
R Package deSolve, Writing Code in Compiled

Languages

Karline Soetaert
Centre for

Estuarine and Marine Ecology
Netherlands Institute of Ecology

The Netherlands

Thomas Petzoldt
Technische Universität

Dresden
Germany

R. Woodrow Setzer
National Center for

Computational Toxicology
US Environmental Protection Agency

Abstract

This document describes how to use the deSolve package (Soetaert, Petzoldt, and
Setzer 2009) to solve models that are written in FORTRAN or C.

Keywords: differential equation solvers, compiled code, performance, FORTRAN, C.

1. Introduction

deSolve (Soetaert et al. 2009), the successor of R package odesolve (Setzer 2001) is a package
to solve ordinary differential equations (ODE), differential algebraic equations (DAE) and
partial differential equations (PDE).

One of the prominent features of deSolve is that it allows specifying the differential equations
either as:

• pure R code (R Development Core Team 2008),

• functions defined in lower-level languages such as FORTRAN, C, or C++, which are
compiled into a dynamically linked library (DLL) and loaded into R.

In what follows, these implementations will be referred to as R models and DLL models
respectively.

Whereas R models are easy to implement, they allow simple interactive development, produce
highly readible code and access to R s high-level procedures, DLL models have the benefit of
increased simulation speed. Depending on the problem, there may be a gain of up to several
orders of magnitude computing time when using compiled code.

Here are some rules of thumb when it is worthwhile or not to switch to DLL models.

• As long as one makes use only of R s high-level commands, the time gain will be modest.
This was demonstrated in Soetaert, Petzoldt, and Setzer (subm), where a formulation
of two interacting populations dispersing on a 1-dimensional or a 2-dimensional grid led
to a time gain of a factor two only when using DLL models.

2 R Package deSolve, Writing Code in Compiled Languages

• Generally, the more statements in the model, the higher will be the gain of using com-
piled code. Thus, in the same paper (Soetaert et al. subm.), a very simple, 0-D,
Lotka-Volterrra type of model describing only 2 state variables was solved 50 times
faster when using compiled code.

• As even R models are quite performant, the time gain induced by compiled code will
often not be discernible when the model is only solved once (who can grasp the difference
between a run taking 0.001 or 0.05 seconds to finish). However, if the model is to be
applied multiple times, e.g. because the model is to be fitted to data, or its sensitivity is
to be tested, then it may be worthwhile to implement the model in a compiled language.

Starting from deSolve version 1.4, it is now also possible to use forcing functions in compiled
code. These forcing functions are automatically updated by the integrators. See last chapter.

2. A simple ODE example

Assume the following simple ODE (which is from the LSODA source code):

dy1

dt
= −k1 · y1 + k2 · y2 · y3

dy2

dt
= k1 · y1 − k2 · y2 · y3 − k3 · y2 · y2

dy3

dt
= k3 · y2 · y2

where y1, y2 and y3 are state variables, and k1, k2 and k3 are parameters.

We first implement and run this model in pure R, then show how to do this in C and in
FORTRAN.

2.1. ODE model implementation in R

An ODE model implemented in pure R should be defined as:

yprime = func(t, y, parms,...)

where t is the current time point in the integration, y is the current estimate of the variables
in the ODE system, and parms is a vector or list containing the parameter values. ...
(optional) are any other arguments passed to the function. The return value of func should
be a list, whose first element is a vector containing the derivatives of y with respect to time,
and whose next elements contain output variables that are required at each point in time.

The R implementation of the simple ODE is given below:

R> model <- function(t, Y, parameters) {

+ with(as.list(parameters), {

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 3

+ dy1 = -k1 * Y[1] + k2 * Y[2] * Y[3]

+ dy3 = k3 * Y[2] * Y[2]

+ dy2 = -dy1 - dy3

+ list(c(dy1, dy2, dy3))

+ })

+ }

The Jacobian (∂y′

∂y) associated to the above example is:

R> jac <- function(t, Y, parameters) {

+ with(as.list(parameters), {

+ PD[1, 1] = -k1

+ PD[1, 2] = k2 * Y[3]

+ PD[1, 3] = k2 * Y[2]

+ PD[2, 1] = k1

+ PD[2, 3] = -PD[1, 3]

+ PD[3, 2] = k3 * Y[2]

+ PD[2, 2] = -PD[1, 2] - PD[3, 2]

+ return(PD)

+ })

+ }

This model can then be run as follows:

R> parms <- c(k1 = 0.04, k2 = 10000, k3 = 3e+07)

R> Y <- c(1, 0, 0)

R> times <- c(0, 0.4 * 10^(0:11))

R> PD <- matrix(nrow = 3, ncol = 3, data = 0)

R> out <- ode(Y, times, model, parms = parms, jacfunc = jac)

2.2. ODE model implementation in C

In order to create compiled models (.DLL = dynamic link libraries on Windows or .so =
shared objects on other systems) you must have a recent version of the GNU compiler suite
installed, which is quite standard for Linux. Windows users find all the required tools on http:
//www.murdoch-sutherland.com/Rtools/. Getting DLLs produced by other compilers to
communicate with R is much more complicated and therefore not recommended. More details
can be found on http://cran.r-project.org/doc/manuals/R-admin.html.

