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1 Upgrades

Since the initial release of the dlmap package (version 1.0) we have made improvements in
a number of areas. We have generalized the types of models and populations that can be
analyzed, as well as streamlining the data input and result visualization processes. Hence
we have changed the original vignette to reflect the new and improved package. This
vignette supplements the help documentation in providing lengthier examples of how to
use functions in the package.

Specific improvements to the package include:

� streamlined construction of input dlcross object

� ability to analyze backcrosses, doubled haploids, RILs, F2 intercrosses

� ability to analyze association mapping populations

� simple plot and summary functions to visualize output

2 Introduction

The dlmap package represents the implementation of the DLMapping algorithm as de-
scribed in [3]. DLMapping is a novel method of QTL mapping in a mixed model frame-
work with separate detection and localization stages. The following vignette documents
its usage through examples based on the datasets included in the package.

The mixed model framework of the algorithm requires supplementary packages for
model fitting. Two such packages are supported through different versions of the package
functions. The asreml functions are faster and more capable of handling complex models,
but require a license for ASReml. The other functions make use of the freely available R
library nlme. Some familiarity with one of the packages is recommended in order to use
the dlmap package. We demonstrate below the usage of both asreml and lme functions to
perform DLMapping.

In the following sections, we present the steps required to perform a sample QTL
analysis. We first sketch the DLMapping algorithm for those who are unfamiliar with its
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structure. Second, we describe the format of input files for dlmap. We then step through
two examples using the datasets included in the package. In the first example, there is
a single phenotypic observation for each genotype, and we compare the performance of
three functions: composite interval mapping (CIM), and DLMapping using each of the
mixed model packages (ASReml and nlme). Performing the analysis, interpreting the log
files and output, and plotting results are all demonstrated in this section. In the second
example, there is more than one phenotypic observation per genotype, and in this case
only DLMapping using ASReml is applicable.

The examples presented here do not cover every possible usage of the library functions,
but clarify their basic implementation. Further detail can be found in the online help files
for the package.

3 Methods

We begin by providing readers with an overview of our QTL mapping strategy. A more
detailed exposition is given in [3]. Our algorithm consists of two parts: a detection stage
and a localization stage. Both stages are iterative and formulated within a mixed linear
model framework.

Detection Stage

� Step D1: Specify mixed linear models. A full model and a reduced (or nested) model
for each chromosome under investigation are constructed. These models contain fixed
and random marker effects to simultaneously account for the extraneous effects of
detected and undetected QTL, respectively.

� Step D2: Identify chromosomes containing undetected QTL. A likelihood based test
statistic is calculated for each chromosome under investigation. This test statistic
measures the strength of evidence for the presence of undetected QTL on a chromo-
some. The genome wide significance of the test statistic is determined via permuta-
tion.

� Step D3: Identify markers to treat as fixed effects. For each chromosome found to
contain significant evidence for undetected QTL in the previous step, the following
procedure is performed. First, we construct a linear mixed model for each marker
on the chromosome. The marker is treated as a fixed effect. Secondly, we calculate
a Wald statistic for the fixed marker effect. Thirdly, we identify the marker with
the largest Wald statistic on a chromosome. This marker is most strongly associated
with the QTL and is incorporated into subsequent models as a fixed marker effect.

These three steps are repeated until chromosomes no longer contain detectable QTL. Upon
completion of the detection stage, rj QTL have been detected on chromosome j. We then
perform rj interval mapping scans on chromosome j to localize these QTL.
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Localization Stage
Perform interval mapping scan on a chromosome containing unmapped QTL. Firstly, we
compute the expected genotype of a QTL conditional on its hypothesized position and the
genotypes of the flanking markers. Secondly, we construct a linear mixed model for each
hypothesized position. This model, analogous to the models used in the detection stage,
contains fixed and random effects to account for the confounding effects on localization of
mapped and unmapped QTL, respectively. We also include a fixed effect for the QTL size
in the model, formed from the expected QTL genotypes. Thirdly, we calculate the Wald
statistic of the QTL effect. The hypothesized QTL position yielding the mixed model with
the highest Wald statistic is the estimated location of the QTL.

