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Description

This package implements the small-sample degrees of freedom adjustment discussed in Imbens
and Kolesar [2016]. The implementation can handle models with fixed effects, and cases where the
number of observations or clusters is large !.

library(dfadjust)

To give some examples, let us construct an artificial dataset with 11 clusters

set.seed(7)

dl <- data.frame(y = rnorm(1000), xl1 = c(rep(l, 3), rep(0,
997)), x2 = c(rep(l, 150), rep(0, 850)), x3 = rnorm(1000),
¢l = as.factor(c(rep(1:10, each = 50), rep(11, 500))))

Let us first run a regression of y on x1. This is a case where in spite of moderate data size, the
effective number of observations is small since there are only three treated units:

rl <- Im(y = x1, data = d1)
##% No clustering

dfadjustSE(rl)

#>

#> Coefficients:

#> Estimate HC1 se HC2 se Adj. se af p-value
#> (Intercept) 0.00266 0.0311 0.031 0.0311 996.00 0.932
#> zl 0.12940 0.8892 1.088 2.37(3 2.01 0.957

Now consider a cluster-robust regression of y on x2. There are only 3 treated clusters, so the
effective number of observations is again small:

rl <- Im(y ~ x2, data = d1)

# Default Imbens-Kolesar method
dfadjustSE(rl, clustervar = d1$cl)
#>

1We thank Ulrich Miiller for suggesting to us the lemma below



#> Coefficients:

#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.0236 0.0135 0.0169 0.0222 /.94 0.288
#> z2 0.1778 0.0530 0.0621 0.1157 2.43 0.124

# Bell-McCaffrey method
dfadjustSE(rl, clustervar = d1$cl, IK = FALSE)

#>

#> Coefficients:

#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.0236 0.0135 0.0169 0.0316 2.42 0.4547
#> x2 0.1778 0.0530 0.0621 0.1076 2.70 0.0983

Now, let us run a regression of y on x3, with fixed effects. Since we’re only interested in x3, we
specify that we only want inference on the second element:

rl <- Im(y = x3 + cl, data = d1)
dfadjustSE(rl, clustervar = di1$cl, ell = c(0, 1, rep(O,
ri$rank - 2)))

#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value

#> Estimate 0.0261 0.0463 0.0595 0.0928 3.23 0.778
dfadjustSE(rl, clustervar = d1$cl, ell = c(0, 1, rep(O,
ri$rank - 2)), IK = FALSE)

#>
#> Coefficients:
#> Estimate HC1 se HC2 se Adj. se df p-value

#> Estimate  0.0261 0.0463 0.0595 0.0928 3.23 0.778

Finally, an example in which the clusters are large. We have 500,000 observations:

d2 <- do.call("rbind", replicate(500, d1, simplify = FALSE))
d2$y <- rnorm(length(d2$y))

r2 <- lm(y ~ x2, data = d2)

summary (r2)

#>

#> Call:

#> lm(formula = y ~ z2, data = d2)

#>

#> Restduals:

#> Min 1§ Median 34 Moz

#> -5.073 -0.675 0.000 0.675 4.789

#>

#> Coefficients:

#> Estimate Std. Error t walue Pr(>/[t/)

#> (Intercept) -0.000991 0.001535 -0.65 0.52

#> z2 -0.003590  0.003963 -0.91 0.37

#>

#> Restdual standard error: 1 on 499998 degrees of freedom



#> Multiple R-squared: 1.64e-06, ddjusted R-squared: -3.59e-07
#> F-statistic: 0.821 on 1 and 5e+05 DF, p-value: 0.365

# Default Imbens-Kolesdr method

dfadjustSE(r2, clustervar = d2$cl)

#>

#> Coefficients:

#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.000991 0.00133 0.00205 0.00261 5.50  0.704
#> 2 -0.003590 0.00483 0.00376 0.00554 3.64  0.517

# Bell-McCaffrey method
dfadjustSE(r2, clustervar = d2$cl, IK = FALSE)

#>

#> Coefficients:

#> Estimate HC1 se HC2 se Adj. se df p-value
#> (Intercept) -0.000991 0.00133 0.00205 0.00267 5.10  0.710
> 2 -0.003590 0.00483 0.00376 0.00554 3.64  0.517
Methods

This section describes the implementation of the Imbens and Kolesar [2016] and Bell and McCaffrey
[2002] degrees of freedom adjustments.

There are S clusters, and we observe ng; observations in cluster s, for a total of n = 255:1 s
observations. We handle the case with independent observations by letting each observation be in
its own cluster, with S = n. Consider the linear regression of a scalar outcome Y; onto a p-vector of
regressors Xj,

Yi:Xfﬁ—kui, E[ui ’ Xi] =0.

