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1 Introduction

The R (R Core Team, 2019) package dae (Brien, 2019b) provides functions useful in the design and anova of
experiments. This document describes how to use some of them to produce layouts for experiments and to check
some of their properties.

1.1 Functions to be used

The functions in dae fall into the following categories and those that will be covered in this document are listed
and described:

1. Data

BIBDWheat.dat Data for a balanced incomplete block experiment.

Casuarina.dat Data for an experiment with rows and columns from Williams et al. (2002).

Cabinet1.des A design for one of the growth cabinets in an experiment with 50 lines and 4 harvests.

Exp249.mplot.des Systematic, main-plot design for an experiment to be run in a greenhouse.

Fac4Proc.dat Data for a 24 factorial experiment.

LatticeSquare t49.des A Lattice square design for 49 treatments.

McIntyreTMV.dat The design and data from McIntyre (1955) two-phase experiment.

Oats.dat Data for an experiment to investigate nitrogen response of 3 oats varieties from Yates (1937).

Sensory3Phase.dat Data for the three-phase sensory evaluation experiment in Brien and Payne (1999).

Sensory3PhaseShort.dat Data for the three-phase sensory evaluation experiment in Brien and Payne
(1999), but with short factor names.

SPLGrass.dat Data for an experiment to investigate the effects of grazing patterns on pasture composi-
tion.

2. Factor manipulation functions

fac.gen: Data for an experiment to investigate nitrogen response of 3 oats varieties.

fac.recode: Recodes the levels and values of a factor.

fac.combine: Combines several factors into one.

fac.divide: Divides a factor into several individual factors.

3. Design functions

designAnatomy: Given the layout for a design, obtain its anatomy via the canonical analysis of its
projectors to show the confounding and aliasing inherent in the design.

designLatinSqrSys: Generate a systematic plan for a Latin Square design.

designBlocksGGPlot: Adds block boundaries to a plot produced by designGGPlot.

designGGPlot: A graphical representation of an experimental design based on labels stored in a data.frame
using ggplot2.

designRandomize: Takes a systematic design and randomizes it according to the nesting (and crossing)
relationships between the recipient(unit) factors for the randomization.
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no.reps: Computes the number of replicates for an experiment.

summary.pcanon: Summarizes the anatomy of a design, being the decomposition of the sample space
based on its canonical analysis, as produced by designAnatomy. The table produced includes the
degrees of freedom and summary statistics of the canonical efficiency factors.

4. ANOVA functions

5. Matrix functions

6. Projector and canonical efficiency functions

efficiencies.pcanon: Produces a list containing the canonical efficiency factors for the joint decomposition
of two or more sets of projectors (Brien and Bailey, 2009) obtained using designAnatomy.

7. Miscellaneous functions.

Documentation for these functions is available from the user manual via vignette("dae-manual", package="dae")

and their are some notes that show how to use some of them in vignette("DesignNotes", package="dae").

1.2 The paradigm

Fundamental to the approach in this document, and to using the functions described, is that a single allocation
involves allocating a set of allocated factors to a set of recipient factors. In many designs, this allocation is
achieved by randomization. However, sometimes there is systematic allocation or restricted allocation.

1.3 Notation used for mixed models

The general form for a mixed model is:
Y = Xβ + Zu + e,

where β is the vector of fixed parameters, u is the vector of random effects, and e is the vector of residuals
corresponding to each observation. The matrices X and Z are the design matrices for the fixed and random
effects, respectively. Generally, X and β are conformably partitioned so that there is a separate submatrix and
subvector for each fixed term. Similarly, Z and u are conformably partitioned according to the random terms.

A mixed model is expressed in symbolic form by list of the fixed terms, followed by a ‘|’, and then a list of
the random terms. Terms contributing to the residuals are underlined.
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2 Single-allocation orthogonal design in R

This class of experiments covers the orthogonal standard or textbook experiments and these experiments must
be single phase because they involve a single randomization, in the sense that the randomization can be achieved
with a single permutation. Hence there will be two sets of factors, or tiers, one set being allocated to the other
set. In designRandomize, these are referred to as the allocated and recipient sets of factors. They are also called
the unit and treatment factors, respectively.

Firstly, initialize by loading the dae library. Also check the version that is loaded.

## Loading required package: ggplot2

## [1] '3.1.13'

options(width=100) @

2.1 Two potential designs for a 5× 5 grid of plots

Suppose an experiment to investigate five treatments is to be conducted on 25 plots, the 25 plots being arranged
in a 5× 5 grid. Two possible designs are a randomized complete block design (RCBD) or a Latin square design
(LSD). The factor-allocation diagram (Brien et al., 2011) for the RCBD is in Figure 1 and that for the LSD is
in Figure 2.

�� ��5 Treatments
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	5 Rows

5 Columns in R

5 treatments 25 units

Figure 1: Factor-allocation diagram for an RCBD: treatments are allocated to units; the arrow indicates that the factor Treatments
is randomized to Columns; Columns in R indicates that the Columns are considered to be nested within Rows for this randomization;
R = Rows.

�� ��5 Treatments
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	5 Rows

5 Columns

5 treatments 25 units

©⊥

Figure 2: Factor-allocation diagram for an LSD: treatments are allocated to units; the arrow indicates that the allocation is
randomized; the ‘©⊥ ’ at the end of the arrow indicates that an orthogonal design is used; the two lines from ‘©⊥ ’ indicates that the
Treatments are allocated to the combinations of Rows and Columns using the design.

2.1.1 Produce the randomized layout for an RCBD

Use designRandomize to randomize the treatments according to an RCBD. The arguments to designRandomize

that need to be set are (i) allocated, (ii) nested.recipients, (iii) recipient, and optionally, (iv) seed. The
allocated factors are also referred to as treatment factors and the recipient factors as block or unit factors. A
systematic arrangement of the allocated factors, corresponding to the values of the recipient factors, needs to be
supplied and there are a number of ways of doing this.

In these notes, the general approach is to set up a systematic design in a data.frame with the values of both
the recipient and the allocated factors. The dae function fac.gen will be used to generate the values of the
recipient factors in standard order and often will also be used to generate the values of the allocated factors
in an appropriate standard order for the design.

Then the allocated and recipient factors are supplied to designRandomize by subsetting the columns of
the data.frames to just the appropriate factors for each argument. Note that the Treatments could also be
supplied as a factor and the recipient factors can be specified directly to the recipient argument as a list, e.g.
list(Rows=b, Columns=t).
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The randomized layout is obtained by permuting (i) Rows and (ii) Columns within Rows. Then the permuted
Rows and Columns and the systematic Treatments are sorted so that Rows and Columns are in standard order.

In this example, the allocated factor is Treatments, with 5 levels, and the recipient factors are Rows and
Columns, both with 5 levels. Suppose that Rows are to form the blocks.

Use the following R code to obtain and display the layout:

#'## Obtain the layout

b <- 5

t <- 5

#'## Set up a systematic design

RCBD.sys <- cbind(fac.gen(generate = list(Rows=b, Columns=t)),

fac.gen(generate = list(Treatments = LETTERS[1:t]),

times = b))

#'## Obtain the layout

RCBD.lay <- designRandomize(allocated = RCBD.sys["Treatments"],

recipient = RCBD.sys[c("Rows", "Columns")],

nested.recipients = list(Columns = "Rows"),

seed = 1134)

#'## Output the layout

RCBD.lay

## Rows Columns Treatments

## 1 1 1 C

## 2 1 2 E

## 3 1 3 A

## 4 1 4 B

## 5 1 5 D

## 6 2 1 C

## 7 2 2 A

## 8 2 3 E

## 9 2 4 D

## 10 2 5 B

## 11 3 1 E

## 12 3 2 C

## 13 3 3 B

## 14 3 4 A

## 15 3 5 D

## 16 4 1 E

## 17 4 2 A

## 18 4 3 D

## 19 4 4 B

## 20 4 5 C

## 21 5 1 D

## 22 5 2 C

## 23 5 3 B

## 24 5 4 A

## 25 5 5 E

#'## Plot the layout

designGGPlot(RCBD.lay, labels = "Treatments", cellalpha = 0.75,

blockdefinition = cbind(1,t))
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The function fac.gen is from the package dae and generates the factors in the list in standard order with
the specified numbers of levels or the levels in supplied character or numeric vectors. The seed is specified to
ensure that the same design is produced whenever designRandomize is run with these arguments.

2.1.2 Produce the randomized layout for an LSD

Use designRandomize to randomize the treatments according to an LSD, having obtained the systematic design
using fac.gen and designLatinSqrSys. For this design, Rows and Columns are crossed; there are no nested
factors. The layout can be obtained using the following R code:

b <- 5

t <- 5

#'## Set up a systematic design

LSD.sys <- cbind(fac.gen(list(Rows=b, Columns=t)),

Treatments = factor(designLatinSqrSys(t), labels = LETTERS[1:t]))

#'## Obtain the layout

LSD.lay <- designRandomize(allocated = LSD.sys["Treatments"],

recipient = LSD.sys[c("Rows", "Columns")],

seed = 141)

#'## Output the layout

LSD.lay

## Rows Columns Treatments

## 1 1 1 C

## 2 1 2 D

## 3 1 3 B

## 4 1 4 E

## 5 1 5 A

## 6 2 1 D

## 7 2 2 E
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## 8 2 3 C

## 9 2 4 A

## 10 2 5 B

## 11 3 1 E

## 12 3 2 A

## 13 3 3 D

## 14 3 4 B

## 15 3 5 C

## 16 4 1 A

## 17 4 2 B

## 18 4 3 E

## 19 4 4 C

## 20 4 5 D

## 21 5 1 B

## 22 5 2 C

## 23 5 3 A

## 24 5 4 D

## 25 5 5 E

#'## Plot the layout

designGGPlot(LSD.lay, labels = "Treatments", cellalpha = 0.75,

blockdefinition = cbind(1,1))

C D B E A

D E C A B

E A D B C

A B E C D

B C A D E5

4

3

2

1

1 2 3 4 5
Columns

R
ow

s

Plot of Treatments

2.1.3 Check the properties of the designs

The properties of the designs can be investigated using designAnatomy.
Because these experiments involve a single randomization, they are two-tiered. That is, there are just two

sets of factors involved in the randomization. As we have seen, the first set of factors is the set of allocated
(treatment) factors and the second set is the set of recipient (unit) factors. Further there will be a set of projectors
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associated with each tier and designAnatomy is used to do an eigenanalysis of the relationships between the two
sets of projectors. The sets of projectors are specified to designAnatomy via model formulae, the formula for
the recipient factors coming first in the list for formulae.

For both the RCBD and LSD the two sets of factors are (i) {Rows,Columns} and (ii) {Treatments}. What
differs between the two designs is the nesting/crossing relationship between Rows and Columns and this will be
expressed in the formulae.

Use the commands given below to produce the anatomies (skeleton anova tables) for the RCBD and LSD
that have been obtained. Note that the ‘Mean’ source has been omitted from these tables, but can be included
using grandMean = TRUE when calling designAnatomy.

#'## Anatomy for the RCBD

RCBD.canon <- designAnatomy(formulae = list(unit = ~ Rows/Columns,

trt = ~ Treatments),

data = RCBD.lay)

summary(RCBD.canon)

##

##

## Summary table of the decomposition for unit & trt

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Rows 4

## Columns[Rows] 20 Treatments 4 1.0000 1.0000 1

## Residual 16

#'## Anatomy for the LSD

LSD.canon <- designAnatomy(formulae = list(unit = ~ Rows*Columns,

trt = ~ Treatments),

data = LSD.lay)

summary(LSD.canon)

##

##

## Summary table of the decomposition for unit & trt

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Rows 4

## Columns 4

## Rows#Columns 16 Treatments 4 1.0000 1.0000 1

## Residual 12

Get the mixed-model terms for the analysis by reruning the summary function with the labels.swap argu-
ment set to TRUE.

#'## Term-based anatomy for the RCBD

summary(RCBD.canon, labels.swap = TRUE)

##

##

## Summary table of the decomposition for unit & trt

##

## Term.unit df1 Term.trt df2 aefficiency eefficiency order

## Rows 4

## Rows:Columns 20 Treatments 4 1.0000 1.0000 1

## Residual 16
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#'## Term-based anatomy for the LSD

summary(LSD.canon, labels.swap = TRUE)

##

##

## Summary table of the decomposition for unit & trt

##

## Term.unit df1 Term.trt df2 aefficiency eefficiency order

## Rows 4

## Columns 4

## Rows:Columns 16 Treatments 4 1.0000 1.0000 1

## Residual 12

2.1.4 Questions

1. What is the advantage of specifying a seed in designRandomize?

It means that the design can be reproduced in subsequent executions of the R script.

2. With what unit term is Treatments confounded in these designs and what is the difference in the interpre-
tation of this term between the two different designs, as demonstrated by the associated sources?

Treatments is confounded with the term Rows:Columns. For the RCBD, this term coresponds to the
source Columns[Rows], or Rows within Columns. For the LSD, this term corresponds to the source
Rows#Columns, or the interaction of Rows-and-Columns.

3. What would determine which of these two designs is used for a particular experiment?

In a discussion with the researcher, it needs to be determined whether overall Column differences can be
ruled out. If they can, then the RCBD should be used; otherwise, the LSD would be used.