The call to the derivative and Jacobian function is more complex for compiled code compared
to R-code, because it has to comply with the interface needed by the integrator source codes.

Below is an implementation of this model in C:

/* file mymod.c */
#include <R.h>
static double parms[3];

http://www.murdoch-sutherland.com/Rtools/
http://www.murdoch-sutherland.com/Rtools/
http://cran.r-project.org/doc/manuals/R-admin.html

4 R Package deSolve, Writing Code in Compiled Languages

#define k1 parms[0]
#define k2 parms[1]
#define k3 parms[2]

/* initializer */
void initmod(void (* odeparms)(int *, double *))
{

int N=3;
odeparms(&N, parms);

}

/* Derivatives and 1 output variable */
void derivs (int *neq, double *t, double *y, double *ydot,

double *yout, int *ip)
{

if (ip[0] <1) error("nout should be at least 1");
ydot[0] = -k1*y[0] + k2*y[1]*y[2];
ydot[2] = k3 * y[1]*y[1];
ydot[1] = -ydot[0]-ydot[2];

yout[0] = y[0]+y[1]+y[2];
}

/* The Jacobian matrix */
void jac(int *neq, double *t, double *y, int *ml, int *mu,

double *pd, int *nrowpd, double *yout, int *ip)
{
pd[0] = -k1;
pd[1] = k1;
pd[2] = 0.0;
pd[(*nrowpd)] = k2*y[2];
pd[(*nrowpd) + 1] = -k2*y[2] - 2*k3*y[1];
pd[(*nrowpd) + 2] = 2*k3*y[1];
pd[(*nrowpd)*2] = k2*y[1];
pd[2*(*nrowpd) + 1] = -k2 * y[1];
pd[2*(*nrowpd) + 2] = 0.0;

}
/* END file mymod.c */

The implementation in C consists of three parts:

1. After defining the parameters in global C-variables, through the use of #define state-
ments, a function called initmod initialises the parameter values, passed from the R-
code.

This function has as its sole argument a pointer to C-function odeparms that fills a
double array with double precision values, to copy the parameter values into the global
variable.

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 5

2. Function derivs then calculates the values of the derivatives. The derivative function
is defined as:

void derivs (int *neq, double *t, double *y, double *ydot,
double *yout, int *ip)

where *neq is the number of equations, *t is the value of the independent variable, y
points to a double precision array of length *neq that contains the current value of the
state variables, and ydot points to an array that will contain the calculated derivatives.

yout points to a double precision vector whose first nout values are other output vari-
ables (different from the state variables y), and the next values are double precision
values as passed by parameter rpar when calling the integrator. The key to the ele-
ments of yout is set in *ip

*ip points to an integer vector whose length is at least 3; the first element (ip[0])
contains the number of output values (which should be equal or larger than nout),
its second element contains the length of *yout, and the third element contains the
length of *ip; next are integer values, as passed by parameter ipar when calling the
integrator.1

Note that, in function derivs, we start by checking whether enough room is allocated for
the output variables (if (ip[0] < 1)), else an error is passed to R and the integration
is stopped.

3. In C, the call to the function that generates the Jacobian is as:

void jac(int *neq, double *t, double *y, int *ml,
int *mu, double *pd, int *nrowpd, double *yout, int *ip)

where *ml and *mu are the number of non-zero bands below and above the diagonal of
the Jacobian respectively. These integers are only relevant if the option of a banded
Jacobian is selected. *nrow contains the number of rows of the Jacobian. Only for full
Jacobian matrices, this is equal to *neq. In case the Jacobian is banded, *nrowpd will
be equal to *mu+*ml+1.2

2.3. ODE model implementation in FORTRAN

Models may also be defined in FORTRAN.

1Readers familiar with the source code of the ODEPACK solvers may be surprised to find the double
precision vector yout and the integer vector ip at the end. Indeed none of the ODEPACK functions allow this,
although it is standard in the vode and daspk codes. To make all integrators compatible, we have altered the
ODEPACK FORTRAN codes to consistently pass these vectors.

2Readers familiar with the implementation of the FORTRAN code DVODE may notice that this is not the
format in which DVODE requires the specification of the Jacobian; this code needs an extra mu empty rows. As
we have taken the philosophy to make the model specification independent of the integrator that will be used,
the facility to use vode with a Jacobian specified in compiled code has been toggled off. Use the related code
lsode instead.

6 R Package deSolve, Writing Code in Compiled Languages

c file mymodf.f
subroutine initmod(odeparms)
external odeparms
double precision parms(3)
common /myparms/parms

call odeparms(3, parms)
return
end

subroutine derivs (neq, t, y, ydot, yout, ip)
double precision t, y, ydot, k1, k2, k3
integer neq, ip(*)
dimension y(3), ydot(3), yout(*)
common /myparms/k1,k2,k3

if(ip(1) < 1) call rexit("nout should be at least 1")

ydot(1) = -k1*y(1) + k2*y(2)*y(3)
ydot(3) = k3*y(2)*y(2)
ydot(2) = -ydot(1) - ydot(3)