We're interested in inference on ¢'B for some fixed vector £ € R?. Let X, 1, and Y denote the design
matrix, and error and outcome vectors, respectively. For any n x k matrix M, let M; denote the
ns X k block corresponding to cluster s, so that, for instance, Y; corresponds to the outcome vector

in cluster s. For a positive semi-definite matrix M, let M'/? be a matrix satisfying M/ M2 = M,
such as its symmetric square root or its Cholesky decomposition.

Assume that
E[usul | X] = Qs, and Efusu; | X] =0 ifs #t.

Denote the conditional variance matrix of u by (), so that () is the block of () corresponding to
cluster s. We estimate ¢’ using OLS. In R, the OLS estimator is computed via a QR decomposition,
X = QR, where Q'Q = I and R is upper-triangular, so we can write the estimator as

1
vp=10 (Z X;XS> Y XY =Y QY, I=rR"L
S S S
It has variance

Vi=var(fB| X) =0 (X'X) Y XIOX, (X'X) 0 =7'Y QLOsQL.
S S



Variance estimate

We estimate V' using a variance estimator that generalizes the HC2 variance estimator to clustering.
Relative to the LZ2 estimator described in Imbens and Kolesar [2016], we use a slight modification
that allows for fixed effects:

S
V=0(X'X)"' Y XAl AL X (X'X) T = ORTVY. QLA L ALQIR' T = Y (alas)?,
s s s=1

where y
MAS = YS - XS,B = Us — QSQ,u/ as = A;ng’

and the matrix A; is given by the symmetric square root of the inverse of I — Q;Q}, or else its
pseudo-inverse if it is singular, as is the case, for example, if X contains fixed effects. We do not
need to insist on I — Q;Q} to be invertible, since, using the identity

V=u) (I-0Q)aual(l—QQ)su,

one can verify by simple algebra that a sufficient condition for V to be unbiased under homoskedas-
ticity is that Q[ As(I — QsQ%)AsQs = QLQs (see, for example, Pustejovsky and Tipton [2018], for
details).

If the observations are independent, the vector of leverages (Q1Q1, ..., Q;Qx) can be computed
directly using the stats: :hatvalues function. In this case, use this function to compute A; =
1/4/1 — Q!Q; directly, and we then compute a; = A;Q}? using vector operations. For the case with

clustering, computing the spectral decomposition of I — Q;Q/ can be expensive or even infeasible
if the cluster size n; is large. We therefore use the following result, suggested to us by Ulrich Miiller,
allows us to compute a; by computing a spectral decomposition of a p X p matrix.

e Let Q.Qs = Ele Aististi; be the spectral decomposition of Q;Qs. Then As = Y. 5,21 (1 —
Ai)~Y2Qurisrl QL satisfies As(I — QsQh)As = 1.
This follows from the fact that I — QsQ; has eigenvalues 1 — A;; and eigenvectors Q;7;s, and
hence its pseudoinverse is Y. .21 (1 — A;) "' Qsrisrs Q%
Using the lemma, we can compute a; efficiently as:

as = E (1 - /\i)_1/2erisr;ngQsz = QSDSZI D = Z /\i(l - )\i)_l/zrisr;y
i Ai#l it £l

Degrees of freedom correction

Let G be an n x S matrix with columns (I — QQ’)’as. Then the Bell and McCaffrey [2002] adjustment
sets the degrees of freedom to
_ tr(G'G)?
fov = wceny
Since (G'G)st = al(I — QQ")s(I — QQ)iar = as(1{s = t} — QsQ})as, the matrix G'G can be effi-
ciently computed as
G'G = diag(alas) — BB’ By = a Qg



Note that B is an S x p matrix, so that computing the degrees of freedom adjustment only involves
p X p matrices:

(Zs aéas - Zs,k ng)z
25(%”5)2 -2 Zs,k(uguS)Bszk + Zs,t(BéBt)z

If the observations are independent, we compute B directly as B <- a*Q, and since 4; is a scalar, we

have : )*
Yia} — 25 2B[B; + L;(B/B;)?

fem =

fam =

The Imbens and Kolesar [2016] degrees of freedom adjustment instead sets

_ tr(G'QG)?
fix= tr((G'QG)2)

where Q) is an estimate of the Moulton [1986] model of the covariance matrix, under which
QO = 021y, + ptn,1},, . Using simple algebra, one can show that in this case,

G'QG = o2 diag(alas) — 0*BB’' + p(D — BF')(D — BF'Y,
where
Fye = 1, Qsk D = diag(alty,)

which can again be computed even if the clusters are large. The estimate Q) replaces 02 and p with
analog estimates.
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