The QTL size for this position is included as a fixed effect in subsequent scans. These
steps are repeated for each detected QTL on a chromosome. Once the detected QTL have
been iteratively positioned, we construct a final multiple regression model to accurately
estimate the sizes of the QTL.

4 dlcross object

The dlmap fitting procedure requires as input an object of class dlcross which contains the
data frame to be used in model fitting. This object is created from genotype, phenotype
and map data by using the constructor function dlcross. There are multiple input options,
including compatibility with R/qtl cross objects, and all of the formats supported by the
function read.cross. Two new formats for data with phenotypic replicates or association
mapping populations are described in the following subsections.

Functions exist to easily print, summarize and plot the dlcross object:

> library(dlmap)

> data(BSdat)

> dl.in1 <- dlcross(format = "rqtl", genobj = BSdat, idname = "ID")

> summary(dl.in1)

This is an object of type dlcross.

Summary of genetic and phenotypic data:

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 250

No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 9
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Autosomes: 1 2 3 4 5 6 7 8 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

Genotypes (%): AA:48.6 AB:51.4

There are 250 unique genotypes and 250 unique phenotypes in the data.

> plot(dl.in1)
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Figure 1: Plot summary of dlcross object, including genetic map and first few phenotypes
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4.1 format=”dlmap”

In order to accommodate datasets with extensive phenotypic data, we have created a novel
”dlmap” format for input. This requires three files, representing genotypic, phenotypic,
and marker map data. The files can be simple text; or, if the data has already been read
into R, objects can be input in place of the files. The need for this format arises because
dlmap, in contrast to many other packages, can handle complex environmental and genetic
relationships simultaneously. Hence data may be observed which has multiple phenotypic
observations for each genotype.

Suppose there are n.gen genotyped individuals, n.ind phenotyped individuals, n.obs
phenotypic observations (per trait), and M markers in the data. In general, n.gen ≤
n.ind ≤ n.obs since there may be multiple observations per individual, and more individu-
als may be phenotyped than genotyped. For example, control individuals whose genotypes
are not of interest may be included in the field design in a plant study. Individuals which
are genotyped but not phenotyped will not be considered in the analysis. A description of
each file follows, along with the first few rows and columns of example files. The format
for each file is also outlined in the online help files.

Genotype File
The columns in the genotype data file represent a unique identifier for each genotype and
the genotype at each marker. The first row must be a header which contains the name
of the unique identifier, followed by the marker names. The next n.gen rows contain the
values for each genotyped individual. Entries can be space or tab delimited. Missing values
should be coded as NA. Genotypes should take values from AA, AB, and BB or 0, 1, 2.

ID D1M1 D1M2 D1M3 D1M4
S1 0 0 0 0
S2 0 0 0 0
S3 1 1 0 0
S4 0 0 0 0
S5 0 0 0 0

Phenotype File
The columns in the phenotype data file represent a unique identifier for each individual and
any non-genotypic variables. The first row must be a header which contains the name of
the unique identifier, followed by the variable names. The identifier name must match the
name given in the genotype file. The next n.obs rows contain the values for each phenotypic
observation. Entries can be space or tab delimited; missing values should be coded as NA.

ID phenotype
S1 2.084419
S2 2.076666
S3 2.740571
S4 2.373890
S5 2.382941
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Map File
The map data file contains either two or three columns. There must be a header row,
but the column names are up to the user. The first column must contain the marker
names in map order. This should be the same as the marker columns in the genotype file.
The second column indicates on which chromosome each marker can be found. The third
(optional) column indicates the position of the marker on the chromosome (in cM). If this
column is omitted, the marker positions will be estimated from the data. Entries can be
space or tab delimited. There should not be any missing data.