2.2 Split-plot from Yates (1937)

Yates (1937) describes a split-plot experiment that investigates the effects of three varieties of oats and four levels
of Nitrogen fertilizer. The varieties are assigned to the main plots using a randomized complete block design with
6 blocks and the nitrogen levels are randomly assigned to the subplots in each main plot. The factor-allocation
diagram for the experiment is in Figure 3.
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�
	3 Variety

4 Nitrogen

�
�

�
�

6 Blocks
3 MPlots in B
4 Subplots in B, M

12 treatments 72 units

Figure 3: Factor-allocation diagram for a split-plot design: treatments are allocated to units; the arrows indicates that the factors
Variety and Nitrogen are randomized to MPlots and Subplots, respectively; MPlots in B indicates that the MPlots are considered
to be nested within Blocks for this randomization; Sunplots in B, M indicates that the Subplots are considered to be nested within
Blocks and MPlots for this randomization; B = Blocks, M = MPlots

2.2.1 Produce the randomized experimental layout

Use fac.gen to obtain a systematic layout and then designRandomize to obtain a randomized layout for this
experiment. Check the properties of the design, as illustrated in the following R code:
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Oats.sys <- cbind(fac.gen(list(Blocks=6, MPlots=3, SubPlots=4)),

fac.gen(list(Variety=c("Victory","Golden Rain", "Marvellous"),

Nitrogen=c(0,0.2,0.4,0.6)), times=6))

Oats.lay <- designRandomize(allocated = Oats.sys[c("Variety", "Nitrogen")],

recipient = Oats.sys[c("Blocks", "MPlots", "SubPlots")],

nested.recipients = list(MPlots = "Blocks",

SubPlots = c("MPlots", "Blocks")),

seed = 235805)

#'## Display design produced

Oats.lay

## Blocks MPlots SubPlots Variety Nitrogen

## 1 1 1 1 Marvellous 0.4

## 2 1 1 2 Marvellous 0

## 3 1 1 3 Marvellous 0.2

## 4 1 1 4 Marvellous 0.6

## 5 1 2 1 Victory 0

## 6 1 2 2 Victory 0.2

## 7 1 2 3 Victory 0.6

## 8 1 2 4 Victory 0.4

## 9 1 3 1 Golden Rain 0.2

## 10 1 3 2 Golden Rain 0.4

## 11 1 3 3 Golden Rain 0.6

## 12 1 3 4 Golden Rain 0

## 13 2 1 1 Marvellous 0.4

## 14 2 1 2 Marvellous 0.2

## 15 2 1 3 Marvellous 0

## 16 2 1 4 Marvellous 0.6

## 17 2 2 1 Victory 0.2

## 18 2 2 2 Victory 0

## 19 2 2 3 Victory 0.6

## 20 2 2 4 Victory 0.4

## 21 2 3 1 Golden Rain 0.6

## 22 2 3 2 Golden Rain 0.4

## 23 2 3 3 Golden Rain 0.2

## 24 2 3 4 Golden Rain 0

## 25 3 1 1 Golden Rain 0.2

## 26 3 1 2 Golden Rain 0.6

## 27 3 1 3 Golden Rain 0.4

## 28 3 1 4 Golden Rain 0

## 29 3 2 1 Marvellous 0.4

## 30 3 2 2 Marvellous 0.6

## 31 3 2 3 Marvellous 0

## 32 3 2 4 Marvellous 0.2

## 33 3 3 1 Victory 0.4

## 34 3 3 2 Victory 0.2

## 35 3 3 3 Victory 0

## 36 3 3 4 Victory 0.6

## 37 4 1 1 Marvellous 0

## 38 4 1 2 Marvellous 0.4

## 39 4 1 3 Marvellous 0.2

## 40 4 1 4 Marvellous 0.6

## 41 4 2 1 Golden Rain 0.2

## 42 4 2 2 Golden Rain 0.6
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## 43 4 2 3 Golden Rain 0.4

## 44 4 2 4 Golden Rain 0

## 45 4 3 1 Victory 0.4

## 46 4 3 2 Victory 0

## 47 4 3 3 Victory 0.6

## 48 4 3 4 Victory 0.2

## 49 5 1 1 Golden Rain 0.2

## 50 5 1 2 Golden Rain 0

## 51 5 1 3 Golden Rain 0.6

## 52 5 1 4 Golden Rain 0.4

## 53 5 2 1 Marvellous 0

## 54 5 2 2 Marvellous 0.2

## 55 5 2 3 Marvellous 0.6

## 56 5 2 4 Marvellous 0.4

## 57 5 3 1 Victory 0.4

## 58 5 3 2 Victory 0.2

## 59 5 3 3 Victory 0.6

## 60 5 3 4 Victory 0

## 61 6 1 1 Marvellous 0

## 62 6 1 2 Marvellous 0.6

## 63 6 1 3 Marvellous 0.4

## 64 6 1 4 Marvellous 0.2

## 65 6 2 1 Victory 0.4

## 66 6 2 2 Victory 0.2

## 67 6 2 3 Victory 0

## 68 6 2 4 Victory 0.6

## 69 6 3 1 Golden Rain 0.6

## 70 6 3 2 Golden Rain 0.2

## 71 6 3 3 Golden Rain 0.4

## 72 6 3 4 Golden Rain 0

#'## Check its properties

Oats.canon <- designAnatomy(formulae = list(unit = ~ Blocks/MPlots/SubPlots,

trt = ~ Variety*Nitrogen),

data = Oats.lay)

summary(Oats.canon, which.criteria = c("aeff", "order"))

##

##

## Summary table of the decomposition for unit & trt

##

## Source.unit df1 Source.trt df2 aefficiency order

## Blocks 5

## MPlots[Blocks] 12 Variety 2 1.0000 1

## Residual 10

## SubPlots[Blocks:MPlots] 54 Nitrogen 3 1.0000 1

## Variety#Nitrogen 6 1.0000 1

## Residual 45

2.2.2 Analysis of variance (anova) for the Yields

After reading in the data, use the aov function to produce the anova as shown below. Note the use of the Error

function to produce two Residual lines, one each for Wplots and Subplots (Note the change from MPlots to
Wplots).
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#'## Read in data for actual experiment

data("Oats.dat")

#'## Analyse by anova

oats.aov <- aov(Yield ~ Nitrogen*Variety +

Error(Blocks/Wplots/Subplots), data=Oats.dat)

summary(oats.aov)

##

## Error: Blocks

## Df Sum Sq Mean Sq F value Pr(>F)

## Residuals 5 15875 3175

##

## Error: Blocks:Wplots

## Df Sum Sq Mean Sq F value Pr(>F)

## Variety 2 1786 893.2 1.485 0.272

## Residuals 10 6013 601.3

##

## Error: Blocks:Wplots:Subplots

## Df Sum Sq Mean Sq F value Pr(>F)

## Nitrogen 3 20021 6674 37.686 2.46e-12 ***

## Nitrogen:Variety 6 322 54 0.303 0.932

## Residuals 45 7969 177

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The anova table shown here is the same as the anatomy, but in a different format.

2.2.3 Questions

1. In what sense does this design involve a single randomization?

In the sense that the randomization of both Nitrogen and Variety can be achieved with a single permutation
of the units, the subplots.

2. What is the initial allocated mixed model for this design? Is it equivalent to a randomization model?

The initial allocation mixed model is Variety + Nitrogen + VarietyˆNitrogen | Blocks + BlocksˆMPlots +
BlocksˆMPlotsˆSubPlots. The initial allocation model is equivalent to a randomization model because the
allocation was a randomization.

3. A factorial RCBD would involve randomizing the 3 × 4 = 12 treatments to the 12 subplots within each
block. What has been achieved in using the split-plot design as compared to a factorial RCBD?

The precision of the Variety differences has been sacrified to increase the precision of the Nitrogen differ-
ences. This is the case because the Residual mean square for MPlots[Blocks] is substantially larger than that
for Subplots[BlocksˆMPlots]. If a factorial RCBD had been used, the Residual mean square for Plots[Blocks]
would be the weighted average of the two Residual mean squares from the split-plot experiment, the weight
being the Residual degrees of freedom. That is, the value of the Residual mean square for the factorial
RCBD would be between the values for the two Residual mean squares for the splot-plot design.

2.3 A design for a petrol additives experiment

Box et al. (2005, Section 4.4) describes a car emission experiment that investigates 4 additives. It involves 4 cars
being driven by 4 drivers. Here we investigate increasing the replication by repeating the experiment on two
occasions. Suppose that the 4 cars differ between occasions.
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In a data.frame called LSRepeat.sys, generate a systematic design using two 4 × 4 Latin squares to for
allocating the 4 Additives to the 32 tests, being the combinations of the 2 Occasions x 4 Drivers x 4 Cars.

Now a comparison is made of two different ways of randomizing this design. Firstly, we retain the factors
Occasions, Drivers and Cars from the systematic design. The factor-allocation diagram is in Figure 4.

�� ��4 Additives
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2 Occasions
4 Drivers
4 Cars in O

4 treatments 32 units

©⊥

Figure 4: Factor-allocation diagram for repeated LSDs: treatments are allocated to units; the arrow indicates that the allocation
is randomized; the ‘©⊥ ’ at the end of the arrow indicates that an orthogonal design is used; the two lines from ‘©⊥ ’ indicates that
the Additives are allocated to the combinations of Drivers and Cars within Occasions using the design.

#'## Obtain a randomized layout with Cars nested within Occasions

LSRepeat2b.lay <- designRandomize(allocated = LSRepeat.sys["Additives"],

recipient = LSRepeat.sys[c("Occasions", "Drivers",

"Cars")],

nested.recipients = list(Cars="Occasions"),

seed = 194)

LSRepeat2b.lay

## Occasions Drivers Cars Additives

## 1 1 1 1 B

## 2 1 1 2 A

## 3 1 1 3 D

## 4 1 1 4 C

## 5 1 2 1 C

## 6 1 2 2 B

## 7 1 2 3 A

## 8 1 2 4 D

## 9 1 3 1 D

## 10 1 3 2 C

## 11 1 3 3 B

## 12 1 3 4 A

## 13 1 4 1 A

## 14 1 4 2 D

## 15 1 4 3 C

## 16 1 4 4 B

## 17 2 1 1 C

## 18 2 1 2 B

## 19 2 1 3 A

## 20 2 1 4 D

## 21 2 2 1 D

## 22 2 2 2 C

## 23 2 2 3 B

## 24 2 2 4 A

## 25 2 3 1 A

## 26 2 3 2 D

## 27 2 3 3 C

## 28 2 3 4 B

## 29 2 4 1 B

## 30 2 4 2 A

## 31 2 4 3 D
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## 32 2 4 4 C

LSRepeat2b.canon <- designAnatomy(formulae = list(unit = ~ (Occasions/Cars)*Drivers,

trt = ~ Additives),

data = LSRepeat2b.lay)

summary(LSRepeat2b.canon)

##

##

## Summary table of the decomposition for unit & trt

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Occasions 1

## Cars[Occasions] 6

## Drivers 3

## Occasions#Drivers 3

## Cars#Drivers[Occasions] 18 Additives 3 1.0000 1.0000 1

## Residual 15

#'## Plot the layout

designGGPlot(LSRepeat2b.lay, row.factors = "Cars", column.factors = c("Occasions", "Drivers"),

labels = "Additives", cellalpha = 0.75, blockdefinition = cbind(4,4))
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Now we use only Drivers and Cars to do the randomization, but still attempt to include Occasions in the
analysis. The new factor-allocation diagram is in Figure 5.
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Figure 5: Factor-allocation diagram for repeated LSDs: treatments are allocated to units; the arrow indicates that the allocation
is randomized; the ‘©⊥ ’ at the end of the arrow indicates that an orthogonal design is used; the two lines from ‘©⊥ ’ indicates that
the Additives are allocated to the combinations of Drivers and Cars using the design.
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#'## Obtain a randomized layout

LSRepeat.D8.sys <- LSRepeat.sys

LSRepeat.D8.sys$Cars <- with(LSRepeat.D8.sys, fac.combine(list(Occasions, Cars)))

LSRepeat.D8.sys <- with(LSRepeat.D8.sys, LSRepeat.D8.sys[order(Drivers,Cars),])

LSRepeat2b.D8.lay <- designRandomize(allocated = LSRepeat.D8.sys["Additives"],

recipient = LSRepeat.D8.sys[c("Drivers", "Cars")],

seed = 149)

#'## Plot the layout

designGGPlot(LSRepeat2b.D8.lay, row.factors = "Drivers", column.factors = "Cars",

labels = "Additives", cellfillcolour.column = "Additives",

cellalpha = 0.75, blockdefinition = cbind(4,8))
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#'## Get the Anatomy of the layout

LSRepeat2.D8.canon <- designAnatomy(formulae = list(unit = ~ Drivers*Cars,

trt = ~ Additives),

data = LSRepeat2b.D8.lay)

summary(LSRepeat2.D8.canon)

##

##

## Summary table of the decomposition for unit & trt

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Drivers 3

## Cars 7

## Drivers#Cars 21 Additives 3 1.0000 1.0000 1

## Residual 18

#'## Add Occasions to the analysis

LSRepeat2b.D8.lay$Occasions <- fac.recode(LSRepeat2b.D8.lay$Cars, rep(1:2, each=4))

LSRepeat2b.D8.lay
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## Drivers Cars Additives Occasions

## 1 1 1 C 1

## 2 1 2 A 1

## 3 1 3 C 1

## 4 1 4 B 1

## 5 1 5 D 2

## 6 1 6 B 2

## 7 1 7 A 2

## 8 1 8 D 2

## 9 2 1 B 1

## 10 2 2 D 1

## 11 2 3 B 1

## 12 2 4 A 1

## 13 2 5 C 2

## 14 2 6 A 2

## 15 2 7 D 2

## 16 2 8 C 2

## 17 3 1 A 1

## 18 3 2 C 1

## 19 3 3 A 1

## 20 3 4 D 1

## 21 3 5 B 2

## 22 3 6 D 2

## 23 3 7 C 2

## 24 3 8 B 2

## 25 4 1 D 1

## 26 4 2 B 1

## 27 4 3 D 1

## 28 4 4 C 1

## 29 4 5 A 2

## 30 4 6 C 2

## 31 4 7 B 2

## 32 4 8 A 2

LSRepeat2b.D8.canon <- designAnatomy(formulae = list(unit = ~ (Occasions + Cars)*Drivers,

trt = ~ Additives),

data = LSRepeat2b.D8.lay)

summary(LSRepeat2b.D8.canon)

##

##

## Summary table of the decomposition for unit & trt (based on adjusted quantities)

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Occasions 1

## Cars[Occasions] 6

## Drivers 3

## Occasions#Drivers 3 Additives 3 0.1500 0.1250 2

## Cars#Drivers[Occasions] 18 Additives 3 0.8289 0.7500 2

## Residual 15

##

## The design is not orthogonal
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2.3.1 Questions

1. What is the difference between the two randomizations?

For the first randomization, the Additives are randomized to the Cars within Occasions so that each Driver
does all 4 Additives in the 4 Cars in an Occasion. The design is said to be resolved. This does not happen
with the randomdomization based on only Drivers and Cars.