yout(1) = y(1) + y(2) + y(3)
return
end

subroutine jac (neq, t, y, ml, mu, pd, nrowpd, yout, ip)
integer neq, ml, mu, nrowpd, ip
double precision y(*), pd(nrowpd,*), yout(*), t, k1, k2, k3
common /myparms/k1, k2, k3

pd(1,1) = -k1
pd(2,1) = k1
pd(3,1) = 0.0
pd(1,2) = k2*y(3)
pd(2,2) = -k2*y(3) - 2*k3*y(2)
pd(3,2) = 2*k3*y(2)
pd(1,3) = k2*y(2)
pd(2,3) = -k2*y(2)
pd(3,3) = 0.0

return
end

c end of file mymodf.f

In FORTRAN, parameters may be stored in a common block (here called myparms). During
the initialisation, this common block is defined to consist of a 3-valued vector (unnamed), but
in the subroutines derivs and jac, the parameters are given a name (k1,...).

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 7

2.4. Running ODE models implemented in compiled code

To run the models described above, the code in mymod.f and mymod.c must first be compiled3.

This can simply be done in R itself, using the system command:

R> system("R CMD SHLIB mymod.f")

for the FORTRAN code or

R> system("R CMD SHLIB mymod.c")

for the C code.

This will create file mymod.dll. After loading the DLL, the model can be run:

R> dyn.load("mymod.dll")

R> parms <- c(k1 = 0.04, k2 = 10000, k3 = 3e+07)

R> Y <- c(y1 = 1, y2 = 0, y3 = 0)

R> times <- c(0, 0.4 * 10^(0:11))

R> out <- ode(Y, times, func = "derivs", parms = parms,

+ jacfunc = "jac", dllname = "mymod", initfunc = "initmod",

+ nout = 1, outnames = "Sum")

The integration routine (here ode) recognizes that the model is specified as a DLL due to
the fact that arguments func and jacfunc are not regular R-functions but character strings.
Thus, the integrator will check whether the function is loaded in the DLL with name ”mymod”.

Note that ”mymod”, as specified by dllname gives the name of the shared library without ex-
tension. This DLL should contain all the compiled function or subroutine definitions referred
to in func, jacfunc and initfunc.

Also, if func is specified in compiled code, then jacfunc and initfunc (if present) should
also be specified in a compiled language. It is not allowed to mix R-functions and compiled
functions

Note also that, when invoking the integrator, we have to specify the number of ordinary
output variables, nout. This is because the integration routine has to allocate memory to
pass these output variables back to R. There is no way to check for the number of output
variables in a DLL automatically. If in the calling of the integration routine the number
of output variables is too low, then R may freeze and need to be terminated! Therefore
it is advised that one checks in the code wheter nout has been specified correctly. In the
FORTRAN example above, the statement if (ip(1) < 1) call rexit("nout should be
at least 1") does this. Note that it is not an error (just a waste of memory) to set nout
to a too large value.

Finally, in order to label the output matrix, the name of the ordinary output variable has to
be passed explicitly (outnames). The names of the state variables are known through their
initial condition (y).

3This requires a correctly installed GNU compiler, see above.

8 R Package deSolve, Writing Code in Compiled Languages

3. Passing parameters and data in compiled code

All of the solvers in deSolve take an argument parms which may be an arbitrary R object. In
models defined in R code, this argument is passed unprocessed to the various functions that
make up the model. It is possible, as well, to pass such objects to models defined in native
code.
The problem is that data passed to, say, ode in the argument parms is not visible by default to
the routines that define the model. This is handled by a user-written initialization function,
for example initmod in the C and FORTRAN examples from sections 2.2 and 2.3. In C, the
initialization routine is declared:

void initmod(void (* odeparms)(int *, double *));

That is, initmod has a single argument, a pointer to a function that has as arguments a
pointer to an int and a pointer to a double. In FORTRAN, the initialization routine has a
single argument, a subroutine declared to be external. The name of the initialization function
is passed as an argument to the deSolve solver functions.
In C, two approaches are available for making the values passed in parms visible to the model
routines, while only the simpler approach is available in FORTRAN. The simpler requires
that parms be a numeric vector. In C, the function passed from deSolve to the initialization
function (called odeparms in the example) copies the values from the parameter vector to a
static array declared globally in the file where the model is defined. In FORTRAN, the values
are copied into a COMMON block.
It is possible to pass more complicated structures to C functions. Here is an example, an ini-
tializer called deltamethrin from a model describing the pharmacokinetics of that pesticide:

#include <R.h>
#include <Rinternals.h>
#include <R_ext/Rdynload.h>
#include "deltamethrin.h"

/* initializer */
void deltamethrin(void(* odeparms)(int *, double *))
{
int Nparms;
DL_FUNC get_deSolve_gparms;
SEXP gparms;
get_deSolve_gparms = R_GetCCallable("deSolve","get_deSolve_gparms");
gparms = get_deSolve_gparms();
Nparms = LENGTH(gparms);
if (Nparms != N_PARMS) {
PROBLEM "Confusion over the length of parms"
ERROR;

} else {
_RDy_deltamethrin_parms = REAL(gparms);

}
}

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 9

In deltamethrin.h, the variable _RDy_deltamethrin_parms and macro N PARMS are de-
clared:

#define N_PARMS 63
static double *_RDy_deltamethrin_parms;

The critical element of this method is the function R_GetCCallable which returns a function
(called get_deSolve_gparms in this implementation) that returns the parms argument as a
SEXP data type. In this example, parms was just a real vector, but in principle, this method
can handle arbitrarily complex objects. For more detail on handling R objects in native code,
see R Development Core Team (2008).