MrkID Chr Pos
D1M1 1 0
D1M2 1 10
D1M3 1 20
D1M4 1 30
D1M5 1 40

4.2 format=”other”

In this version of dlmap, we introduce the ability to analyze data from an association
mapping population. The data for this format should be input as for the ”dlmap” format.
However, this format does not require a full genetic map for the analysis. Thus the map file
need only contain two columns - one for the marker names, and one for their chromosome
assignments. Marker positions can be omitted. Use of this format will also set options for
input to the mapping procedure, e.g., positioning QTL at markers rather than performing
interval mapping scans.

4.3 Additional Comments

1. Data can be entered as a simple text file. Variables containing character values will
be read in as factors, while numeric values will be read in as numeric. Hence, the
safest way to ensure that factor variables are not treated improperly is to code all
factor values as alphanumerics. An example of this might be a variable representing
the plot index of a field trial. While a natural coding is to use the numbers 1, 2, etc.,
this would be read in as a numeric variable. Instead the variable should be coded as
P1, P2, etc. If this is not done, the user must make sure to use proper asreml syntax
when fitting the model to treat variables as factors. (e.g. dev() command)

2. The name of the unique identifier variable used in both the genotypic and phenotypic
data files must be the same. This variable is used to merge the data together.
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5 Example 1: Single phenotype per genotype

The dlmap package contains multiple datasets with marker and phenotype data. We will
examine these in a simple QTL mapping analysis.

BSdat is marker data from a simulated backcross. The data has class cross and a
summary is displayed by typing the object’s name. Thus we can see that it contains nine
chromosomes, each with 11 markers genotyped on 250 progeny. There are two phenotypes
in the object - an identifier for each genotype and a single trait.

> data(BSdat)

> BSdat

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 250

No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 9

Autosomes: 1 2 3 4 5 6 7 8 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

Genotypes (%): AA:48.6 AB:51.4

The data was generated using the map included in the object, which has markers evenly
spaced at intervals of 10 cM on each chromosome. If we estimate the map from the data,
however, the markers will no longer be evenly spaced, as displayed in Figure 2. Either the
included or estimated map can be used in the dlmap analysis by altering the value of the
argument estmap.

As described in the documentation for the dataset, the data were generated with seven
true QTL, two in coupling on chromosome 1, two in repulsion on chromosome 2, and one
on each of chromosomes 3, 4, and 5. These QTL are positioned at 30 and 70 cM for the
first two chromosomes, and at 0, 20 and 40 cM for the other three respectively. All QTL
have additive effects of magnitude 0.76.

5.1 Standard analysis with Composite Interval Mapping

Composite Interval Mapping (CIM) is a popular QTL mapping method which has been
implemented in such programs as QTLCartographer [4] and the qtl package [2]. The
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> BSmod <- replace.map(BSdat, est.map(BSdat))

> plot.map(BSmod)
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Figure 2: Linkage map estimated from BSdat data
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dataset BSdat was generated according to a simulation from [1] where the intent was to
test the performance of CIM using different numbers of cofactors. We run the analysis
using R/qtl with five marker cofactors.

> gp <- calc.genoprob(BSdat, step = 2)

> BScim <- cim(gp, n.marcov = 5)

> plot(BScim)

> abline(h = 3.56)
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Figure 3: LOD profile for CIM analysis of BSdat with 5 cofactors

This produces a LOD profile at steps of 2 cM along the genome, which is plotted
in Figure 3. The horizontal line indicates the threshold for significance of QTL. This
genomewide threshold was derived in [1] from 50,000 simulations under the null hypothesis
of no QTL. We can see from this plot that with five cofactors, CIM misses the two QTL
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on Chromosome 2 which are in repulsion, but detects all the others. Even using seven
cofactors, which corresponds to the correct number of QTL, the maximum LOD score on
this chromosome (3.5) falls below the significance threshold of 3.77. Thus we would like to
use dlmap to (hopefully) identify all seven QTL.