2. How do the two anatomies that include Occasions differ?

The first anatomy is orthogonal and does not have any information about Additives confounded with
Cars#Drivers[Occasions]. On the other hand, the second anatomy, based on the layout where Occasions
was not included in the randomization, is not orthogonal. Additives information is partially confounded
with both Occasions#Drivers and Cars#Drivers[Occasions].

3. What effect does including Occasions#Drivers have on the anatomy?

Including Occasions#Drivers reduces the Residual DF by 3 (from 18 to 15).

2.4 An environmental experiment

Suppose an environmental scientist wants to investigate the effect on the biomass of burning areas of natural
vegetation. There are available two areas separated by several kilometres for use in the investigation. It is only
possible to either burn or not burn an entire area. The area to be burnt is randomly selected and the other area
is to be left unburnt as a control. Further, 30 locations in each area are to be randomly sampled and the biomass
measured at each location. The factor-allocation diagram for the experiment is in Figure 6.�� ��2 Burning
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30 Location in A

2 treatments 60 locations

Figure 6: Factor-allocation diagram for the environmental experiment: treatments are allocated to locatiions; the arrow indicates
that the factor Burning is randomized to Areas; Locations in A indicates that the Locations are considered to be nested within
Areas; A = Areas.

Obtain the randomized layout for this experiment and check its properties.

#'## Obtain the layout

Burn.sys <- cbind(fac.gen(list(Areas=2, Locations=30)),

Burn = factor(rep(c("Burn", "NoBurn"), each=30)))

Burn.lay <- designRandomize(allocated = Burn.sys["Burn"],

recipient = Burn.sys[c("Areas", "Locations")],

nested.recipients = list(Locations = "Areas"),

seed = 872159)

#'## plot the design

designGGPlot(Burn.lay, labels = "Burn", row.factors = "Locations", column.factors = "Areas")
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#'## Check its properties

Burn.canon <- designAnatomy(formulae = list(unit = ~ Areas/Locations,

trt = ~ Burn),

data = Burn.lay)

summary(Burn.canon)

##

##

## Summary table of the decomposition for unit & trt

##

## Source.unit df1 Source.trt df2 aefficiency eefficiency order

## Areas 1 Burn 1 1.0000 1.0000 1

## Locations[Areas] 58
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2.4.1 Questions

1. How is the pseudo-replication involved in this experiment manifested in the anatomy?

Because (i) Areas and Burn are alongside each other in the anova table, (ii) they both have 1 degree
of freedom, and (iii) the single canonical eficiency factor is one, then Areas and Burn are completely
confounded. That is, the pseudoreplication has resulted in differences between Areas and between Burns
being inextricably mixed up.

2. The randomization-based mixed model for the experiment is Burn | Areas + AreasˆLocations. What
difficulties do you anticipate in attempting to fit this model? How could the model be modified so that a
fit can be obtained? Brien and Demétrio (2009) call models formed by removing terms to enable a fit to be
achieved ‘models of convenience’. What dangers do you foresee in basing conclusions on the fitted model?

There will be a singularity in the model because Areas is confounded with Burn. A fit could be obtained by
removing Areas from the random model. The problem is that a test of Burn would then be based on the
ratio of variability in Burn differences to an estimate of the variance of Locations-within-Areas variability.
This does not include Areas variability and so the denominator is likely to be underestimated; p-values
based from this test are likely to be too small and significant differences are more likely to be declared where
there are none as compared to when an estimate of Areas variability is included in the denominator of the
F -statistic.
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3 Single-allocation, nonorthogonal design in R

This class of experiments covers the nonorthogonal standard or textbook experiments.

3.1 Twenty treatments in an alpha design

The following table gives an alpha design for 20 treatments, taken from Williams et al. (2002, p.128). The design
has 3 replicates, each of which contains 5 blocks of 4 plots. It is a resolved design in that each replicate contains
a complete set of the treatments.

Table 1: Unrandomized alpha design for 20 treatments

1
Block 1 2 3 4 5

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

Replicate
2

1 2 3 4 5
1 2 3 4 5
7 8 9 10 6
13 14 15 11 12
19 20 16 17 18

3
1 2 3 4 5
1 2 3 4 5
8 9 10 6 7
15 11 12 13 14
17 18 19 20 16

The factor-allocation diagram for the experiment is in Figure 7.
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Figure 7: Factor-allocation diagram for the alpha design: treatments are allocated to units; the arrow indicates that the allocation
is randomized; the ‘◦’ at the end of the arrow indicates that a nonorthogonal design is used; the two lines from ‘◦’ indicate that
the Treaments are allocated to the combinations of Blocks and Plots using the design; Blocks in R indicates that the Blocks are
considered to be nested within Reps for this randomization; Plots in R, B indicates that the Plots are considered to be nested within
Reps and Blocks for this randomization; R = Reps; B = Blocks.

3.1.1 Produce the randomized layout for the alpha design and check its properties

Use designRandomize to obtain the randomized layout and designAnatomy to check its properties.

#'## Set up the systematic design

# Note that Treatments has been entered by rows within a replicate

alpha.sys <- cbind(fac.gen(list(Reps=3, Plots=4, Blocks=5)),

Treats = factor(c(1:20,

1:5, 7:10,6, 13:15,11,12, 19,20,16:18,

1:5, 8:10,6,7, 15,11:14, 17:20,16)))

#'## Obtain the layout

alpha.lay <- designRandomize(allocated = alpha.sys["Treats"],

recipient = alpha.sys[c("Reps", "Plots", "Blocks")],

nested.recipients = list(Blocks = "Reps",

Plots = c("Reps", "Blocks")),

seed = 918508)

alpha.lay <- with(alpha.lay, alpha.lay[order(Reps,Blocks,Plots), ])

#'## Check its properties

alpha.canon <- designAnatomy(formulae = list(units = ~ Reps/Blocks/Plots,
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trts = ~ Treats),

which.criteria = "all",

data = alpha.lay)

summary(alpha.canon, which.criteria = "all")

##

##

## Summary table of the decomposition for units & trts (based on adjusted quantities)

##

## Source.units df1 Source.trts df2 aefficiency eefficiency mefficiency sefficiency xefficiency

## Reps 2

## Blocks[Reps] 12 Treats 12 0.2778 0.1667 0.3333 0.0152 0.4167

## Plots[Reps:Blocks] 45 Treats 19 0.7447 0.5833 0.7895 0.0365 1.0000

## Residual 26

## order dforthog

##

## 2 0

## 3 7

##

##

## The design is not orthogonal

The summary table shows us a number of summary statistics calculated from the canonical efficiency factors.
They are:

aefficiency: the harmonic mean of the nonzero canonical efficiency factors.

mefficiency: the mean of the nonzero canonical efficiency factors.

eefficiency: the minimum of the nonzero canonical efficiency factors.

sefficiency: the variance of the nonzero canonical efficiency factors.

xefficiency: the maximum of the nonzero canonical efficiency factors.

order: the order of balance and is the number of unique nonzero canonical efficiency factors.

dforthog: the number of canonical efficiency factors that are equal to one.

For this example it can be seen that (i) an average 74.47%, as measured by the harmonic mean, or 78.95%,
as measured by the arithmetic mean, of the information about Treats is confounded with the differences between
plots within the reps-blocks combinations and (ii) there are 3 different efficiency factors associated with the 19
Treats degrees of freedom estimated from Plots[Reps:Blocks], the smallest of which is 0.5833 and 7 of which are
one. In this case, where the treatments are equally replicated, it can be concluded that the mean variance of a
normalized treatment contrast is inversely proportional to the harmonic mean of the canonical efficiency factors,
that is, to 0.7447.

Get the mixed-model terms for the analysis by reruning the summary function with the labels.swap argu-
ment set to TRUE.

#'## Obtain the terms for the design

summary(alpha.canon, which.criteria = "all", labels.swap = TRUE)

##

##

## Summary table of the decomposition for units & trts (based on adjusted quantities)

##

## Term.units df1 Term.trts df2 aefficiency eefficiency mefficiency sefficiency xefficiency
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## Reps 2

## Reps:Blocks 12 Treats 12 0.2778 0.1667 0.3333 0.0152 0.4167

## Reps:Blocks:Plots 45 Treats 19 0.7447 0.5833 0.7895 0.0365 1.0000

## Residual 26

## order dforthog

##

## 2 0

## 3 7

##

##

## The design is not orthogonal

3.1.2 Questions

1. What is the randomization-based mixed model for this experiment?

The trts term (Source.trts) provides the fixed term and the units terms (Source.units) provide the random
terms. That is, Treats is assumed fixed and Reps, Blocks and Plots are assumed random. Hence, the
symbolic mixed model is Treats | Reps + RepsˆBlocks + RepsˆBlocksˆPlots.

2. In a mixed-model analysis, which unit terms might you fit as fixed terms? Why?

Reps is a definite candidate for the following reasons. Firstly, Reps has only two degrees of freedom and
it will be difficult to estimate a variance component for it. Secondly, one does not want to estimate Treats
from Reps (there is no Treats information between Reps).

3.2 Balanced incomplete block design from Joshi (1987)

Joshi (1987) gives an experiment to investigate six varieties of wheat that employs a balanced incomplete block
design with 10 blocks, each consisting of three plots. The factor-allocation diagram for the experiment is in
Figure 8.

�� ��6 Varieties
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Figure 8: Factor-allocation diagram for the balanced incomplete block design: treatments are allocated to units; the arrow indicates
that the allocation is randomized; the ‘◦’ at the end of the arrow indicates that a nonorthogonal design is used; the two lines from
‘◦’ indicates that the Varieties are allocated to the combinations of Blocks and Plots using the design; Plots in B indicates that
the Plots are considered to be nested within Blocks for this randomization; B = Blocks.

3.2.1 Input the Yields and check properties of the design

Use the following R code to input the data for the experiment and check its properties.

#'## Input the design and data

data("BIBDWheat.dat")

#'## Check the properties of the design

bibdwheat.canon <- designAnatomy(formulae = list(units = ~ Blocks/Plots,

trts = ~ Varieties),

data = BIBDWheat.dat)

summary(bibdwheat.canon)
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##

##

## Summary table of the decomposition for units & trts (based on adjusted quantities)

##

## Source.units df1 Source.trts df2 aefficiency eefficiency order

## Blocks 9 Varieties 5 0.2000 0.2000 1

## Residual 4

## Plots[Blocks] 20 Varieties 5 0.8000 0.8000 1

## Residual 15

##

## The design is not orthogonal

From this it is clear that 80% of the information about Varieties is available from the Plots[Blocks] source;
that is, 80% of the Varieties information is confounded with differences between plots within blocks. Of course,
the remaining 20% is confounded with Blocks.

3.2.2 Anova for the Yields

#'## Perfom an anova

summary(aov(Yield ~ Varieties + Error(Blocks/Plots), data = BIBDWheat.dat))

##

## Error: Blocks

## Df Sum Sq Mean Sq F value Pr(>F)

## Varieties 5 196.6 39.32 0.582 0.718

## Residuals 4 270.4 67.59

##

## Error: Blocks:Plots

## Df Sum Sq Mean Sq F value Pr(>F)

## Varieties 5 1156.4 231.29 4.021 0.0163 *

## Residuals 15 862.9 57.53

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.2.3 Questions

1. What is the value of xefficiency for Varieties when confounded with Plots[Blocks] for this design? Why?

It is 0.80 because there is only the one value for the canonical efficiency factor between these two sources

2. How many nonzero eigenvlaues does QVQBPQV have?

It has 5 nonsero eigenvalues because there is 5 df of Varieties confounded with Plots[Blocks].

3.3 A design with rows and columns from Williams (2002)

Williams et al. (2002, p.144) provides an example of a resolved, Latinized, row-column design with four rectangles
(blocks) each of six rows by ten columns. The experiment investigated differences between 60 provenances of
a species of Casuarina tree, these provenances coming from 18 countries; the trees were inoculated prior to
planting at two different times, time of inoculation being assigned to the four replicates so that each occurred in
two replicates. At 30 months, diameter at breast height (Dbh) was measured.