4. deSolve integrators that support DLL models

In the most recent version of deSolve all integration routines can solve DLL models. They
are:

• all solvers of the lsode familiy: lsoda, lsode, lsodar, lsodes

• vode

• daspk

• the C-implemented Runge-Kutta integration routines (including the Euler method)

For some of these solvers the interface is slightly different (e.g. zvode, daspk), while in others
(lsodar, lsodes) different functions can be defined. How this is implemented in a compiled
language is discussed next.

4.1. Complex numbers, function zvode

zvode solves ODEs that are composed of complex variables.
The program below uses zvode to solve the following system of 2 ODEs:

dz

dt
= i · z

dw

dt
= −i · w · w · z

where

w(0) = 1/2.1
z(0) = 1

on the interval t = [0, 2 π]
The example is implemented in FORTRAN4, FEX implements the function func:

4this can be found in file ”zvodedll.f”, in the dynload subdirectory of the package

10 R Package deSolve, Writing Code in Compiled Languages

SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)
INTEGER NEQ, IPAR(*)
DOUBLE COMPLEX Y(NEQ), YDOT(NEQ), RPAR(*), CMP
DOUBLE PRECISION T
character(len=100) msg

c the imaginary unit i
CMP = DCMPLX(0.0D0,1.0D0)

YDOT(1) = CMP*Y(1)
YDOT(2) = -CMP*Y(2)*Y(2)*Y(1)

RETURN
END

JEX implements the function jacfunc

SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)
INTEGER NEQ, ML, MU, NRPD, IPAR(*)
DOUBLE COMPLEX Y(NEQ), PD(NRPD,NEQ), RPAR(*), CMP
DOUBLE PRECISION T

c the imaginary unit i
CMP = DCMPLX(0.0D0,1.0D0)

PD(2,3) = -2.0D0*CMP*Y(1)*Y(2)
PD(2,1) = -CMP*Y(2)*Y(2)
PD(1,1) = CMP
RETURN
END

Assuming this code has been compiled and is in a DLL called ”zvodedll.dll”, this model is
solved in R as follows:

dyn.load("zvodedll.dll")
outF <- zvode(func = "fex", jacfunc = "jex", y = yini, parms = NULL,

times = times, atol = 1e-10, rtol = 1e-10, dllname = "zvodedll",
initfunc = NULL)

Note that in R names of FORTRAN DLL functions (e.g. for func and jacfunc) have to be
given in lowercase letters, even if they are defined upper case in FORTRAN.

Also, there is no initialiser function here (initfunc = NULL).

4.2. DAE models, integrator daspk

daspk is the only integrator in the package that solves DAE models. DAEs are specified in
implicit form:

0 = F (y′, y, x, t)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 11

i.e. the DAE function (passed via argument res) specifies the “residuals” rather than the
derivatives (as for ODEs).

Consequently the DAE function specification in compiled language are also different. For
code written in C, the calling sequence for res must be:

void myres(double *t, double *y, double *ydot, double *cj,
double *delta, int *ires, double *yout, int *ip)

where *t is the value of the independent variable, y points to a double precision array that
contains the current value of the state variables, ydot points to an array that will contain
the derivatives, delta points to an array that will contain the calculated residuals. cj points
to a scalar, which is normally proportional to the inverse of the stepsize, while ires points
to an integer (not used). yout points to any other output variables (different from the state
variables y), followed by the double precision values as passed via argument rpar; finally *ip
is an integer vector containing at least 3 elements, its first value (*ip[0]) equals the number
of output variables, calculated in the function (and which should be equal to nout), its second
element equals the total length of *yout, its third element equals the total length of *ip, and
finally come the integer values as passed via argument ipar.

For code written in FORTRAN, the calling sequence for res must be as in the following
example:

subroutine myresf(t, y, ydot, cj, delta, ires, out, ip)
integer :: ires, ip(*)
integer, parameter :: neq = 3
double precision :: t, y(neq), ydot(neq), delta(neq), out(*)
double precision :: K, ka, r, prod, ra, rb
common /myparms/K,ka,r,prod

if(ip(1) < 1) call rexit("nout should be at least 1")
ra = ka* y(3)
rb = ka/K *y(1) * y(2)

!! residuals of rates of changes
delta(3) = -ydot(3) - ra + rb + prod
delta(1) = -ydot(1) + ra - rb
delta(2) = -ydot(2) + ra - rb - r*y(2)
out(1) = y(1) + y(2) + y(3)
return
end

Similarly as for the ODE model discussed above, the parameters are kept in a common block
which is initialised by an initialiser subroutine:

subroutine initpar(daspkparms)

external daspkparms

12 R Package deSolve, Writing Code in Compiled Languages

integer, parameter :: N = 4
double precision parms(N)
common /myparms/parms
call daspkparms(N, parms)
return
end

See the ODE example for how to initialise parameter values in C.