5.2 DLMapping with lme

The dlmap.lme function is more restricted in its capabilities than dlmap.asreml. For
example, it can only handle up to 200 markers in a dataset, cannot incorporate additional
random effects or covariance structure, and cannot handle multiple phenotypic observations
with genotypic data (i.e. replicates of genotypes as are typical of plant studies). Assuming
files have been created with default names, then we run the analysis with

> system.time(BSlme <- dlmap.lme(object=dl.in1, phename="phenotype",

+ filestem="BS"))

user system elapsed

160.97 0.02 161.34

> names(BSlme)

[1] "input" "no.qtl" "final.model" "profile" "Summary"

> summary(BSlme)

Summary of input data:

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 250

No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 9

Autosomes: 1 2 3 4 5 6 7 8 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

Genotypes (%): AA:48.6 AB:51.4

There are 250 unique genotypes and 250 unique phenotypes in the data.
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Summary of final results:

Chr Pos Left Marker Right Marker Effect SD Z-value p-value

C1M5 1 41.73 D1M4 D1M6 -0.8445 0.1571 -5.38 0

C1M8 1 76.84 D1M7 D1M9 -0.7737 0.1551 -4.99 0

C2M4 2 32.04 D2M3 D2M5 -0.5824 0.1386 -4.2 0

C2M9 2 84.56 D2M8 D2M9 0.5205 0.1395 3.73 0.0002

C3M6 3 51.79 D3M5 D3M7 -0.9032 0.128 -7.06 0

C4M4 4 25.29 D4M3 D4M5 -0.7359 0.1289 -5.71 0

C5M1 5 0 D5M1 D5M2 -0.6975 0.1276 -5.47 0

The output is a dlmap object with 5 components. There are print, summary, and plot
commands to visualize the results graphically and numerically. These are discussed further
below.

� input: the original dlcross input object

� no.qtl: the total number of QTL detected

� final.model: the output after fitting all the QTL in a multiple regression

� profile: a list with components for each chromosome where QTL are detected.
Each component is a matrix with two rows. The first row contains the positions for
the localization scan of that chromosome (determined by the arguments step and
fixpos), while the second row contains the Wald statistic for the given position.
QTL are located based on the size of the Wald statistic, so plotting the profile will
show a profile similar to the LOD profile from CIM. Can be plotted using the function
profileplot

� Summary: information about the detected QTL. It is a data frame with seven columns:

– Column 1 indicates the chromosome of each detected QTL

– Column 2 indicates the position in cM of the QTL

– Column 3 indicates the name of the marker flanking the QTL on the left

– Column 4 indicates the name of the marker flanking the QTL on the right

– Column 5 indicates the additive (dominant) effect estimates for the QTL

– Column 6 indicates the Z-ratio for the size estimate in the multiple regression
model

– Column 7 indicates the p-value for the Z-ratio
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Thus we see that all seven QTL are detected with DLMapping, even with the use of
the conservative Bonferroni correction. The position estimates are rough since we scanned
for QTL only at markers rather than at intermarker positions. In order to perform the
same grid search as CIM, we would add the argument step=2. Alternately, we can search
a specified number of evenly spaced positions between markers by setting the argument
fixpos.

5.3 DLMapping with asreml

The same analysis can also be run using asreml to fit the mixed models instead of lme.
The results are identical; one difference in the output is that the final.model component
of the output list is the output from fitting an asreml model rather than from a multiple
linear regression.

> system.time(BSas <- dlmap.asreml(object=dl.in1, phename="phenotype",

+ filestem="BS"))

user system elapsed

45.97 1.53 47.56

> names(BSas)

[1] "input" "no.qtl" "final.model" "profile" "Summary"

> summary(BSas)

Summary of input data:

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 250

No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 9

Autosomes: 1 2 3 4 5 6 7 8 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

Genotypes (%): AA:48.6 AB:51.4
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There are 250 unique genotypes and 250 unique phenotypes in the data.