The factor-allocation diagram for the experiment is in Figure 9.
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Figure 9: Factor-allocation diagram for the row-and-column design: treatments are allocated to units; the arrows indicates that
the allocations are randomized; the two lines leading to the ‘•’ indicate that it is is the combinations of Countries and Provenances
that is allocated; the ‘◦’ at the end of the lower arrow indicates that a nonorthogonal design is used; the two lines from ‘◦’ indicates
that the Countries and Provenances are allocated to the combinations of Rows and Columns using the design; Rows in B indicates
that the Rows are considered to be nested within Blocks for this randomization; B = Blocks.

3.3.1 Input the design and check the properties of the design

Use the following R code to input the design and check its properties.

#'## Input the design

data("Casuarina.dat")

#'## Check the properties of the design

Casuarina.canon <- designAnatomy(formulae = list(units = ~ (Reps/Rows)*Columns,

trts = ~ InocTime*(Countries+Provenances)),

data = Casuarina.dat)

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]

and Countries are partially aliased in Rows[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]

and Countries are partially aliased in Reps#Columns

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Provenances[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Countries and

Countries are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Countries and

Provenances[Countries] are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Countries are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and Provenances[Countries] are partially aliased in Rows#Columns[Reps]

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): InocTime#Provenances[Countries]

and InocTime#Countries are partially aliased in Rows#Columns[Reps]

summary(Casuarina.canon, which = c("aeff", "eeff", "order", "dforth"))

##

##

## Summary table of the decomposition for units & trts (based on adjusted quantities)

##

## Source.units df1 Source.trts df2 aefficiency eefficiency order dforthog

## Reps 3 InocTime 1 1.0000 1.0000 1 1

## Residual 2

## Rows[Reps] 20 Countries 17 0.0145 0.0018 17 0

## Provenances[Countries] 3 0.1622 0.1326 3 0

## Columns 9 Countries 9 0.0137 0.0028 9 0

## Reps#Columns 27 Countries 17 0.0134 0.0012 17 0

## Provenances[Countries] 10 0.2320 0.1596 10 0

## Rows#Columns[Reps] 180 Countries 17 0.7611 0.5588 17 0

## Provenances[Countries] 42 0.6851 0.3429 42 0
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## InocTime#Countries 17 0.6808 0.4735 17 0

## InocTime#Provenances[Countries] 42 0.5516 0.2009 42 0

## Residual 62

##

## Table of (partial) aliasing between sources derived from the same formula

##

## Source df Alias In aefficiency

## Provenances[Countries] 3 Countries Rows[Reps] 0.1622

## Provenances[Countries] 10 Countries Reps#Columns 0.2320

## Provenances[Countries] 42 Countries Rows#Columns[Reps] 0.6851

## InocTime#Countries 17 Countries Rows#Columns[Reps] 0.6808

## InocTime#Countries 17 Provenances[Countries] Rows#Columns[Reps] 0.6808

## InocTime#Provenances[Countries] 42 Countries Rows#Columns[Reps] 0.5516

## InocTime#Provenances[Countries] 42 Provenances[Countries] Rows#Columns[Reps] 0.5516

## InocTime#Provenances[Countries] 42 InocTime#Countries Rows#Columns[Reps] 0.5516

## eefficiency order dforthog

## 0.1326 3 0

## 0.1596 10 0

## 0.3429 42 0

## 0.4735 17 0

## 0.4735 17 0

## 0.2009 42 0

## 0.2009 42 0

## 0.2009 42 0

##

## The design is not orthogonal

Firstly, note that designAnatomy has automatically detected that Provenances is nested within Countries,
even though Provenances has 60 unique levels: the sources for these two terms are Countries and Prove-
nances[Countries] and these have 17 and 42 degrees of freedom when estimated from Rows # Columns [Reps],
respectively. The total of these degrees of freedom is 59, one less than the number of Provenances, as expected.

Secondly, the partial aliasing evident in this design reflects a lack of (structure) balance between the treat-
ment sources within each units source. This is an undesirable, but unavoidable, feature of the design for this
experiment.

3.4 A resolved design for the wheat experiment that is near-A-optimal under a
mixed model

Gilmour et al. (1995) provides an example of a wheat experiment for 25 Varieties in which a balanced lattice
design was employed.

The factor-allocation diagram for the experiment is in Figure 10.

�� ��25 Lines

�
�

�
�

3 SRows
2 SColumns
5 Rows in Sr, Sc
5 Columns in Sr, Sc

25 lines 150 units

◦

Figure 10: Factor-allocation diagram for the row-and-column design: treatments are allocated to units; the arrows indicates that
the allocations are randomized; the ‘◦’ at the end of the lower arrow indicates that a nonorthogonal design is used; the two lines
from ‘◦’ indicates that the Lines are allocated to the combinations of Rows and Columns using the design; Rows (Columns) in
Sr, Sc indicates that the Rows (Columns) are considered to be nested within SRows and SColumns for this randomization; Sr =
S(uper)Rows; Sc = S(uper)Columns.
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3.4.1 Input the design and check the properties of the design

The design is available in the Wheat data set in the asremlPlus package (Brien, 2019a). Use the following R code
to input the design, plot it and check its properties.

#'## Get the design

library(asremlPlus)

## ASReml-R needs to be loaded if the mixed-model functions are to be used.

##

## ASReml-R is available from VSNi. Please visit http://www.vsni.co.uk/ for more information.

data(Wheat.dat)

latt.lay <- cbind(fac.gen(list(ARows = 10, AColumns = 15)),

fac.gen(list(SRows = 2, Rows = 5, SColumns = 3, Columns =5)),

Wheat.dat["Variety"])

#'## Plot the design

#+ "LattDesign"

library(scales)

cell.colours <- hue_pal()(25)

designGGPlot(latt.lay, labels = "Variety",

row.factors = c("SRows", "Rows"), column.factors = c("SColumns", "Columns"),

blockdefinition = cbind(5,5))
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#'## Check the properties of the design

latt.canon <- designAnatomy(formulae = list(units = ~ (SRows:SColumns)/(Rows*Columns),

trts = ~ Variety),

data = latt.lay)

summary(latt.canon, which.criteria = c("aeff", "order"))

##

##

## Summary table of the decomposition for units & trts (based on adjusted quantities)

##

## Source.units df1 Source.trts df2 aefficiency order

## SRows:SColumns 5

## Rows[SRows:SColumns] 24 Variety 24 0.1667 1
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## Columns[SRows:SColumns] 24 Variety 24 0.1667 1

## Rows#Columns[SRows:SColumns] 96 Variety 24 0.6667 1

## Residual 72

##

## The design is not orthogonal
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4 Multiphase experiments in R

This class of experiments differs from those previously presented in that they often employ two or more random-
izations or allocations, each to a different type of unit. As a result, there will be three or more sets of factors,
or tiers, to deal with; further, when there are three sets of factors, three formula will need to be supplied to
designAnatomy.

4.1 Athletic examples based on Brien et al. (2011)

Brien et al. (2011) give several designs for an athletic experiment that illustrate the basic principles to be employed
in designing multiphase experiments. Here designs for two different multiphase scenarios are considered, both
being based on a first-phase that is the testing phase and employs a split-unit design.

4.1.1 A standard single-phase athlete training experiment

First, a split-unit design is generated for an experiment in which the performance of an athlete when subject to
nine different training conditions is tested. The nine training conditions are the combinations of three surfaces
and three intensities of training. Also, assume that the prime interest is in surface differences, with intensities
included to observe the surfaces over a range of intensities. The experiment is to involve 12 athletes, three per
month for four consecutive months; each athlete undergoes three tests. The heart rate of the athlete is to be
taken immediately upon completion of a test.

A split-plot design is to be employed for the experiment: the three intensities are randomized to the three
athletes in each month and the three surfaces are randomized to the three tests that each athlete is to undergo.
The factor-allocation diagram is shown in Figure 11. Generate a randomized layout for the experiment.
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4 Months
3 Athletes in M
3 Tests in M, A

9 training conditions 36 tests

Figure 11: Factor-allocation diagram for the standard athlete training experiment: training conditions are randomized to tests;
the two left-hand arrows indicate that the levels of Intensities and Surfaces are randomized to Athletes and Tests, respectively; M
= Months; A = Athletes.

#'## Phase 1: Construct a systematic layout and generate a randomized layout for the first phase

split.sys <- cbind(fac.gen(list(Months = 4, Athletes = 3, Tests = 3)),

fac.gen(list(Intensities = LETTERS[1:3], Surfaces = 3),

times = 4))

split.lay <- designRandomize(allocated = split.sys[c("Intensities", "Surfaces")],

recipient = split.sys[c("Months", "Athletes", "Tests")],

nested.recipients = list(Athletes = "Months",

Tests = c("Months", "Athletes")),

seed = 2598)

split.lay

## Months Athletes Tests Intensities Surfaces

## 1 1 1 1 B 3

## 2 1 1 2 B 2

## 3 1 1 3 B 1

## 4 1 2 1 C 2

## 5 1 2 2 C 1

## 6 1 2 3 C 3

## 7 1 3 1 A 1

## 8 1 3 2 A 2

29



## 9 1 3 3 A 3

## 10 2 1 1 B 1

## 11 2 1 2 B 2

## 12 2 1 3 B 3

## 13 2 2 1 A 3

## 14 2 2 2 A 2

## 15 2 2 3 A 1

## 16 2 3 1 C 1

## 17 2 3 2 C 3

## 18 2 3 3 C 2

## 19 3 1 1 B 1

## 20 3 1 2 B 3

## 21 3 1 3 B 2

## 22 3 2 1 C 2

## 23 3 2 2 C 3

## 24 3 2 3 C 1

## 25 3 3 1 A 2

## 26 3 3 2 A 3

## 27 3 3 3 A 1

## 28 4 1 1 A 3

## 29 4 1 2 A 2

## 30 4 1 3 A 1

## 31 4 2 1 B 1

## 32 4 2 2 B 2

## 33 4 2 3 B 3

## 34 4 3 1 C 1

## 35 4 3 2 C 3

## 36 4 3 3 C 2

#'## Get anatomy to check properties of the design

split.canon <- designAnatomy(formulae = list(tests = ~ Months/Athletes/Tests,

cond = ~ Intensities*Surfaces),

data = split.lay)

summary(split.canon, which.criteria="none")

##

##

## Summary table of the decomposition for tests & cond

##

## Source.tests df1 Source.cond df2

## Months 3

## Athletes[Months] 8 Intensities 2

## Residual 6

## Tests[Months:Athletes] 24 Surfaces 2

## Intensities#Surfaces 4

## Residual 18

#'## Plot the design

#+ "SplitDes_v2"

split.lay <- within(split.lay,

Conditions <- fac.combine(list(Intensities, Surfaces),

combine.levels = TRUE))

plt <- designGGPlot(split.lay, labels = "Conditions",

row.factors = "Tests", column.factors = c("Months", "Athletes"),
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cellalpha = 0.75, size = 6,

blockdefinition = rbind(c(3,1)), blocklinecolour = "darkgreen",

printPlot = FALSE)

designBlocksGGPlot(plt, nrows = 3, ncolumns = 3, blockdefinition = rbind(c(3,3)))

B,3

B,2

B,1

C,2

C,1

C,3

A,1

A,2

A,3

B,1

B,2

B,3

A,3

A,2

A,1

C,1

C,3

C,2

B,1

B,3

B,2

C,2

C,3

C,1

A,2

A,3

A,1

A,3

A,2

A,1

B,1

B,2

B,3

C,1

C,3

C,2

Months: 1 Months: 2 Months: 3 Months: 4

1 2 3 1 2 3 1 2 3 1 2 3

3

2

1

Athletes

Te
st

s

Plot of Conditions

Question

1. Why was a split-plot design chosen for this experiment?

Because it is likely that variation between tests within an athlete will be smaller than variation between
athletes within a month. Hence, becasue the prime interest is in Surfaces, they are assigned to tests within
an athlete and will have better precision than Intensities, which have been assigned to the more variable
athletes within a month.
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4.1.2 A simple two-phase athlete training experiment

Suppose that, in addition to heart rate taken immediately upon completion of a test, the free haemoglobin is to
be measured using blood specimens taken from the athletes after each test and transported to the laboratory
for analysis. That is, a second laboratory phase is required to obtain the new response. In this phase, because
the specimens become available monthly, the batch of specimens for one month are to be processed, in a random
order, before those for the next month are available. The factor-allocation diagram for this experiment is in
Figure 12, the dashed line indicating that Months are systematically allocated to Batches. The randomizations
in this diagram are composed (Brien and Bailey, 2006) and is one of the two types of randomizations in a chain
(Bailey and Brien, 2015). This means that the second-phase randomization only need to consider how the tests
factors are to be assigned to locations; training conditions can be ignored in determining the second-phase design.
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Figure 12: Factor-allocation diagram for the two-phase athlete training experiment: training conditions are randomized to tests
and tests are allocated to locations; the two left-hand arrows indicate that the levels of Intensities and Surfaces are randomized to
Athletes and Tests, respectively; the dashed arrow indicates that Months are systematically allocated to Batches; the ‘•’ indicates
that the combinations of the levels of Athletes and Tests are randomized to the Locations; M = Months; A = Athletes; B = Batches.

Using the following R code, obtain a layout for the second phase and check the properties of the layout. In
doing this, the first-phase layout is randomized. However, because Months is not randomized to Batches, the
argument except in designRandomize is used to effect the systematic allocation.

