q n× n output-oriented integral flow intensity matrix (dimensionless)
CP n× n recipient-storage normalized input-oriented direct flow intensity matrix (T−1)
PP n× n storage-normalized input-oriented direct flow matrix (dimensionless)
SP n× n donor-storage normalized input-oriented integral flow intensity matrix (T−1)
QP n× n input-oriented integral flow intensity matrix (dimensionless)
dt discrete time step

Network statistics
TSS Total System Storage
CIS Storage Cycling Index
BSI Boundary Storage Intensity
DSI Direct Storage Intensity
ISI Indirect Storage Intensity
ID.S Ratio of Indirect-to-Direct storage (realized)
ID.S.I storage-based input-oriented indirect-to-direct ratio (as in Fath and Borrett, 2006)
ID.S.O storage-based input-oriented indirect-to-direct ratio (as in Fath and Borrett, 2006)
HMG.S.I input-oriented storage network homogenization
HMG.S.O output-oriented storage network homogenization
AMP.S.I input-oriented storage network amplification
AMP.S.O output-oriented storage network amplification
mode0.S Storage from Boundary Flow
mode1.S Storage from Internal First Passage Flow
mode2.S Storage from Cycled Flow
mode3.S Dissipative Equivalent to mode1.S
mode4.S Dissipative Equivalent to mode0.S
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Table 8: Matrices and graph-level network statistics returned by the enaR enaUtility func-
tion.

Label Description

Matrices

Dn×n throughflow-normalized direct utility intensity (dimensionless)
Un×n integral flow utility (dimensionless)
Yn×n integral flow utility scaled by original throughflow (M L−2 or −3 T−1)
DSn×n storage-normalized direct utility intensity (dimensionless)
USn×n integral storage utility (dimensionless)
YSn×n integral storage utility scaled by original throughflow (M L−2 or −3 T−1)

Network Statistics

lam1D dominant eigenvalue of D
synergism.F benefit-cost ratio or network synergism (flow)
mutualism.F positive to negative interaction ratio or network mutualism (flow)
lam1DS dominant eigenvalue of DS
synergism.S benefit-cost ratio or network synergism (storage)
mutualism.S positive to negative interaction ratio or network mutualism (storage)

Table 9: Matrices returned by the enaR enaControl function, which are based on (Dame and
Patten, 1981; Patten and Auble, 1981; Schramski et al., 2006, 2007).

Label Description

Matrices

CNn×n Control matrix using flow values
CQn×n Control matrix using storage values
CRn×n Schramski’s Control Ratio Matrix
CDn×n Schramski’s Control Difference Matrix
scn×1 Schramski’s System Control vector

Table 10: Matrices returned by the enaR enaMTI function, which are based on (Ulanowicz
and Puccia, 1990).

Label Description

Matrices

Gn×n positive effect of prey on its predator
Fn×n negative impact of the predator on its prey
Qn×n direct net impact of one node on another
Mn×n total impact of i on j (direct and indirect)



Su
bm
itt
ed

56 Ecosystem Network Analysis with R: A guide for using enaR

Table 11: Data frames, matrices and graph-level network statistics returned by the enaR
enaCycle function, which is based on (Ulanowicz, 1983).

Label Description

Data frames

Table.cycle Data frame of cycles in the network. Up to 50 cycles are returned
per nexus.

Table.nexus Data frame with details of the disjoint nexuses present in the
network

Matrices

CycleDistn×1 Vector of flows cycling in loops of increasing length (i.e., 1, 2, ...).
NormDistn×1 Vector of Cycle Distributions normalized by the total system

throughput
ResidualFlowsn×n Matrix of straight-through flows or the underlying acyclic graph
AggregatedCyclesn×n Matrix of all the cycled flows or the underlying cyclic graph

Network Statistics

NCYCS Number of cycles detected in the network
NNEX Number of disjoint nexuses detected in the network
CI Cycling index of the network based on flow matrix
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Table 12: Matrices and graph-level network statistics returned by the enaR enaTroAgg func-
tion, which are based on Ulanowicz and Kemp (1979).

Label Description

Matrices

Anl×nl Lindeman transformation matrix that apportions nodes to integer
trophic levels

ETLn×1 Vector of the effective trophic levels of different nodes
M.Flownl×1 Migratory flows in living nodes (if present)
CIn×1 Vector of canonical inputs to integer trophic levels (if migratory

flows present)
CEn×1 Canonical Exports. Vector of exports from Integer trophic levels
CRn×1 Canonical Respirations. Vector of respiration from Integer trophic

levels
GCnl×1 Grazing Chain. Vector of inputs to Integer trophic levels from

preceding level
RDPnl×1 Vector of returns from each level to the detrital pool
LSnl×1 Vector representing the Lindeman Spine
TEnl×1 Vector of the trophic efficiencies for integer trophic levels

Network Statistics

Detritivory Flow from the detrital pool (non-living nodes) to the second
trophic level

DetritalInput Exogenous inputs to the detrital pool
DetritalCirc internal circulation within the detrital pool
NCYCS number of feeding cycles removed from the network
NNEX number of disjoint nexuses detected for the feeding cycles
CI cycling index of the living component of the network based on

flow matrix
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