Summary of final results:

Chr Pos Left Marker Right Marker Effect SD Z-value p-value

C1M5 1 41.73 D1M4 D1M6 -0.845 0.157 -5.38 0

C1M8 1 76.84 D1M7 D1M9 -0.774 0.155 -4.99 0

C2M4 2 32.04 D2M3 D2M5 -0.582 0.139 -4.19 0

C2M9 2 84.56 D2M8 D2M9 0.521 0.14 3.72 0.0002

C3M6 3 51.79 D3M5 D3M7 -0.903 0.128 -7.05 0

C4M4 4 25.29 D4M3 D4M5 -0.736 0.129 -5.71 0

C5M1 5 0 D5M1 D5M2 -0.697 0.128 -5.45 0

There are many more options available in the asreml implementation of DLMapping.
In addition to the step and fixpos options for specifying the grid search to localize QTL,
we can set the number of permutations to perform and fit much more complicated models
for phenotypic variation. The default number of permutations is 0, in which case p-values
are adjusted with the Bonferroni correction. Permutation testing is not implemented for
dlmap.lme due to the time requirements. Fitting the same model using dlmap.lme and
dlmap.asreml takes 268 and 41 seconds, respectively.

5.4 DLMapping Log Files

In the process of performing the DLMapping analysis, two log files will be created. The
names of these files can be specified with the argument filestem, which has a default
value of ”dl”. The two files will then be created in the working directory with names
”filestem.trace” and ”filestem.det.log”. If the option to run permutations is selected, there
will also be files created containing all of the permutation test statistics for each iteration
of the detection stage. These files will have the extension ”.permX” where X denotes the
given iteration.

The trace file is created in order to port all of the output from asreml model fitting
to a separate file. For each model that is fit, asreml outputs the convergence process and
various licensing information which can obscure other, more important messages. In the
trace file, this output is labelled by whether the models are fit for testing, for marker scans
in the detection stage, or for interval mapping scans in the localization stage. However, for
the most part this output will not provide much additional useful information.

Note: The trace file will not be created with dlmap.lme because lme does not output
the same information to the screen.

The detection log (.det.log) file provides some additional information about the detec-
tion stage. For each iteration of the detection stage, it contains the likelihood ratio test
statistics for each chromosome, along with adjusted p-values. The p-values are adjusted
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for the number of chromosomes tested, either by the Bonferroni correction or by permuta-
tion. The genomewide threshold at the specified significance level is given using the same
criterion for multiple testing, and the marker selected for each significant chromosome is
specified. Thus this gives a much more complete picture of the QTL detection process than
the final output. The test statistics from the first iteration may be of interest in order to
identify chromosomes which were significant at different alpha levels.

The output from this file is included below as an example.

****************************************************
Iteration 1: No. Permutations=0

Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9
Obs: 80.4961 8.9876 38.2735 14.638 14.581 0.0181 0.0292 0 0.018
P-val: 0 0.0122 0 6e-04 6e-04 1 1 1 1

5% Genomewide Threshold: 6.4475
Significant chromosomes to be used for scanning/testing:

Chr1 Chr2 Chr3 Chr4 Chr5
Mrk: 5 4 6 4 1

**************************************************************
Iteration 2: No. Permutations=0
Chromosomes from previous iteration:

Chr1 Chr2 Chr3 Chr4 Chr5
Obs: 13.6822 8.0164 0.6127 0 0
P-val: 5e-04 0.0116 1 1 1

5% Genomewide Threshold: 5.4119
Significant chromosomes for next round of testing/scanning:

Chr1 Chr2
Mrk: 8 9

**************************************************************
Iteration 3: No. Permutations=0
Chromosomes from previous iteration:

Chr1 Chr2
Obs: 0 0.3385
P-val: 0.9967 0.5607

5% Genomewide Threshold: 3.8415

5.5 Plotting Results

There are two plot functions to visualize the dlmap object in addition to tabulating results
via the summary function. The default plot function displays the detected QTL on the
genetic linkage map. If no QTL are detected, the genetic map itself is plotted for all or a
subset of chromosomes. If QTL are detected, this subset is chosen to be those with QTL.
In this case, the function will mark the estimated positions of QTL, highlight the flanking
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markers, and shade the regions between the flanking markers. This helps to visualize where
QTL have been detected. The plot for this example is given below, where QTL have been
positioned using a step size of 2 cM.

