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The package deGradInfer is an R package for efficient parameter inference in systems of ordinary differential
equations (ODEs), using adaptive gradient matching via Gaussian processes. This implementation follows
from the work in Calderhead et al. (2009); Dondelinger et al. (2013) and Macdonald (2017), although the
software has been extended with several crucial features to make it robust and useful for practical applications.
Features include:

• Specifying custom ODE systems as R functions.
• Dealing with missing/unobserved variables.
• Visualization for monitoring MCMC run evolution.
• Specification of tolerable mismatch between data and inferred ODE dynamics.

In the next section, we will briefly sketch the underlying statistical model and inference, before moving on to
the practical examples of how to use the package.

Model and Inference

The package implements the adaptive gradient matching approach of Dondelinger et al. (2013), with the
option of using parallel tempering to fix the mismatch parameter in place, as described in Macdonald (2017).
The advantage of gradient matching as a parameter inference technique is that it does not require us to
numerically solve the ODE system at each step, a potentially costly operation for large systems.

Briefly, assuming Gaussian noise on the observed variable yk, P (yk(t)) = N (yk(t)|xk(t), σk), we can model
the latent variables xk using a Gaussian process prior:

P (xk|Ψk) = N (xk|0,CΨk
),

where CΨk
denotes a positive definite matrix of covariance functions with hyperparameters Ψk. We can

use the properties of Gaussian processes to obtain a model (in closed form) for the gradient ẋk, which we
combine with the ODE system model via a product of experts:

P (ẋk|X,Θ,Ψk, γk) ∝ P (ẋk|xk,Ψk)P (ẋk|X,Θ, γk),

where X is a T ×K matrix where column k corresponds to xk. Note that this approach essentially provides
two models for ẋk; a Gaussian process model which is based on a smoothing of the observed variables, and
the ODE model, with parameters Θ. The parameters γk allow for some Gaussian noise on the ODE estimates
of the gradients, and thus effectively control the allowable mismatch between the ODE and Gaussian process
estimates.

Rather than inferring the gradient mismatch parameters, we can instead use parallel tempering to set them.
If the ODE model properly (or adequately) describes the process then ideally we would want no (or little)
mismatch between the predctions from the ODEs and the interpolant, when sampling from the posterior.
However, bringing in this knowledge by forcing there to be no mismatch between the gradients at the
beginning of the MCMC run can cause the algorithm to converge to suboptimal states. Instead, by running a
number of parallel chains, setting large values of the gradient mismatch parameter for chains closer to the
prior and small values for chains closer to the posterior, this prior knowledge can be brought in whilst still
allowing the algorithm enough flexibility to explore. See Macdonald (2017) for details.
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We integrate out the latent variables Ẋ and do inference over the joint model P (Y,X,Θ,Ψ, σ) (see Dondelinger
et al. (2013) for details). Inference is done using population MCMC, which can deal with multimodal posterior
landscapes, and will give a posterior distribution for the parameters, in addition to the posterior mean
estimates.

Correct format for a user specified prior

The package supports priors defined by the user. The user should write their function to return a vector of
log densities, for a given parameter set. For example, a Uniform prior (lowerbound=0, upperbound=10) on
parameter 1, a Gamma prior (shape=4, scale=0.5) on parameters 2 and 3 and a Chi-squared prior (degrees
of freedom=2) on parameter 4 would take the form
testLogPrior <- function(params)
{

return(c(dunif(params[1],0,10,log=TRUE),
dgamma(params[2:3],shape=4,scale=0.5,log=TRUE),
dchisq(params[4],2,log=TRUE)))

}

Specifying ODE systems as R functions

We will use the example of a simple Lotka-Volterra prey-predator system. This consists of two variables
representing a predator species and a prey species. The system is governed by four parameters and takes the
following form:

dx1

dt
= x1(a− bx2) Preydx2

dt
= −x2(cx2 − dx1) Predators

where x1 represents the number of prey and x2 represents the number of predators.

In order to use deGradInfer, we need to represent this system as an R function. Our implementation
is inspired by the package deSolve for numerically solving ODE systems represented as R functions. In
particular, we require the function to be of the form func <- function(t,X,params,...) where t is a
T -dimensional vector of time points, X is a T ×K matrix containing the values for the K variables in the
system, params is a p-dimensional vector of parameters, and ... denotes optional parameters that may be
passed to the function. The output should be a T ×K matrix of the gradients dxk

dt for all variables k. For
the Lotka-Volterra system, we can define an R function as:
LV_func <- function(t, X, params) {

dxdt = cbind(
X[,1]*(params[1] - params[2]*X[,2]), # Prey

- X[,2]*(params[3] - params[4]*X[,1]) # Predators
)
return(dxdt)

}

Note that if one wishes to use their function with deSolve, it needs to be compatible with scalar t, and
additionally needs to return a list (this is a requirement by deSolve to allow for returning global values that
are needed at each time point; we do not currently return any such global values). This is best achieved by
writing a wrapper for the function:
library('deSolve')
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# Wrapper function
deSolve_LV_func = function(t,y,params) {

list(LV_func(t,matrix(y,1,length(y)),params))
}

# Generate some data
test.times = seq(0,2,0.1)
test.data = ode(c(5,3), test.times, deSolve_LV_func, c(2,1,4,1))
test.data = test.data[,2:3] +

rnorm(dim(test.data)[1]*2,0,0.1) # add some observational noise

Parameter inference in the Lotka-Volterra system

The main interface to the package is provided via the agm function. The user needs to provide the data for
the observed time points, the R function representing the ODE system, the number of parameters in the
system, and the expected standard deviation of the observational noise. Note that we do not currently allow
the noise to be inferred for the gradient matching approach, as this tends to overestimate the true noise in
the data.