#'# Generate a layout for a simple two-phase athlete training experiment

#'

#'## Phase 1 - the split-plot design that has already been generated.

#'## Phase 2 - randomize tests (and training conditions) to locations,

#'## but Months assigned systematicaly to Batches

#'## so except Batches from the randomization

eg1.lay <- designRandomize(allocated = split.lay,

recipient = list(Batches = 4, Locations = 9),

nested.recipients = list(Locations = "Batches"),

except = "Batches",

seed = 71230)

eg1.lay

## Batches Locations Months Athletes Tests Intensities Surfaces Conditions

## 1 1 1 1 2 3 C 3 C,3

## 2 1 2 1 1 2 B 2 B,2

## 3 1 3 1 2 2 C 1 C,1

## 4 1 4 1 3 1 A 1 A,1

## 5 1 5 1 3 2 A 2 A,2

## 6 1 6 1 1 1 B 3 B,3

## 7 1 7 1 2 1 C 2 C,2

## 8 1 8 1 1 3 B 1 B,1

## 9 1 9 1 3 3 A 3 A,3

## 10 2 1 2 3 1 C 1 C,1

## 11 2 2 2 2 2 A 2 A,2

## 12 2 3 2 1 3 B 3 B,3

## 13 2 4 2 1 2 B 2 B,2

## 14 2 5 2 3 2 C 3 C,3

## 15 2 6 2 2 1 A 3 A,3
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## 16 2 7 2 2 3 A 1 A,1

## 17 2 8 2 3 3 C 2 C,2

## 18 2 9 2 1 1 B 1 B,1

## 19 3 1 3 1 1 B 1 B,1

## 20 3 2 3 3 1 A 2 A,2

## 21 3 3 3 2 3 C 1 C,1

## 22 3 4 3 2 2 C 3 C,3

## 23 3 5 3 2 1 C 2 C,2

## 24 3 6 3 3 3 A 1 A,1

## 25 3 7 3 3 2 A 3 A,3

## 26 3 8 3 1 2 B 3 B,3

## 27 3 9 3 1 3 B 2 B,2

## 28 4 1 4 2 3 B 3 B,3

## 29 4 2 4 2 1 B 1 B,1

## 30 4 3 4 1 1 A 3 A,3

## 31 4 4 4 1 2 A 2 A,2

## 32 4 5 4 1 3 A 1 A,1

## 33 4 6 4 3 1 C 1 C,1

## 34 4 7 4 2 2 B 2 B,2

## 35 4 8 4 3 2 C 3 C,3

## 36 4 9 4 3 3 C 2 C,2

#'## Plot the layout

#+ Athlete_eg1lay

eg1.lay$Conditions <- with(eg1.lay, fac.combine(list(Intensities, Surfaces),

combine=TRUE, sep=","))

designGGPlot(eg1.lay, labels = "Conditions",

row.factors = "Locations", column.factors = "Batches",

cellfillcolour.column = "Athletes", cellalpha = 0.75, size = 6,

title = "Intensities-Surfaces combinations (coloured by Athletes)",

blockdefinition = rbind(c(9,1)),

ggplotFuncs = list(xlab("Batches (Months)")))
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Check the properties of the design.
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#'## Check properties of the design

eg1.canon <- designAnatomy(formulae = list(locs = ~ Batches/Locations,

tests = ~ Months/Athletes/Tests,

cond = ~ Intensities*Surfaces),

data = eg1.lay)

summary(eg1.canon, which.criteria="none")

##

##

## Summary table of the decomposition for locs, tests & cond

##

## Source.locs df1 Source.tests df2 Source.cond df3

## Batches 3 Months 3

## Locations[Batches] 32 Athletes[Months] 8 Intensities 2

## Residual 6

## Tests[Months:Athletes] 24 Surfaces 2

## Intensities#Surfaces 4

## Residual 18

Questions

1. What would be the allocation-based mixed model for this experiment, an allocation-based mixed model
having the same terms as the randomization-based mixed model that would apply if all the allocations had
been made by randomizing. Do you anticipate any problem in fitting it?

The allocation-based mixed model is formed by treating all training-conditions factors as fixed and the
remaining factors as random. Hence, the symbolic mixed model is Intensities + Surfaces + Intensi-
tiesˆSurfaces | Months + MonthsˆAthletes + MonthsˆAthletesˆTests + Batches + BatchesˆLocations. The
problem in fitting it would be that Months and Batches are confounded so that the variance model is singular.

2. Compare the units for the two phases in this experiment?

A unit in the first phase is a test conducted on an athlete in a particular month; in the second phase, a
unit is a location of a test within a batch. That is, the unit in the first phase is an athlete’s test and in the
second phase is a blood specimen in a lab location.

3. What are the outcomes for the two phases for this experiment?

The outcome for the first phase is the heart rate for a test and a blood specimen from the test; the outcome
for the second phase, is the free haemglobin measured at a location.

4.1.3 Allowing for lab processing order in the athletic training example

Brien (2017) discusses a design, and its properties, that differs in the second phase from that described in
Section 4.1.2: it assumes that lab processing order within a batch is important and so the second phase now
requires a row-column design. However, one cannot consider a design for just Months, Athletes and Tests and
ignore Intensities and Surfaces, as was done in the previous design. Indeed prime consideration needs to be given
to Intensities and Surfaces. That is, a suitable cross-phase design is needed. However, the second-phase design
has to be considered in that it must account for the split-unit nature of the first-phase design.

For the second-phase design, the Months are associated with Batches. Then each triple of consecutive
locations in a batch are associated with a single athlete, one of those for the month associated with the batch.
This leaves tests to be assigned to locations within triples. Thus, the cross-phase design will need to allocate
efficiently an intensity to a location triple and surface to the locations within a triple.

The cross-phase design is a balanced factorial design (Hinkelmann and Kempthorne, 2005, Section 12.5) and
can be constructed as follows:

1. a 3× 4 extended Latin square, formed from a 3× 3 Latin square by repeating one of its columns, will be
used to allocate Intensities to the 3 Locations triples × 4 Months.
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2. A 3× 4 extended Latin squares will be used to allocate Surfaces to the 3 Locations × 4 Months within a
triple; the same extended Latin square is used for the three triples.

3. To ensure no repeat Intensities-Surfaces combinations for a Location, the repeated columns for the two
extended Latin squares will be associated with different Batches.

The factor-allocation diagram, for this design, is in Figure 13. In this diagram, the training conditions and
tests panels are surrounded by a dashed rectangle and lines go from the training conditions sources to the lines
from the test sources. This indicates that the result of the allocation in the first phase needs to be explicitly
taken into account in the second-phase allocation. The randomizations involved have been called a randomized-
inclusive randomizations (Brien and Bailey, 2006) and are one of the two types of randomizations in a chain
(Bailey and Brien, 2015). Because Batches and Locations are crossed, the second phase randomization is achieved
by independently permuting the Batches and Locations. A design with the same properties had been previously
constructed by Rosemary Bailey (pers. comm.).
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Figure 13: Factor-allocation diagram for the two-phase athlete training experiment with a row-column design for the second phase:
training conditions are randomized to tests, then training conditions and tests are randomized to locations; the ‘•’ indicates that
the observed combinations of the levels of Intensities, Surfaces, Athletes and Tests are randomized to locations; the ‘◦’ indicates
that a nonorthogonal design was used in this randomization to the combinations of the levels of Batches and Locations; the dashed
arrow indicates that Months were systematically allocated to Batches; the dashed oval indicates that all factors from the first phase
form a pseudotier and all are actively involved in determining the allocation to locations; M = Months and A = Athletes.

Use the following R code to obtain a layout for the new second phase design.

#'## Generate a systematic cross-phase design for Intensities and Surfaces

#'## It is based on an extended Latin square (ELS) for Intensities

#'## and four Latin squares for Surfaces, one for each Month such that the start rows are an ELS

#+ Athlete_eg2sys_v3

eg2.phx.sys <- cbind(fac.gen(list(Batches = 4, Locations = 9)),

data.frame(Intensities = factor(rep(c(designLatinSqrSys(3), c(3,2,1)),

each = 3), labels = LETTERS[1:3]),

Surfaces = factor(c(rep(1:3, times = 3),

rep(1:3, times = 3),

rep(c(2,3,1), times = 3),

rep(c(3,1,2), times = 3)))))

eg2.phx.sys$Conditions <- with(eg2.phx.sys, fac.combine(list(Intensities, Surfaces),

combine.levels = TRUE))

designGGPlot(eg2.phx.sys, labels = "Conditions",

row.factors = "Locations", column.factors = "Batches",

cellfillcolour.column = "Intensities", cellalpha = 0.75,

celllinesize = 2, size = 6,

title = "Intensities-Surfaces combinations in systematic design")
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#'## Second phase design

#'## Generate a systematic two-phase design by bringing in first-phase recipient factors

eg2.phx.sys$Months <- eg2.phx.sys$Batches

eg2.sys <- merge(split.lay, eg2.phx.sys) #merge on commmon factors Months, Intensities & Surfaces

#'## Allocate the second phase

eg2.lay <- designRandomize(allocated = eg2.sys[c("Months", "Athletes", "Tests",

"Intensities", "Surfaces")],

recipient = eg2.sys[c("Batches", "Locations")],

except = "Batches",

seed = 243526)

head(eg2.lay)

## Batches Locations Months Athletes Tests Intensities Surfaces

## 1 1 1 1 3 2 A 2

## 2 1 2 1 2 1 C 2

## 3 1 3 1 3 3 A 3

## 4 1 4 1 2 2 C 1

## 5 1 5 1 3 1 A 1

## 6 1 6 1 1 2 B 2

#'## Plot the layout

#+ Athlete_eg2lay_v3

eg2.lay$Conditions <- with(eg2.lay, fac.combine(list(Intensities, Surfaces),

combine=TRUE, sep=","))

designGGPlot(eg2.lay, labels = "Conditions",

row.factors = "Locations", column.factors = "Batches",

cellfillcolour.column = "Athletes", cellalpha = 0.75, size = 6,

title = "Intensities-Surfaces combinations (coloured by Athletes)",

blockdefinition = rbind(c(9,1)),

ggplotFuncs = list(xlab("Batches (Months)")))
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#'## Check properties of the design

eg2.canon <- designAnatomy(formulae = list(locs = ~ Batches*Locations,

tests = ~ Months/Athletes/Tests,

cond = ~ Intensities*Surfaces),

data = eg2.lay)

summary(eg2.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for locs, tests & cond (based on adjusted quantities)

##

## Source.locs df1 Source.tests df2 Source.cond df3 aefficiency order

## Batches 3 Months 3 1.0000 1

## Locations 8 Athletes[Months] 2 Intensities 2 0.0625 1

## Tests[Months:Athletes] 6 Surfaces 2 0.0625 1

## Intensities#Surfaces 4 0.2500 1

## Batches#Locations 24 Athletes[Months] 6 Intensities 2 0.9375 1

## Residual 4 1.0000 1

## Tests[Months:Athletes] 18 Surfaces 2 0.9375 1

## Intensities#Surfaces 4 0.7500 1

## Residual 12 1.0000 1

##

## The design is not orthogonal

It is clear that Athletes[Months] and Tests[Months:Athletes] are not orthogonal to Locations and Batches#Locations,
because the former sources are confounded with both of the latter sources. To examine the nature of the
nonorthogonality, the skeleton anova for just the tests and locations tiers is obtained.

#"### Examine the nonorthogonality between locations and tests

eg2.locstests.canon <- designAnatomy(formulae = list(locs = ~ Batches*Locations,

tests = ~ Months/Athletes/Tests),

data = eg2.lay)

summary(eg2.locstests.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for locs & tests

##

## Source.locs df1 Source.tests df2 aefficiency order

## Batches 3 Months 3 1.0000 1

## Locations 8 Athletes[Months] 2 1.0000 1

## Tests[Months:Athletes] 6 1.0000 1

## Batches#Locations 24 Athletes[Months] 6 1.0000 1

## Tests[Months:Athletes] 18 1.0000 1

Questions

1. What do you conclude about the confounding of Athletes[Months] and Tests[Months:Athletes] with Loca-
tions?

Since all efficiency factors are one, it is concluded that the 8 degrees of freedom for Athletes[Months] has been
split into two orthogonal parts, one with 2 degrees of freedom which is confounded with Batches and the other
with 6 degrees of freedom which is confounded with Batches:Locations. The source Tests[Months:Athletes]
has been similarly partitioned.
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2. Are the designs proposed for this experiment first-order balanced?

The design is first-order balanced, because the order of the efficiency factors is one for all confounded
sources.

3. What has been the cost of allowing for order of processing in the lab? Is the cost acceptable? Why?

The cost has been that some information about Athletes[Months], along with Intensities, and some infor-
mation about Tests[Months:Athletes], along with Surfaces and Intensities#Surfaces, has been confounded
with Locations. The cost is acceptable, because the amount of information lost on the main effects is only
6.25% and on the interaction is 25%. The latter will be recovered in a REML-based mixed model analy-
sis. However, the Resdiual degrees of freedom for Athletes[Months] has been reduced from 6 to 4 and for
Tests[Months:Athletes] from 18 to 14. While the latter is unlikely to be seriously deleterious, the former is
of concern.

4.2 McIntyre’s (1955) two-phase example

McIntyre (1955) reports an investigation of the effect of four light intensities on the synthesis of tobacco mosaic
virus in leaves of tobacco Nicotiana tabacum var. Hickory Pryor. It is a two-phase experiment: the first phase
is a treatment phase, in which the four light treatments are randomized to the tobacco leaves, and the second
phase is an assay phase, in which the tobacco leaves are randomized to the half-leaves of assay plants.