> BSplot <- dlmap.asreml(object=dl.in1, phename="phenotype",

+ step=2)

> plot(BSplot)
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Figure 4: Linkage map for chromosomes with detected QTL

The second type of plot displays the QTL profiles for chromosomes where they were
detected. The function profileplot takes as input an object of class dlmap and constructs
plots of the Wald statistic on each chromosome where QTL were detected. These statistics
are used to localize QTL and hence the profile plots are analogous to a LOD profile from
CIM.
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> profileplot(BSplot)
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Figure 5: Profile plot for chromosomes with detected QTL
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6 Example 2: Multiple phenotypes per genotype

The second example we present here is representative of a more complicated design where
we may observe multiple observations per genotype, as in a large field trial. We use the
same object BSdat for the marker data but the object BSphe now contains the phenotypic
data. The data is generated as if from a randomized complete block design where we have
four observations per genotype. From Figure 6, which shows boxplots of the trait within
each block, we can see clear differences between blocks. We can account for this effect
using the mixed modeling framework of dlmap and thus gain power to detect QTL via the
additional observations.

> data(BSphe)

> names(BSphe)

[1] "ID" "Block" "phenotype"

> table(BSphe$Block)

1 2 3 4

250 250 250 250

With dlmap.asreml we can analyze the data in the context of the additional phenotypic
data in BSphe. This is not possible using dlmap.lme or CIM. For this data we construct
new input files which include all of the phenotypic data, and then fit a model which has
a random effect for block. This requires more time than the simple model due to the
larger dataset, but at 115 seconds is still faster than dlmap.lme. As previously, all seven
QTL are detected, but the QTL effects are more significant due to the increased number
of observations. We can also recover the BLUPs for the block random effects through
the final.model component of the output. The log files have similar formats to those
described in the first example.

> dl.in2 <- dlcross(format = "rqtl", genobj = BSdat, pheobj = BSphe,

+ idname = "ID")

> summary(dl.in2)

This is an object of type dlcross.

Summary of genetic and phenotypic data:

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 250
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> boxplot(BSphe$phenotype ~ BSphe$Block)
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Figure 6: Distribution of quantitative trait within blocks
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No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 9

Autosomes: 1 2 3 4 5 6 7 8 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

Genotypes (%): AA:48.6 AB:51.4

There are 250 unique genotypes and 1000 unique phenotypes in the data.

> system.time(BSasph <- dlmap.asreml(object=dl.in2, phename = "phenotype",

+ env = T, random = ~Block))

user system elapsed

164.19 1.41 166.02

> summary(BSasph)

Summary of input data:

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 250

No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 9

Autosomes: 1 2 3 4 5 6 7 8 9

Total markers: 99

No. markers: 11 11 11 11 11 11 11 11 11

Percent genotyped: 100

Genotypes (%): AA:48.6 AB:51.4

There are 250 unique genotypes and 1000 unique phenotypes in the data.

Summary of final results:

Chr Pos Left Marker Right Marker Effect SD Z-value p-value
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C1M4 1 33.05 D1M3 D1M5 -0.706 0.072 -9.81 0

C1M8 1 76.84 D1M7 D1M9 -0.76 0.071 -10.7 0

C2M4 2 32.04 D2M3 D2M5 -0.845 0.072 -11.74 0

C2M8 2 70.87 D2M7 D2M9 0.897 0.072 12.46 0

C3M6 3 51.79 D3M5 D3M7 -0.761 0.062 -12.27 0

C4M4 4 25.29 D4M3 D4M5 -0.699 0.062 -11.27 0

C5M1 5 0 D5M1 D5M2 -0.707 0.062 -11.4 0

> BSasph$final.model$coefficients$random

Block_1 Block_2 Block_3 Block_4

0.4835664 0.8503207 1.3388842 -2.6727712

> BSasph$final.model$gammas

Block R!variance

3.508775 1.000000
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