Similarly, the function that specifies the Jacobian in a DAE differs from the Jacobian when
the model is an ODE. The DAE Jacobian is set with argument jacres rather than jacfunc
when an ODE.

For code written in FORTRAN, the jacres must be as:

subroutine resjacfor (t, y, dy, pd, cj, out, ipar)

integer, parameter :: neq = 3
integer :: ipar(*)
double precision :: K, ka, r, prod
double precision :: pd(neq,neq),y(neq),dy(neq),out(*)
common /myparms/K,ka,r,prod

!res1 = -dD - ka*D + ka/K *A*B + prod
PD(1,1) = ka/K *y(2)
PD(1,2) = ka/K *y(1)
PD(1,3) = -ka -cj

!res2 = -dA + ka*D - ka/K *A*B
PD(2,1) = -ka/K *y(2) -cj
PD(2,2) = -ka/K *y(2)
PD(2,3) = ka

!res3 = -dB + ka*D - ka/K *A*B - r*B
PD(3,1) = -ka/K *y(2)
PD(3,2) = -ka/K *y(2) -r -cj
PD(3,3) = ka
return
end

4.3. The root function from integrator lsodar

lsodar is an extended version of integrator lsoda that includes a root finding function. This
function is spedified via argument rootfunc.

Here is how to program such a function in a lower-level language. For code written in C, the
calling sequence for rootfunc must be:

void myroot(int *neq, double *t, double *y, int *ng, double *gout,
double *out, int *ip)

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 13

where *neq and *ng are the number of state variables and root functions respectively, *t is
the value of the independent variable, y points to a double precision array that contains the
current value of the state variables, and gout points to an array that will contain the values
of the constraint function whose root is sought. *out and *ip are a double precision and
integer vector respectively, as described in the ODE example above.

For code written in FORTRAN, the calling sequence for rootfunc must be as in following
example:

subroutine myroot(neq, t, y, ng, gout, out, ip)
integer :: neq, ng, ip(*)
double precision :: t, y(neq), gout(ng), out(*)

gout(1) = y(1) - 1.e-4
gout(2) = y(3) - 1e-2

return
end

4.4. jacvec, the Jacobian vector for integrator lsodes

Finally, in integration function lsodes, not the Jacobian matrix is specified, but a vector,
one for each column of the Jacobian. This function is specified via argument jacvec.

In FORTRAN, the calling sequence for jacvec is:

SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ, OUT, IP)
DOUBLE PRECISION T, Y(*), IAN(*), JAN(*), PDJ(*), OUT(*)
INTEGER NEQ, J, IP(*)

4.5. jacvec, the Jacobian vector for integrator lsodes

Finally, in integration function lsodes, not the Jacobian matrix is specified, but a vector,
one for each column of the Jacobian. This function is specified via argument jacvec.

In FORTRAN, the calling sequence for jacvec is:

SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ, OUT, IP)
DOUBLE PRECISION T, Y(*), IAN(*), JAN(*), PDJ(*), OUT(*)
INTEGER NEQ, J, IP(*)

5. Testing functions written in compiled code

Two utilities have been included to test the function implementation in compiled code:

• DLLfunc to test the implementation of the derivative function as used in ODEs. This
function returns the derivative dy

dt and the output variables.

14 R Package deSolve, Writing Code in Compiled Languages

• DLLres to test the implementation of the residual function as used in DAEs. This
function returns the residual function dy

dt − f(y, t) and the output variables.

These functions serve no other purpose than to test whether the compiled code returns what
it should.

5.1. DLLfunc

We test whether the ccl4 model, which is part of deSolve package, returns the proper rates
of changes. (Note: see example(ccl4model) for a more comprehensive implementation)

R> Parms <- c(0.182, 4, 4, 0.08, 0.04, 0.74, 0.05, 0.15,

+ 0.32, 16.17, 281.48, 13.3, 16.17, 5.487, 153.8, 0.04321671,

+ 0.4027255, 1000, 0.02, 1, 3.8)

R> yini <- c(AI = 21, AAM = 0, AT = 0, AF = 0, AL = 0, CLT = 0,

+ AM = 0)

R> DLLfunc(y = yini, dllname = "deSolve", func = "derivsccl4",

+ initfunc = "initccl4", parms = Parms, times = 1,

+ nout = 3, outnames = c("DOSE", "MASS", "CP"))

$dy
AI AAM AT AF AL

-20.0582048 6.2842256 9.4263383 0.9819102 2.9457307
CLT AM

0.0000000 0.0000000

$var
DOSE MASS CP

1.758626 0.000000 922.727067

5.2. DLLres

The deSolve package contains a FORTRAN implementation of the chemical model described
above (section 4.1), where the production rate is included as a forcing function (see next
section).

Here we use DLLres to test it:

R> pars <- c(K = 1, ka = 1e+06, r = 1)

R> y <- c(A = 2, B = 3, D = 2 * 3/pars["K"])

R> dy <- c(dA = 0, dB = 0, dD = 0)

R> prod <- matrix(nc = 2, data = c(seq(0, 100, by = 10),

+ seq(0.1, 0.5, len = 11)))

R> DLLres(y = y, dy = dy, times = 5, res = "chemres", dllname = "deSolve",

+ initfunc = "initparms", initforc = "initforcs", parms = pars,

+ forcings = prod, nout = 2, outnames = c("CONC", "Prod"))

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 15

$delta
A B D.K

0.00 -3.00 0.12

$var
CONC Prod
11.00 0.12

6. Using forcing functions

Forcing functions in DLLs are implemented in a similar way as parameters. This means:

• They are initialised by means of an initialiser function. Its name should be passed to
the solver via argument initforc.