In the first phase, four successive leaves at defined positions on the stem were taken from each of eight plants
of comparable age and vigour that had been inoculated with the virus. Arbitrarily grouping the plants into two
sets of four, the four treatments were applied to the leaves, which had been separated from the plants and were
sustained by flotation on distilled water, in a Latin square design for each set with tobacco plants as columns
and leaf positions as rows; see Figure 15.

In the second phase, virus content of each tobacco leaf was assayed by expressing sap and inoculating half
leaves of the assay plants, Datura stramonium, on which countable lesions would appear. Lots of eight sap
samples were formed from pairs of tobacco plants, the pairs being comprised of a plant from each set in the
treatment phase. The eight samples from a lot were assigned to four assay plants using one of four 4× 4 Graeco-
Latin square designs, with the leaves from a single tobacco plant assigned using one of the alphabets and the
second tobacco plant using the other (see Figure 16). Actually, this design is a semi-Latin square (Bailey, 1992).

The factor-allocation diagram for the experiment is in Figure 14. Unfortunately, the randomization for this
experiment was not described by McIntyre (1955). Because there are multiple squares in both phases, there are
several possible randomizations depending on the effects anticipated as possible in the experiment. As shown
by the nesting relations in the factor-allocation diagram, I have assumed that NicPlant is randomized within
Sets and Posn randomized across Sets. Similarly, I have assumed that DatPlant was randomized with Lot and
AssPosn across Lot. In the factor-allocation diagram, N1 is a factor for the pairs of tobacco plants formed by
taking a plant from each set in the first phase.

Figure 14: Factor-allocation diagram for McIntyre’s (1955) two-phase experiment: treatments are randomized
to tobacco leaves and tobacco leaves are randomized to Datura half-leaves; the arrow to the ‘©⊥ ’, the ‘©⊥ ’ and
the two lines from the ‘©⊥ ’ indicate that Treat is randomized to the combinations of NicPlant and Posn using an
orthogonal design; N1 is a pseudofactor indexing the pairs of tobacco plants formed by taking a plant from each
set in the first phase and N2 is a pseudofactor indexing the tobacco plants within the pairs formed by taking a
plant from each set in the first phase; N1 is randomized to Lot in the second phase; the combinations of N2 and
Posn is randomized to the combinations of HalfLeaf, DatPlant and AssPosn using a nonorthogonal design, the
latter inidcated by the ‘◦’; S = Set; L = Lot; D = DatPlant; A = AssPosn.
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Figure 15: Layout for the first phase of McIntyre’s (1955) experiment†

Nicotiana Plants
1 2 3 4 1 2 3 4

Leaf Leaf
Position Position

1 a b c d a b c d
1 5 9 13 17 21 25 29

2 b a d c c d a b
2 6 10 14 18 22 26 30

3 c d a b d c b a
3 7 11 15 19 23 27 31

4 d c b a b a d c
4 8 12 16 20 24 28 32

†The letter in each cell refers to the light intensity to be applied to the unit and the number to the
unit.

Figure 16: Layout for the second phase of McIntyre’s (1955) experiment†

Datura Plants
1 2 3 4 5 6 7 8

Assay Leaf Assay Leaf
Position Position

1 1 2 3 4 5 6 7 8
17 20 18 19 23 22 24 21

2 2 1 4 3 8 7 6 5
18 19 17 20 22 23 21 24

3 3 4 1 2 7 8 5 6
19 18 20 17 21 24 22 23

4 4 3 2 1 6 5 8 7
20 17 19 18 24 21 23 22

Datura Plants
9 10 11 12 13 14 15 16

Assay Leaf Assay Leaf
Position Position

1 9 10 11 12 13 14 15 16
28 25 27 26 30 31 29 32

2 10 9 12 11 16 15 14 13
27 26 28 25 31 30 32 29

3 11 12 9 10 15 16 13 14
26 27 25 28 32 29 31 30

4 12 11 10 9 14 13 16 15
25 28 26 27 29 32 30 31

†The numbers in the cell refer to the units from the first phase (tobacco leaves) to be assigned to the two
half-leaves of the assay plant; they are in standard order for Set, then NicPlant followed by Position.
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4.2.1 Check the properties of the randomized layout

Load the data and use designAnatomy to check the properties of the design.

#'## Load data

data("McIntyreTMV.dat")

#'## Check properties of the design

TMV.canon <- designAnatomy(formulae = list(assay = ~ ((Lot/DatPlant)*AssPosn)/HalfLeaf,

test = ~ (Set/NicPlant)*Posn,

trt = ~ Treat),

data = McIntyreTMV.dat)

summary(TMV.canon, which.criteria=c("aeff", "ord"))

##

##

## Summary table of the decomposition for assay, test & trt (based on adjusted quantities)

##

## Source.assay df1 Source.test df2 Source.trt df3 aefficiency order

## Lot 3 NicPlant[Set] 3 1.0000 1

## DatPlant[Lot] 12

## AssPosn 3

## Lot#AssPosn 9

## DatPlant#AssPosn[Lot] 36 Posn 3 0.5000 1

## Set#Posn 3 0.5000 1

## NicPlant#Posn[Set] 18 Treat 3 0.5000 1

## Residual 15 0.5000 1

## Residual 12

## HalfLeaf[Lot:DatPlant:AssPosn] 64 Set 1 1.0000 1

## NicPlant[Set] 3 1.0000 1

## Posn 3 0.5000 1

## Set#Posn 3 0.5000 1

## NicPlant#Posn[Set] 18 Treat 3 0.5000 1

## Residual 15 0.5000 1

## Residual 36

##

## The design is not orthogonal

4.2.2 Questions

1. Is the variance matrix for this experiment based on two sets of terms that are orthogonal?

The variance matrix for this experiment is based on the factors in the tobacco leaves and Datura half-
leaves tiers. The terms derived from the factors in these two tiers are not orthogonal. In particu-
lar, Set#Posn and NicPlant#Posn[Set] are partially confounded with both DatPlant#AssPosn[Lot] and
HalfLeaf[Lot:DatPlant:AssPosn].

2. What are the advantages and disadvantages of a mixed -model analysis of the data from this experiment,
as opposed to an anova?

The advantage of a mixed-model analysis is that combined estimates will be provided for Set#Posn,
NicPlant#Posn[Set], and Treat. The disadvantages are (i) that not all random terms are well-estimated,
some having small degrees of freedom, and cause problems in fitting the model, and (ii) the Wald F -statistics
are only approximately distributed as F -distributions. On the other hand, an anova is not applicable because
of the nonorthogonality between the sets of terms making up the variance matrix; at least some F -ratios
will not be independently distributed.
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4.3 A Plant Accelerator experiment with a split-unit design

This experiment involves the investigation of 75 wheat lines, of which 73 are Nested Association Mapping (NAM)
wheat lines and the other two are two check lines, Scout and Gladius. It was conducted in 2014 in the Plant
Accelerator, a facility in Adelaide with 4 Smarthouses. A Smarthouse is a large greenhouse with two areas within
it: (i) a Table area at the southern end and (ii) a Conveyor area at the northern end — see Figure 17. The
conveyor system has the capability of automatically moving and imaging around 500 pots per day. There are air
conditioners placed down the western side of the Smarthouse, which creates a trend from west to east. Further,
there is a north-south trend due to changes in light intensity (Brien et al., 2013).

The experiment involves two phases: the table and conveyor phases. The table phase is the establishment
phase in which plants are germinated in pots on the tables where they undergo an early growth stage. In the
conveyor phase, having placed the pots in carts on the conveyor system, the plants are automatically imaged
and watered daily, being moved to a processing station by the conveyor system for this.

This experiment has a single plant per pot and these will be arranged in a 24 × 22 grid in both phases: 24
columns × 22 locations in the table phase and 24 lanes × 22 (2–23) positions, as shown in Figure 17. However,
the 24 columns in the table phase run east-west and the 24 lanes in the conveyor phase run north-south. Because
there are systematic trends in both phases to be accounted for in the analysis, the same layout will be used
in both phases, but the table layout will be rotated clockwise through 90◦. That is, Locations 1–22 will be in
Positions 2–23, respectively, and the Column will be placed in the Lane with the same number.

Figure 17: Schematic of Smarthouse for the Plant Accelerator experiment

The design employed for the experiment is a split-unit design in which two consecutive pots/carts form a
main unit. The main-unit design uses a blocked design with rows and columns generated with DiGGer (Coombes,
2009). It assigns Lines to main units, the Lines being unequally replicated; Scout and Gladius each occur on 12
main units (24 carts), 21 randomly-selected NAM lines each occur on 4 main units (8 carts) and the remaining
52 NAM lines each occur on 3 main units (6 carts). The subunit design merely randomizes Salt (0 mM NaCl,
100 mM NaCl) to the two carts in each main unit.

In the main-unit design, the blocks are, in the table phase, 6 Groups of 4 Columns and, in the conveyor
phase, 6 Zones of 4 Rows (lanes). However, while the generated design is based on crossed rows and columns, it
is known from past experience that, while there are differences between Zones, there are not differences between
Rows within Zones (Brien et al., 2013) and none are anticipated between Columns within Groups on the tables.
The columns of the main-unit design are indexed by 11 Pairs in the table phase and 11 MainPosns in the
conveyor phase. The design generated with DiGGer (Coombes, 2009) will be rerandomized so that the Lines are
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randomized to 4 Columns within each Groups-Pairs combination and the 11 sets of Lines assigned by DiGGer to
the 11 Pairs will be rerandomized to Pairs. The factor-allocation diagram is shown in Figure 18.

Figure 18: Factor-allocation diagram for the Plant Accelerator experiment: treatments are randomized to loca-
tions and locations are allocated to cars; the arrow to the ‘◦’, the ‘◦’ and the three lines from the ‘◦’ indicate
that Lines is randomized to the combinations of Groups, Columns and Pairs using a nonorthogonal design; the
arrow from Conditions to Locations indicates that Conditions were randomized to Locations; the dashed arrows
between the two panels on the right hand side indicate that the factors indexing locations were systematically
assigned to those indexing the carts; G = Groups; P = Pairs; C = Columns; Z = Zones; M = MainPosns; R =
Rows.

4.3.1 Produce the layout

Use the following instructions to load the main-unit design produced with DiGGer and check its properties using
designAnatomy.

#'## Load the main-unit design - it has Lines in row-column order

data("Exp249.munit.des")

Exp249.munit.des$Blocks <- factor(rep(1:6, each = 44))

#'## Check its properties

Exp249.munit.canon <- designAnatomy(formulae = list(cart = ~ (Blocks/Rows)*Cols,

treat = ~ Lines),

data = Exp249.munit.des)

summary(Exp249.munit.canon)

##

##

## Summary table of the decomposition for cart & treat (based on adjusted quantities)

##

## Source.cart df1 Source.treat df2 aefficiency eefficiency order

## Blocks 5 Lines 5 0.1498 0.1422 5

## Rows[Blocks] 18 Lines 18 0.2685 0.1813 18

## Cols 10 Lines 10 0.2102 0.1769 10

## Blocks#Cols 50 Lines 50 0.1154 0.0142 50

## Rows#Cols[Blocks] 180 Lines 74 0.5816 0.2088 74

## Residual 106

##

## The design is not orthogonal

Expand main-unit design to produce the split-unit design, including a three-level factor Checks that compares
Scout, Gladius and the mean of the NAM lines. Perhaps, produce a plot of the allocation of the Lines.

#'## Expand design to rerandomize lines and to assign salt treatments to locations

Exp249.alloc <- with(Exp249.munit.des,

data.frame(Lines = factor(rep(Lines, each=2), levels=1:75),

Checks = fac.recode(rep(Lines, each=2),
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newlevels=c(rep(3, 73), 1 , 2),

labels = c("NAM","Scout","Gladius")),

Salt = factor(rep(1:2, times=264),

labels = c('0 NaCl','100 NaCl'))))

Exp249.recip <- fac.gen(list(Groups = 6, Cols = 4, Pairs = 11, Locations = 2))

Exp249.nest <- list(Cols = c("Groups", "Pairs"),

Locations = c("Groups", "Cols", "Pairs"))

Exp249.lay <- designRandomize(allocated = Exp249.alloc,

recipient = Exp249.recip,

nested.recipients = Exp249.nest,

seed = 51412)

#'## Add second-phase factors

#'## (to which the first-phase factors have been systematically allocated)

Exp249.lay <- cbind(fac.gen(list(Lanes = 24, Positions = 2:23)),

fac.gen(list(Zones = 6, Rows = 4, MainPosn = 11, Subunits = 2)),

Exp249.lay)

#'## Plot the assignment of Lines in the second-phase design - or see file that includes the output

Exp249.lay$Replication <- fac.recode(Exp249.lay$Lines, rep(1:3, c(21,52,2)))

designGGPlot(Exp249.lay, labels = "Lines", cellfillcolour.column = "Replication",

colour.values = c("lightblue", "grey", "lightgreen"),

row.factors = "Lanes", column.factors = "Positions",

title = "Layout of Lines for optimized design",

reverse.x = TRUE, reverse.y = FALSE, blockdefinition = cbind(4,22))
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4.3.2 Check the properties of the design

The maximal allocation-based mixed model is (Checks + Lines) * Salt | (Zones * MainPosn) / Rows / Subunits
+ (Groups * Pairs) / Cols / Locations, with Checks nested within Lines. Use the designAnatomy to check the
properties of the design for an analysis of data from an experiment based on this design.