Here we only run the model for 1000 iterations, which is not sufficient to reach convergence, but is good
enough for demonstration purposes:
library('deGradInfer')

agm.result = agm(test.data,test.times,LV_func,4,noise.sd=0.1,
maxIterations=1000,chainNum=5)

print(agm.result$posterior.mean)

## [1] 1.4289245 0.9136871 2.1665483 0.7215048

We can plot the posterior distribution of the inferred parameter values using the samples from the posterior.
library('ggplot2')

plotting.frame = data.frame(Param.Values=c(agm.result$posterior.samples),
Param.Num=rep(1:4, each=dim(agm.result$posterior.samples)[1]))

ggplot(plotting.frame, aes(x=Param.Values, y=..scaled..)) +
facet_wrap(~paste('Parameter', Param.Num), scales = 'free') +
geom_density() +
labs(y='Scaled Density', x='Parameter Value') +
xlim(c(0,5))
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We can also inspect the evolution of the log likelihood:
qplot(x=seq(100,1000,100), y=c(agm.result$ll), geom = 'line') +

labs(x='Iterations', y='Log-likelihood')
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Tempering the mismatch parameter

The mismatch between the Gaussian process model and the ODE model of the system is captured by the
parameter γ. Macdonald (2017) introduced a tempering scheme to replace naive inference of this parameter.
This scheme can be used in our model by setting the temperMismatchParameter option.
agm.result = agm(test.data,test.times,LV_func,4,noise.sd=0.1,temperMismatchParameter=TRUE,

originalSignalOnlyPositive=TRUE,
logPrior="Gamma", defaultTemperingScheme="LB10")

Users can specify their own values for the tempering ladder by ensuring temperMismatchParameter=TRUE,
defaultTemperingScheme=FALSE and then passing their matrix of values to mismatchParameterValues.
The number of rows of the matrix should be equal to the number of parallel chains and the number of columns
should be equal to the number of variables in the system. A typical ladder should have the largest value in
the first row and the smallest value in the last row.
agm.result = agm(test.data,test.times,LV_func,4,noise.sd=0.1,temperMismatchParameter=TRUE,

originalSignalOnlyPositive=TRUE,logPrior="Gamma",
mismatchParameterValues=matrix(seq(0.01,1,length.out=20),nrow=20,ncol=2))

Parameter inference by explicitly solving the ODE system

For comparison purposes, we also implemented a version of the MCMC algorithm that explicitly solves the
ODE system at each step (with deSolve), rather than using gradient matching. This can be invoked by
using the explicit flag.
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agm.result = agm(test.data,test.times,LV_func,numberOfParameters=6,explicit=TRUE)

Note that the number of parameters has increased; this is because the initial states of the ODE at the first
time point also need to be inferred when using this method. So in the Lotka-Volterra case, the number of
parameters increases by 2 because there are 2 variables in the ODE system.

A slightly bigger example

The package can in principle deal with ODE systems of any size, although in practice the achievable size will
depend on memory and running time considerations. Here we show how to apply it to an ODE system with
five equations and six parameters, derived from Vyshemirsky and Girolami (2007).
# Function encoding the Vyshemirsky and Girolami ODE model 1.
VG_func <- function(t, X, params) {

MM <- ((params[5]*X[,5])/(params[6]+X[,5])) # Michaelis-Menten term

dxdt <- cbind( - params[1]*X[,1] - params[2]*X[,1]*X[,3] +
params[3]*X[,4], # S

params[1]*X[,1], # dS
- params[2]*X[,1]*X[,3] + params[3]*X[,4] +

MM, # R
params[2]*X[,1]*X[,3] - params[3]*X[,4] -

params[4]*X[,4], # RS
params[4]*X[,4] - MM # Rpp

)

return(dxdt)
}

# Generate data
timeTest = c(0,1,2,4,5,7,10,15,20,30,40,50,60,80,100)
dataTest = ode(c(1,0,1,0,0), timeTest,

function(t,y,params) list(VG_func(t,matrix(y,1,length(y)),params)), c(0.07,0.6,0.05,0.3,0.017,0.3))
dataTest = dataTest[,2:6] + rnorm(dim(dataTest)[1]*5,0,0.01)

# Run adaptive gradient matching
agm.result = agm(data=dataTest,time=timeTest,ode.system=VG_func, numberOfParameters=6)

Inference with unobserved variables

If not all variables are observed, we can infer the unobserved variables by using a latent Gaussian process.
Note that the data matrix still needs to have a column for each variable, but unobserved variables can be set
to NA, and the observed variables need to be specified in observedVariables. Partially observed variables
are not currently supported.
# Remove the observations of the first variable
dataTest[,1] = NA
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# Run adaptive gradient matching
agm.result = agm(data=dataTest,time=timeTest,ode.system=VG_func, observedVariables=2:5, numberOfParameters=6)
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