Similar as the parameter initialiser function, the function denoted by initforc has as
its sole argument a pointer to the vector that contains the forcing funcion values in the
compiled code. In case of C code, this will be a global vector; in case of FORTRAN, this
will be a vector in a common block.

The solver puts a pointer to this vector and updates the forcing functions in this memory
area at each time step. Hence, within the compiled code, forcing functions can be
assessed as if they are parameters (although, in contrast to the latter, their values will
generally change). No need to update the values for the current time step; this has been
done before entering the derivs function.

• The forcing function data series are passed to the integrator, via argument forcings; if
there is only one forcing function data set, then a 2-columned matrix (time, value) will
do; else the data should be passed as a list, containing (time, value) matrices with the
individual forcing function data sets. Note that the data sets in this list should be in
the same ordering as the declaration of the forcings in the compiled code.

A number of options allow to finetune certain settings. They are in a list called fcontrol
which can be supplied as argument when calling the solvers. The options are similar to the
arguments from R function approx, howevers the default settings are often different.

The following options can be specified:

• method specifies the interpolation method to be used. Choices are ”linear” or ”constant”,
the default is ”linear”, which means linear interpolation (same as approx)

• rule, an integer describing how interpolation is to take place outside the interval
[min(times), max(times)]. If rule is 1 then an error will be triggered and the cal-
culation will stop if interpolation is necessary. If it is 2, the default, the value at the
closest data extreme is used, a warning will be printed if verbose is TRUE.

Note that the default differs from the approx default.

16 R Package deSolve, Writing Code in Compiled Languages

• f, for method="constant" is a number between 0 and 1 inclusive, indicating a com-
promise between left- and right-continuous step functions. If y0 and y1 are the values
to the left and right of the point then the value is y0*(1-f)+y1*f so that f=0 is right-
continuous and f=1 is left-continuous. The default is to have f=0. For some data sets
it may be more realistic to set f=0.5.

• ties, the handling of tied times values. Either a function with a single vector argument
returning a single number result or the string ”ordered”.

Note that the default is ”ordered”, hence the existence of ties will NOT be investigated;
in practice this means that, if ties exist, the first value will be used; if the dataset is not
ordered, then nonsense will be produced.

Alternative values for ties are mean, min etc... which will average, or take the minimal
value if multiple values exist at one time level.

The default settings of fcontrol are:

fcontrol=list(method="linear", rule = 2, f = 0, ties = "ordered")

Note that only ONE specification is allowed, even if there is more than one forcing function
data set. (may/should change in the future).

6.1. A simple FORTRAN example

We implement the example from chapter 3 of the book (Soetaert and Herman 2009) in FOR-
TRAN.

This model describes the oxygen consumption of a (marine) sediment in response to deposition
of organic matter (the forcing function). One state variable, the organic matter content in
the sediment is modeled; it changes as a function of the deposition Flux (forcing) and organic
matter decay (first-order decay rate k).

dC

dt
= Fluxt − k · C

with initial condition C(t = 0) = C0; the latter is estimated as the mean of the flux divided
by the decay rate.

The FORTRAN code looks like this:

c Initialiser for parameter common block
subroutine scocpar(odeparms)

external odeparms
integer N
double precision parms(2)
common /myparms/parms

N = 1
call odeparms(N, parms)
return

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 17

end

c Initialiser for forcing common block
subroutine scocforc(odeforcs)

external odeforcs
integer N
double precision forcs(1)
common /myforcs/forcs

N = 1
call odeforcs(N, forcs)
return
end

c Rate of change and output variables

subroutine scocder (neq, t, y, ydot,out,IP)

integer neq, IP(*)
double precision t, y(neq), ydot(neq), out(*), k, depo
common /myparms/k
common /myforcs/depo

if(IP(1) < 2) call rexit("nout should be at least 2")

ydot(1) = -k*y(1) + depo

out(1)= k*y(1)
out(2)= depo

return
end

Here the subroutine scocpar is business as usual; it initialises the parameter common block
(there is only one parameter). Subroutine odeforcs does the same for the forcing function,
which is also positioned in a common block, called myforcs. This common block is made
available in the derivative subroutine (here called scocder), where the forcing function is
named depo.
At each time step, the integrator updates the value of this forcing function to the correct time
point. In this way, the forcing functions can be used as if they are (time-varying) parameters.
All that’s left to do is to pass the forcing function data set and the name of the forcing
function initialiser routine. This is how to do it in R.
First the data are inputted:

R> Flux <- matrix(ncol = 2, byrow = TRUE, data = c(1, 0.654,

18 R Package deSolve, Writing Code in Compiled Languages

+ 11, 0.167, 21, 0.06, 41, 0.07, 73, 0.277, 83, 0.186,

+ 93, 0.14, 103, 0.255, 113, 0.231, 123, 0.309, 133,

+ 1.127, 143, 1.923, 153, 1.091, 163, 1.001, 173, 1.691,

+ 183, 1.404, 194, 1.226, 204, 0.767, 214, 0.893, 224,

+ 0.737, 234, 0.772, 244, 0.726, 254, 0.624, 264, 0.439,

+ 274, 0.168, 284, 0.28, 294, 0.202, 304, 0.193, 315,

+ 0.286, 325, 0.599, 335, 1.889, 345, 0.996, 355, 0.681,

+ 365, 1.135))

R> head(Flux)

[,1] [,2]
[1,] 1 0.654
[2,] 11 0.167
[3,] 21 0.060
[4,] 41 0.070
[5,] 73 0.277
[6,] 83 0.186

and the parameter given a value (there is only one)

R> parms <- 0.01

The initial condition Yini is estimated as the annual mean of the Flux and divided by the
decay rate (parameter).

R> meanDepo <- mean(approx(Flux[, 1], Flux[, 2], xout = seq(1,

+ 365, by = 1))$y)

R> Yini <- c(y = meanDepo/parms)

After defining the output times, the model is run, using integration routine ode.

The name of the derivate function "scocder", of the dll "deSolve"5 and of the initialiser
function "scocpar" are passed, as in previous examples.

In addition, the forcing function data set is also passed (forcings=Flux) as is the name of
the forcing initialisation function (initforc="scocforc").

R> times <- 1:365

R> out <- as.data.frame(ode(y = Yini, times, func = "scocder",

+ parms = parms, dllname = "deSolve", initforc = "scocforc",

+ forcings = Flux, initfunc = "scocpar", nout = 2,

+ outnames = c("Mineralisation", "Depo")))

R> head(out)

time y Mineralisation Depo
1 1 63.00301 0.6300301 0.6540

5this example is made part of the deSolve package, hence the name of the dll is ”deSolve”

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 19

0 100 200 300

0.
0

0.
5

1.
0

1.
5

method='linear'

days

m
m

ol
 C

/m
2/

 d

Flux
Mineralisation

0 100 200 300

0.
0

0.
5

1.
0

1.
5

method='constant'

days

m
m

ol
 C

/m
2/

 d
Figure 1: Solution of the SCOC model, implemented in compiled code, and including a forcing
function - see text for R-code

2 2 63.00262 0.6300262 0.6053
3 3 62.95377 0.6295377 0.5566
4 4 62.85694 0.6285694 0.5079
5 5 62.71259 0.6271259 0.4592
6 6 62.52124 0.6252124 0.4105

Now, the way the forcing functions are interpolated are changed: Rather than linear interpo-
lation, constant (block, step) interpolation is used.

R> fcontrol <- list(method = "constant")

R> out2 <- as.data.frame(ode(y = Yini, times, func = "scocder",

+ parms = parms, dllname = "deSolve", initforc = "scocforc",

+ forcings = Flux, fcontrol = fcontrol, initfunc = "scocpar",

+ nout = 2, outnames = c("Mineralisation", "Depo")))

Finally, the results are plotted:

R> par(mfrow = c(1, 2))

R> plot(out$time, out$Depo, type = "l", col = "red", xlab = "days",

+ ylab = "mmol C/m2/ d", main = "method='linear'")
R> lines(out$time, out$Mineralisation, lwd = 2, col = "blue")

R> legend("topleft", lwd = 1:2, col = c("red", "blue"),

+ c("Flux", "Mineralisation"))

R> plot(out2$time, out2$Depo, type = "l", col = "red", xlab = "days",

+ ylab = "mmol C/m2/ d", main = "method='constant'")
R> lines(out2$time, out2$Mineralisation, lwd = 2, col = "blue")

6.2. An example in C

Consider the following R-code which implements a resource-producer-consumer Lotka-Volterra
type of model in R (it is a modified version of the example of function ode):

20 R Package deSolve, Writing Code in Compiled Languages

R> SPCmod <- function(t, x, parms, input) {

+ with(as.list(c(parms, x)), {

+ import <- input(t)

+ dS <- import - b * S * P + g * C

+ dP <- c * S * P - d * C * P

+ dC <- e * P * C - f * C

+ res <- c(dS, dP, dC)

+ list(res, signal = import)

+ })

+ }

R> parms <- c(b = 0.1, c = 0.1, d = 0.1, e = 0.1, f = 0.1,

+ g = 0)

R> times <- seq(0, 100, by = 0.1)

R> signal <- as.data.frame(list(times = times, import = rep(0,

+ length(times))))

R> signal$import <- ifelse((trunc(signal$times)%%2 == 0),

+ 0, 1)

R> sigimp <- approxfun(signal$times, signal$import, rule = 2)

R> xstart <- c(S = 1, P = 1, C = 1)

R> print(system.time(out <- ode(y = xstart, times = times,

+ func = SPCmod, parms, input = sigimp)))

user system elapsed
1.520 0.020 1.598

All output is printed at once:

R> plot(out, type = "l")

The C-code, in file Forcing_lv.c, can be found in the packages /inst/dynload subdirectory.
It can be compiled, from within R by

system("R CMD SHLIB Forcing_lv.c")

After defining the parameter and forcing vectors, and giving them comprehensible names, the
parameter and forcing initialiser functions are defined (parmsc and forcc respectively). Next
is the derivative function, derivsc.