#'## Check design properties

Exp249.canon <- designAnatomy(formulae = list(carts = ~ (Zones*MainPosn)/Rows/Subunits,

tables = ~ (Groups*Pairs)/Cols/Locations,

treats = ~ (Checks + Lines) * Salt),

data = Exp249.lay)

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks
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are partially aliased in MainPosn&Pairs

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Zones#MainPosn&Groups#Pairs

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Rows[Zones:MainPosn]&Cols[Groups:Pairs]

summary(Exp249.canon)

##

##

## Summary table of the decomposition for carts, tables & treats (based on adjusted quantities)

##

## Source.carts df1 Source.tables df2 Source.treats df3

## Zones 5 Groups 5 Lines[Checks] 5

## MainPosn 10 Pairs 10 Checks 2

## Lines[Checks] 8

## Zones#MainPosn 50 Groups#Pairs 50 Checks 2

## Lines[Checks] 48

## Rows[Zones:MainPosn] 198 Cols[Groups:Pairs] 198 Checks 2

## Lines[Checks] 72

## Residual 124

## Subunits[Zones:MainPosn:Rows] 264 Locations[Groups:Pairs:Cols] 264 Salt 1

## Checks#Salt 2

## Lines#Salt[Checks] 72

## Residual 189

## aefficiency eefficiency order

## 0.1498 0.1422 5

## 0.0033 0.0031 2

## 0.2094 0.1809 8

## 0.2111 0.2049 2

## 0.1142 0.0145 48

## 0.7854 0.7792 2

## 0.6640 0.2632 66

## 1.0000 1.0000 1

## 1.0000 1.0000 1

## 1.0000 1.0000 1

## 1.0000 1.0000 1

## 1.0000 1.0000 1

##

## Table of (partial) aliasing between sources derived from the same formula

##

## Source df Alias In aefficiency eefficiency order

## Lines[Checks] 8 Checks MainPosn&Pairs 0.2094 0.1809 8

## Lines[Checks] 48 Checks Zones#MainPosn&Groups#Pairs 0.1142 0.0145 48

## Lines[Checks] 72 Checks Rows[Zones:MainPosn]&Cols[Groups:Pairs] 0.6640 0.2632 66

##

## The design is not orthogonal

Because, there is a one-to-one correspondence between the tables and carts sources, omit the tables formula
and rerun — it will make the anova table more readable.
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#'## Check design properties, with tables omitted

Exp249.canon <- designAnatomy(formulae = list(carts = ~ (Zones*MainPosn)/Rows/Subunits,

treats = ~ (Checks + Lines) * Salt),

data = Exp249.lay)

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in MainPosn

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Zones#MainPosn

## Warning in projs.2canon(CombinedSets$Q[[ntiers]], struct[[ktier]]$Q): Lines[Checks] and Checks

are partially aliased in Rows[Zones:MainPosn]

summary(Exp249.canon)

##

##

## Summary table of the decomposition for carts & treats (based on adjusted quantities)

##

## Source.carts df1 Source.treats df2 aefficiency eefficiency order

## Zones 5 Lines[Checks] 5 0.1498 0.1422 5

## MainPosn 10 Checks 2 0.0033 0.0031 2

## Lines[Checks] 8 0.2094 0.1809 8

## Zones#MainPosn 50 Checks 2 0.2111 0.2049 2

## Lines[Checks] 48 0.1142 0.0145 48

## Rows[Zones:MainPosn] 198 Checks 2 0.7854 0.7792 2

## Lines[Checks] 72 0.6640 0.2632 66

## Residual 124

## Subunits[Zones:MainPosn:Rows] 264 Salt 1 1.0000 1.0000 1

## Checks#Salt 2 1.0000 1.0000 1

## Lines#Salt[Checks] 72 1.0000 1.0000 1

## Residual 189

##

## Table of (partial) aliasing between sources derived from the same formula

##

## Source df Alias In aefficiency eefficiency order

## Lines[Checks] 8 Checks MainPosn 0.2094 0.1809 8

## Lines[Checks] 48 Checks Zones#MainPosn 0.1142 0.0145 48

## Lines[Checks] 72 Checks Rows[Zones:MainPosn] 0.6640 0.2632 66

##

## The design is not orthogonal

4.3.3 Examine the properties of the design for an alternative analysis

However, rather than fit the allocation-based model, because it is known from past experience that once a linear
trend for MainPosn has been fitted there are no deviations from this trend, the term xMainPosn is used to fit
the trend; the term xMainPosn is a centred, linear covariate for MainPosn. Use the designAnatomy to check the
properties of the design for an analysis based on a modified model, in which MainPosn in the random model has
been replaced by xMainPosn in the fixed model, Zones#MainPosn has been omitted and Rows[Zones:MainPosn]
has been replaced by Mainunits[Zones].

#'## Add factors and variates for new analysis

Exp249.lay <- within(Exp249.lay,

{ xMainPosn <- as.numfac(MainPosn)

xMainPosn <- -(xMainPosn - mean(xMainPosn))
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Mainunits <- fac.combine(list(Rows,MainPosn))

})
head(Exp249.lay)

## Lanes Positions Zones Rows MainPosn Subunits Groups Cols Pairs Locations Lines Checks Salt

## 1 1 2 1 1 1 1 1 1 1 1 3 Gladius 100 NaCl

## 2 1 3 1 1 1 2 1 1 1 2 3 Gladius 0 NaCl

## 3 1 4 1 1 2 1 1 1 2 1 74 NAM 100 NaCl

## 4 1 5 1 1 2 2 1 1 2 2 74 NAM 0 NaCl

## 5 1 6 1 1 3 1 1 1 3 1 1 Gladius 100 NaCl

## 6 1 7 1 1 3 2 1 1 3 2 1 Gladius 0 NaCl

## Replication Mainunits xMainPosn

## 1 1 1 5

## 2 1 1 5

## 3 3 2 4

## 4 3 2 4

## 5 1 3 3

## 6 1 3 3

#'## Check properties if only linear trend fitted

Exp249.canon <- designAnatomy(formulae = list(cart = ~ Zones/Mainunits/Subunits,

treat = ~ xMainPosn +

(Checks + Lines) * Salt),

data = Exp249.lay)

summary(Exp249.canon)

##

##

## Summary table of the decomposition for cart & treat (based on adjusted quantities)

##

## Source.cart df1 Source.treat df2 aefficiency eefficiency order

## Zones 5 Lines[Checks] 5 0.1500 0.1426 5

## Mainunits[Zones] 258 xMainPosn 1 1.0000 1.0000 1

## Checks 2 1.0000 1.0000 1

## Lines[Checks] 72 0.9879 0.8437 6

## Residual 183

## Subunits[Zones:Mainunits] 264 Salt 1 1.0000 1.0000 1

## Checks#Salt 2 1.0000 1.0000 1

## Lines#Salt[Checks] 72 1.0000 1.0000 1

## Residual 189

##

## Table of (partial) aliasing between sources derived from the same formula

##

## Source df Alias In aefficiency eefficiency order

## Checks 2 xMainPosn treat 0.9995 0.9990 2

## Lines[Checks] 74 xMainPosn treat 0.9963 0.7851 2

## Checks#Salt 5 xMainPosn treat 0.9998 0.9990 2

## Lines#Salt[Checks] 149 xMainPosn treat 0.9982 0.7851 2

##

## The design is not orthogonal

The Table of (partial) aliasing shows that all treat- sources are partially aliased with \verbxMainPosn=,
although they are not far from being orthogonal.

We have been able to check what information is available about Lines and Salt after adjustment for the linear
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trend. In practice, a spline term might be needed to account for nonlinearity in the trend.

4.3.4 Questions

1. What advantages accrue from randomizing Lines within GroupsˆPairs (ZonesˆMainPosn) as compared to
the original DiGGer design, in which they are randomized to Cols within Groups (Lanes within Zones) and
to Pairs (MainPosn)?

The anatomy for the DiGGer design shows us that all 74 degrees of freedom are estimable in
Rows#Cols[Blocks] with average efficiency 0.582 and minimum efficiency 0.209. Compared to this, the
anatomy for the rerandomized design shows that the NAM lines are estimable from Rows[Zones:MainPosn],
the source equivalent to Rows#Cols[Blocks], with average efficiency 0.664 and minimum efficiency 0.263.
Also, the Residual degrees of freedom for Rows#Cols[Blocks] have increased from 106 degrees of freedom in
the original design to 124 degrees of freedom for Rows[Zones:MainPosn] in the rerandomized design. That
is, one can expect the estimation of the Lines predictions and their standard errors to be more precise for
the rerandomized design.

2. What effect does the use of a linear trend, as opposed to a set of effects, have on the analysis?

The efficiency for Lines has increased further so that the minimum is now 0.844 and the Residual degrees
of freedom for Rows[Zones:MainPosn] now stands at 183. This allows one to consider ignoring information
not estimable from Rows[Zones:MainPosn], while predictions will be adjusted for the trend across MainPosn.

4.4 Two-phase, wheat experiment with 49 lines

The first, or field, phase of a wheat trial for 49 lines is laid out as an RCBD with four blocks. The produce
from the field trial is processed in the second, or laboratory, phase and the design employed is a balanced lattice
square for 49 treatments that involves 4 replicates each consisting of a 7 × 7 square. In the laboratory phase
there are four intervals each of which consists of 7 runs of a machine. In a run, samples are processed at seven
consecutive times. This experiment is Example 2.2 from Bailey and Brien (2015), where its anova with expected
mean squares is given. Its factor-allocation diagram is in Figure 19.

Figure 19: Factor-allocation diagram for the two-phase wheat variety experiment: lines are randomized to plots,
then lines and plots are randomized to analyses; the arrow for Lines to Plots indicates that Lines are randomized
to Plots; similarly, Blocks are randomized to intervals; L1, L3, L5 and L7 are pseudofactors that group the Lines
for randomization to Runs and L2, L4, L6 and L8 are pseudofactors that group the Lines for randomization to
Times; the two ‘�’ symbols indicate that the pseudofactors for Lines determine the pseudofactors P1 and P2 for
assigning Plots to Runs and Times, respectively; B = Blocks; I = Intervals.

4.4.1 Produce randomized layout for both phases and check its properties

#'## Generate a layout for the field phase

field.sys <- cbind(fac.gen(list(Blocks = 4, Plots = 49)),

fac.gen(list(Lines = 49), times=4))

field.lay <- designRandomize(allocated = field.sys["Lines"],
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recipient = field.sys[c("Blocks", "Plots")],

nested.recipients = list(Plots = "Blocks"),

seed = 82522)

head(field.lay)

## Blocks Plots Lines

## 1 1 1 48

## 2 1 2 10

## 3 1 3 23

## 4 1 4 31

## 5 1 5 36

## 6 1 6 11

#'## Generate laboratory phase

#'### Load a systematic balanced lattice square

data("LatticeSquare_t49.des")

#'### Form systematic design

#'### Add Intervals to field layout, merge the data frames and sort into lab phase order

field.lay$Intervals <- field.lay$Blocks

lab.alloc <- merge(LatticeSquare_t49.des, field.lay)

lab.alloc <- with(lab.alloc, lab.alloc[order(Intervals, Runs,Times),])

lab.alloc <- lab.alloc[c("Blocks","Plots","Lines")] #Reduce columns in lab.alloc

#'### Randomize the design

lab.lay <- designRandomize(allocated = lab.alloc,

recipient = list(Intervals = 4, Runs = 7, Times = 7),

nested.recipients = list(Runs = "Intervals",

Times = "Intervals"),

seed = 141797)

head(lab.lay)

## Intervals Runs Times Blocks Plots Lines

## 1 1 1 1 4 41 1

## 2 1 1 2 4 43 49

## 3 1 1 3 4 36 25

## 4 1 1 4 4 13 9

## 5 1 1 5 4 10 33

## 6 1 1 6 4 44 41

#'## Plot the design to show the allocation of Blocks, Plots and Lines in the lab phase

lab.lay$FieldFactors <- with(lab.lay, fac.combine(list(Blocks, Plots, Lines),

combine.levels = TRUE))

designGGPlot(lab.lay, labels = "FieldFactors",

row.factors = c("Intervals", "Runs"), column.factors = "Times",

title = "Allocation of Blocks, Plots and Lines in the lab phase",

cellalpha = 0.75, blockdefinition = cbind(7, 7))
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4,41,1 4,43,49 4,36,25 4,13,9 4,10,33 4,44,41 4,29,17
4,5,46 4,14,38 4,35,21 4,47,5 4,45,22 4,24,30 4,19,13

4,33,31 4,17,23 4,18,6 4,3,39 4,20,14 4,37,15 4,49,47
4,40,27 4,23,19 4,26,44 4,28,35 4,46,3 4,7,11 4,9,36
4,42,16 4,34,8 4,2,40 4,1,24 4,39,48 4,30,7 4,31,32
4,12,12 4,22,4 4,21,29 4,6,20 4,32,37 4,48,45 4,4,28
4,16,42 4,38,34 4,8,10 4,15,43 4,11,18 4,27,26 4,25,2

2,23,17 2,26,40 2,34,27 2,17,14 2,30,43 2,27,4 2,11,30
2,4,42 2,22,9 2,8,45 2,28,32 2,6,19 2,16,22 2,19,6
2,7,29 2,38,3 2,35,39 2,36,26 2,9,13 2,15,16 2,10,49