#include <R.h>

static double parms[6];
static double forc[1];

/* A trick to keep up with the parameters and forcings */
#define b parms[0]
#define c parms[1]

Forcing_lv.c
/inst/dynload

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 21

0 20 40 60 80 100

1
2

3
4

5

S

time

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

P

time

0 20 40 60 80 100

1
2

3
4

5

C

time

0 20 40 60 80 100

0.
0

0.
4

0.
8

signal

time

Figure 2: Solution of the lotka-volterra resource (S)-producer (P) - consumer (C) model with
time-variable input (signal) - see text for R-code

22 R Package deSolve, Writing Code in Compiled Languages

#define d parms[2]
#define e parms[3]
#define f parms[4]
#define g parms[5]

#define import forc[0]

/* initializers: */
void odec(void (* odeparms)(int *, double *))
{

int N=6;
odeparms(&N, parms);

}

void forcc(void (* odeforcs)(int *, double *))
{

int N=1;
odeforcs(&N, forc);

}

/* derivative function */
void derivsc(int *neq, double *t, double *y, double *ydot,
double *yout, int*ip)

{
if (ip[0] <2) error("nout should be at least 2");
ydot[0] = import - b*y[0]*y[1] + g*y[2];
ydot[1] = c*y[0]*y[1] - d*y[2]*y[1];
ydot[2] = e*y[1]*y[2] - f*y[2];

yout[0] = y[0] + y[1] + y[2];
yout[1] = import;

}

After defining the forcing function time series, which is to be interpolated by the integration
routine, and loading the DLL, the model is run:

Sigimp <- approx(signal$times, signal$import, xout=ftime,rule = 2)$y
forcings <- cbind(ftime,Sigimp)

dyn.load("Forcing_lv.dll")
out <- ode(y=xstart, times, func = "derivsc",

parms = parms, dllname = "Forcing_lv",initforc = "forcc",
forcings=forcings, initfunc = "parmsc", nout = 2,
outnames = c("Sum","signal"), method = rkMethod("rk34f"))

dyn.unload("Forcing_lv.dll")

This code executes about 30 times faster than the R-code.

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer 23

With a longer simulation time, the difference becomes more pronounced, e.g. with times till
800 days, the DLL code executes 200 times faster6.

7. Final remark

Detailed information about communication between C, FORTRAN and R can be found in R
Development Core Team (2009).

Notwithstanding the speed gain when using compiled code, one should not carelessly decide
to always resort to this type of modelling.

Because the code needs to be formally compiled and linked to R much of the elegance when
using pure R models is lost. Moreover, mistakes are easily made and paid harder in compiled
code: often a programming error will terminate R. In addition, these errors may not be simple
to trace.

6this is due to the sequential update of the forcing functions by the solvers, compared to the bisectioning
approach used by approxfun

24 R Package deSolve, Writing Code in Compiled Languages

References

R Development Core Team (2008). R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

R Development Core Team (2009). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9, URL http://www.R-project.org.

Setzer RW (2001). The odesolve Package: Solvers for Ordinary Differential Equations. R
package version 0.1-1.

Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer. ISBN 978-1-4020-8623-6.

Soetaert K, Petzoldt T, Setzer R (subm). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software.

Soetaert K, Petzoldt T, Setzer RW (2009). deSolve: General solvers for initial value problems
of ordinary differential equations (ODE), partial differential equations (PDE) and differen-
tial algebraic equations (DAE). R package version 1.5.

Affiliation:

Karline Soetaert
Centre for Estuarine and Marine Ecology (CEME)
Netherlands Institute of Ecology (NIOO)
4401 NT Yerseke, Netherlands
E-mail: k.soetaert@nioo.knaw.nl
URL: http://www.nioo.knaw.nl/users/ksoetaert

Thomas Petzoldt
Institut für Hydrobiologie
Technische Universität Dresden
01062 Dresden, Germany
E-mail: thomas.petzoldt@tu-dresden.de
URL: http://tu-dresden.de/Members/thomas.petzoldt/

R. Woodrow Setzer
National Center for Computational Toxicology
US Environmental Protection Agency
URL: http://www.epa.gov/comptox

http://www.R-project.org
http://www.R-project.org
mailto:k.soetaert@nioo.knaw.nl
http://www.nioo.knaw.nl/users/ksoetaert
mailto:thomas.petzoldt@tu-dresden.de
http://tu-dresden.de/Members/thomas.petzoldt/
http://www.epa.gov/comptox

	Introduction
	A simple ODE example
	ODE model implementation in R
	ODE model implementation in C
	ODE model implementation in FORTRAN
	Running ODE models implemented in compiled code

	Passing parameters and data in compiled code
	deSolve integrators that support DLL models
	Complex numbers, function zvode
	DAE models, integrator daspk
	The root function from integrator lsodar
	jacvec, the Jacobian vector for integrator lsodes
	jacvec, the Jacobian vector for integrator lsodes

	Testing functions written in compiled code
	DLLfunc
	DLLres

	Using forcing functions
	A simple FORTRAN example
	An example in C

	Final remark
	References