2,32,48 2,40,15 2,31,2 2,33,38 2,44,25 2,1,35 2,18,12
2,3,11 2,45,34 2,2,21 2,29,1 2,13,37 2,46,47 2,42,24
2,24,5 2,21,28 2,39,8 2,5,44 2,25,31 2,20,41 2,12,18

2,14,23 2,37,46 2,47,33 2,49,20 2,48,7 2,41,10 2,43,36

3,24,17 3,20,39 3,6,7 3,30,44 3,17,12 3,27,34 3,35,22
3,1,8 3,14,30 3,34,47 3,22,42 3,21,3 3,15,25 3,19,20

3,10,6 3,13,28 3,23,38 3,36,33 3,43,43 3,4,16 3,49,11
3,28,35 3,7,1 3,31,18 3,5,13 3,2,23 3,46,45 3,3,40
3,26,46 3,18,19 3,29,29 3,32,24 3,37,41 3,11,14 3,38,2
3,8,26 3,40,48 3,39,9 3,12,4 3,33,21 3,48,36 3,16,31

3,42,37 3,25,10 3,47,27 3,9,15 3,44,32 3,41,5 3,45,49

1,40,1 1,10,43 1,38,8 1,34,15 1,13,29 1,5,36 1,27,22
1,24,6 1,1,48 1,32,13 1,14,20 1,19,34 1,23,41 1,45,27
1,35,5 1,49,47 1,9,12 1,29,19 1,31,33 1,8,40 1,43,26
1,20,4 1,15,46 1,6,11 1,7,18 1,22,32 1,42,39 1,48,25
1,12,7 1,39,49 1,44,14 1,18,21 1,37,35 1,28,42 1,16,28
1,30,2 1,47,44 1,33,9 1,36,16 1,11,30 1,17,37 1,3,23
1,41,3 1,26,45 1,2,10 1,46,17 1,4,31 1,25,38 1,21,24

Intervals: 1
Intervals: 2

Intervals: 3
Intervals: 4

1 2 3 4 5 6 7

7
6
5
4
3
2
1

7
6
5
4
3
2
1

7
6
5
4
3
2
1

7
6
5
4
3
2
1

Times

R
un

s

Allocation of Blocks, Plots and Lines in the lab phase

#'## Check properties of the design

wheat.canon <- designAnatomy(formulae = list(lab = ~ Intervals/(Runs*Times),

field = ~ Blocks/Plots,

treats = ~ Lines),

data = lab.lay)

summary(wheat.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for lab, field & treats (based on adjusted quantities)

##

## Source.lab df1 Source.field df2 Source.treats df3 aefficiency order

## Intervals 3 Blocks 3 1.0000 1
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## Runs[Intervals] 24 Plots[Blocks] 24 Lines 24 0.2500 1

## Times[Intervals] 24 Plots[Blocks] 24 Lines 24 0.2500 1

## Runs#Times[Intervals] 144 Plots[Blocks] 144 Lines 48 0.7500 1

## Residual 96 1.0000 1

##

## The design is not orthogonal

Given, the nonorthogonality of Blocks:Plots evident in the anatomy, redo the table with just the lab and field
tiers to investigate.

#'## Check confounding of field sources with lab sources

wheat.labfield.canon <- designAnatomy(formulae = list(lab = ~ Intervals/(Runs*Times),

field = ~ Blocks/Plots),

data = lab.lay)

summary(wheat.labfield.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for lab & field

##

## Source.lab df1 Source.field df2 aefficiency order

## Intervals 3 Blocks 3 1.0000 1

## Runs[Intervals] 24 Plots[Blocks] 24 1.0000 1

## Times[Intervals] 24 Plots[Blocks] 24 1.0000 1

## Runs#Times[Intervals] 144 Plots[Blocks] 144 1.0000 1

4.4.2 Question

1. Is the variance matrix for this experiment based on two sets of terms that are orthogonal?

Because all plots sources are confounded orthogonally with analyses sources, the variance matrix is indeed
based on two sets of terms that are orthogonal.

4.5 Elaborate, two-phase, sensory experiment

Brien and Payne (1999) describe a two-phase sensory experiment, of which the first, or field, phase is a viticultural
experiment and the second, or evaluation, phase involves the assessment of wine made from the produce of the
first phase plots. In the field phase, two adjacent Youden squares are used to assign trellis treatments to the
plots, a plot being a row-column combination within a square. Each plot is divided into two halfplots and two
methods of pruning assigned at random to them. In the second phase, the halfplots from the field phase are
randomized, using two Latin squares and an extended Youden design, to glasses in positions on a table for
evaluation by judges. This experiment is Example 1.2 from Bailey and Brien (2015), where its anova, along with
expected mean squares, is given. Its factor-allocation diagram is in Figure 20.

4.5.1 Check the properties of the randomized layout

Load the layout and use designAnatomy to check the properties of the design.

#'## Load the layout

data("Sensory3PhaseShort.dat")

#'## Examne the properties of the design

sensory.canon <- designAnatomy(formulae = list(eval = ~((Occ/Int/Sit)*Jud)/Posn,

field = ~(Row*(Sqr/Col))/Hplot,
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Figure 20: Factor-allocation diagram for the two-phase sensory experiment: treatments are randomized to half-
plots, which are, in turn, randomized to evaluations; the arrow to the ‘◦’, the ‘◦’ and the two lines from the
‘◦’ indicate that Trellis is randomized to the combinations of Rows and Columns using a nonorthogonal design;
the single arrow between Methods and Halfplots indicats that Methods is randomized to Halfplots; the single
arrows between the two right hand panels indicate that Squares are randomized to Occasions and Halfpplots
are randomized to Positions; J1 and J2 are two psudofactors on Judges that split them into two sets of three;
the Rows are randomized to the combinations of Intervals and J2 using an orthogonal design, as indicated by
the ‘©⊥ ’, and Columns are randomized to the combinations of J1 and Sittings using an nonorthogonal design, as
indicated bt the ‘◦’; Q= Squares; R = Rows;, C = Columns; O = Occasions; I = Intervals; S = Sittings; J =
Judges.

treats = ~Trel*Meth),

data = Sensory3PhaseShort.dat)

summary(sensory.canon, which.criteria =c("aefficiency", "order"))

##

##

## Summary table of the decomposition for eval, field & treats (based on adjusted quantities)

##

## Source.eval df1 Source.field df2 Source.treats df3 aefficiency order

## Occ 1 Sqr 1 1.0000 1

## Int[Occ] 4

## Sit[Occ:Int] 18 Col[Sqr] 6 Trel 3 0.0370 1

## Residual 3 0.3333 1

## Residual 12

## Jud 5

## Occ#Jud 5

## Int#Jud[Occ] 20 Row 2 1.0000 1

## Row#Sqr 2 1.0000 1

## Residual 16

## Sit#Jud[Occ:Int] 90 Col[Sqr] 6 Trel 3 0.0741 1

## Residual 3 0.6667 1

## Row#Col[Sqr] 12 Trel 3 0.8889 1

## Residual 9 1.0000 1

## Residual 72

## Posn[Occ:Int:Sit:Jud] 432 Hplot[Row:Sqr:Col] 24 Meth 1 1.0000 1

## Trel#Meth 3 1.0000 1

## Residual 20 1.0000 1

## Residual 408

##

## The design is not orthogonal

Note that 1/3 of Sqr:Col is partially confounded with Occ:Int:Sit and 2/3 with Occ:Int:Sit:Jud. Also, 1/9
of Trel is partially confounded with Sqr:Col and 8/9 with Row:Sqr:Col. The canonical efficiency factor for Trel
in the two Sqr:Col sources is obtained by multiplying the canonical efficiency of 1/9 for Trel with that for the
particular Sqr:Col source, yielding canonical efficiencies of 1/27 and 2/27.
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4.5.2 Questions

1. Which is the nonorthogonal source amongst the field sources (Source.field) and what is its interblock
and intrablock efficiency factors?

The only nonorthogonal field source is Sqr.Col. Its interblock efficiency factor is 1/3 and its intrablock
effciciency factor is 2/3.

2. How would an intrablock analysis be achieved using, say, regression software?

To achieve an intrablock analysis requires careful specification of the order of fitting terms; a nonorthogonal
source should not estimated until after all nonorthogonal terms with which it is confounded, except the last,
have been estimated. For this experiment, terms should be fitted in the following order:

Occ*Jud + Row + Occ:Int/(Int + Sit) + Sqr.Col + Trel + Row:Sqr:Col + Occ:Int:Sit:Jud + Meth +
Trel:Meth + Row:Sqr:Col:Hplot.

This will leave a Residual that corresponds to Occ:Int:Sit:Jud:Posn.
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5 Power and sample size for designed experiments

In power and sample size calculations, in addition to specifying delta, sigma, power and alpha, one has to supply
a number of quantities that vary with the design of the experiment. The following table summarizes these for
the common designs, giving the degrees of freedom of the denominator as a function of r, the pure replication
of the treatments. Note that rm is the number of replicates in means being compared. For treatment means,
this will be the product of r and a multiple, m, for the product of the number of levels of factors not involved
in means being compared.

Design m rm df.num (ν1) df.denom (ν2)
CRD 1 r t− 1 t(r − 1)
RCBD 1 b t− 1 (t− 1)(b− 1)
LSD 1 r(= t) r − 1 (r − 1)(r − 2)
Factorial
A b br a− 1 CRD ab(r − 1)
B a ar b− 1 RCBD (ab− 1)(r − 1)
A:B 1 r (a− 1)(b− 1) LSD (r − 1)(r − 2)
Standard split-plot
A b br a− 1 (a− 1)(r − 1)
B a ar b− 1 (b− 1)(r − 1)
A:B 1 r (a− 1)(b− 1) a(b− 1)(r − 1)†

†only approximate for effects not at the same level of A

5.1 Computing the power for given sample size

The function power.exp from the dae library is used for computing the power in detecting the difference between
means for some, not necessarily proper, subset of the factors from a designed experiment.

The usage and arguments for this function are:
power.exp(rm5,df.num=1, df.denom=10, delta=1, sigma=1, alpha=0.05, print=FALSE)=

rm: the number of observations used in computing a mean.

df.num: the degrees of freedom of the numerator of the F for testing the term involving the means;

df.denom: the degrees of freedom of the denominator of the F for testing the term involving the means;

delta: the true difference between a pair of means;

sigma: population standard deviation;

alpha: the significance level to be used;

print: T or F to have or not have a table of power calculation details printed out.

Note that the values given for the arguments in the above expression for power.exp are the default values
assigned to the arguments if they are not set in a call to the function.

5.2 Example: Penicillin yield

Consider the penecillin example taken from Box et al. (2005). Suppose it was expected that the minimum
difference between a pair of treatment means is 5 and that α = 0.05. In the analysis of variance for this
experiment, the Residual MSq was 18.83 so we will take σ2 ≈ 20. Also, r = 5 and m = 1. The power.exp call
to compute the power, and the resulting output, is given below. Note that alpha is not set in this call and so
the default value of 0.05 will be used. Also, the expressions 3 * (rm - 1) and sqrt(20) will be evaluated prior
to the call to the function. To get the correct value of rm used in evaluating the expression 3 * (rm - 1), rm
needs to be set prior to calling power.exp.
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rm <- 5

power.exp(rm=rm, df.num=3, df.denom=3*(rm-1), delta=5, sigma=sqrt(20), print=TRUE)

## rm df.num df.denom alpha delta sigma lambda powr

## 1 5 3 12 0.05 5 4.472136 3.125 0.2159032

## [1] 0.2159032

That is, the power of the experiment is just over 0.2.

5.3 Computing the sample size to achieve specified power

The function no.reps from the dae library is used to compute the required number of pure replicates, r, of the
treatments in a designed experiment to achieve a specified power in detecting a difference between the means for
some, not necessarily proper, subset of the treatment factors. The usage and arguments for this function are as
follows:

no.reps(multiple=1, df.num=1,

df.denom=expression((df.num+1)*(r-1)),

delta=1, sigma=1, alpha=0.05, power =0.8,

tol = 0.025, print=FALSE)

multiple: the multiplier, m, which when multiplied by the number of pure replicates of a treatment, r, gives the
number of observations (rm) used in computing means for the treatment factor subset; m is the replication
arising from other treatment factors. However, for single treatment factor experiments the subset can only
be the treatment factor and m = 1;

df.num: the degrees of freedom of the numerator of the F for testing the term involving the treatment factor
subset;

df.denom: an expression for the degrees of freedom of the denominator of the F for testing the term involving
the treatment factor subset it must involve r, the number of pure replicates, can involve other arguments
to no.reps such as multiple and df.num, and must be enclosed in an expression function so that it is not
evaluated when no.reps is called but will be evaluated as different values of r are tried during execution
of no.reps;

delta: the true difference between a pair of means for some, not necessarily proper, subset of the treatment
factors;

sigma: population standard deviation;

alpha: the significance level to be used;

power: the minimum power to be achieved;

tol: the maximum difference tolerated between the power required and the power computed in determining the
number of replicates;

print: T or F to have or not have a table of power calculation details printed out.

5.4 Example II.1.Penicillin yield (continued)

We now determine the number of replicates required to achieve a power of 0.80 in detecting ∆ = 5 with α = 0.05.
We continue to take σ2 ≈ 20. The use of no.reps and the resulting output is as follows:

no.reps(multiple=1, df.num=3, df.denom=expression(df.num*(r-1)), delta=5,

sigma=sqrt(20), power=0.8, print=FALSE)
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## $nreps

## [1] 19

##

## $power

## [1] 0.8055926

That is, 19 reps will achieve a little more than the required power of 0.80.
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