Main functions
The main functions of cvms are:
cross_validate()
validate()
evaluate()
baseline()
combine_predictors()
cv_plot()
select_metrics()
reconstruct_formulas()
Abstract
This vignette is an introduction to the package cvms.The main functions of cvms are:
cross_validate()
validate()
evaluate()
baseline()
combine_predictors()
cv_plot()
select_metrics()
reconstruct_formulas()
Create a grouping factor for subsetting of folds using groupdata2::fold()
. Order the dataset by the folds.
# Set seed for reproducibility
set.seed(7)
# Fold data
data <- fold(data, k = 4,
cat_col = 'diagnosis',
id_col = 'participant') %>%
arrange(.folds)
# Show first 15 rows of data
data %>% head(15) %>% kable()
participant | age | diagnosis | score | session | .folds |
---|---|---|---|---|---|
9 | 34 | 0 | 33 | 1 | 1 |
9 | 34 | 0 | 53 | 2 | 1 |
9 | 34 | 0 | 66 | 3 | 1 |
8 | 21 | 1 | 16 | 1 | 1 |
8 | 21 | 1 | 32 | 2 | 1 |
8 | 21 | 1 | 44 | 3 | 1 |
2 | 23 | 0 | 24 | 1 | 2 |
2 | 23 | 0 | 40 | 2 | 2 |
2 | 23 | 0 | 67 | 3 | 2 |
1 | 20 | 1 | 10 | 1 | 2 |
1 | 20 | 1 | 24 | 2 | 2 |
1 | 20 | 1 | 45 | 3 | 2 |
6 | 31 | 1 | 14 | 1 | 2 |
6 | 31 | 1 | 25 | 2 | 2 |
6 | 31 | 1 | 30 | 3 | 2 |
CV1 <- cross_validate(data, "score~diagnosis",
fold_cols = '.folds',
family = 'gaussian',
REML = FALSE)
# Show results
CV1
#> # A tibble: 1 x 18
#> RMSE MAE r2m r2c AIC AICc BIC Predictions Results
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <list> <list>
#> 1 16.4 13.8 0.271 0.271 195. 196. 198. <tibble [3… <tibbl…
#> # … with 9 more variables: Coefficients <list>, Folds <int>, `Fold
#> # Columns` <int>, `Convergence Warnings` <dbl>, `Singular Fit
#> # Messages` <int>, Family <chr>, Link <chr>, Dependent <chr>,
#> # Fixed <chr>
# Let's take a closer look at the different parts of the output
# Results metrics
CV1 %>% select_metrics() %>% kable()
RMSE | MAE | r2m | r2c | AIC | AICc | BIC | Dependent | Fixed |
---|---|---|---|---|---|---|---|---|
16.35261 | 13.75772 | 0.270991 | 0.270991 | 194.6218 | 195.9276 | 197.9556 | score | diagnosis |
# Nested predictions
# Note that [[1]] picks predictions for the first row
CV1$Predictions[[1]] %>% head() %>% kable()
Fold Column | Fold | Target | Prediction |
---|---|---|---|
.folds | 1 | 33 | 51.00000 |
.folds | 1 | 53 | 51.00000 |
.folds | 1 | 66 | 51.00000 |
.folds | 1 | 16 | 30.66667 |
.folds | 1 | 32 | 30.66667 |
.folds | 1 | 44 | 30.66667 |
Fold Column | Fold | RMSE | MAE | r2m | r2c | AIC | AICc | BIC |
---|---|---|---|---|---|---|---|---|
.folds | 1 | 12.56760 | 10.72222 | 0.2439198 | 0.2439198 | 209.9622 | 211.1622 | 213.4963 |
.folds | 2 | 16.60767 | 14.77778 | 0.2525524 | 0.2525524 | 182.8739 | 184.2857 | 186.0075 |
.folds | 3 | 15.97355 | 12.87037 | 0.2306104 | 0.2306104 | 207.9074 | 209.1074 | 211.4416 |
.folds | 4 | 20.26162 | 16.66049 | 0.3568816 | 0.3568816 | 177.7436 | 179.1554 | 180.8772 |
# Nested model coefficients
# Note that you have the full p-values,
# but kable() only shows a certain number of digits
CV1$Coefficients[[1]] %>% kable()
term | estimate | std.error | statistic | p.value | Fold | Fold Column |
---|---|---|---|---|---|---|
(Intercept) | 51.00000 | 5.901264 | 8.642216 | 0.0000000 | 1 | .folds |
diagnosis | -20.33333 | 7.464574 | -2.723978 | 0.0123925 | 1 | .folds |
(Intercept) | 53.33333 | 5.718886 | 9.325826 | 0.0000000 | 2 | .folds |
diagnosis | -19.66667 | 7.565375 | -2.599563 | 0.0176016 | 2 | .folds |
(Intercept) | 49.77778 | 5.653977 | 8.804030 | 0.0000000 | 3 | .folds |
diagnosis | -18.77778 | 7.151778 | -2.625610 | 0.0154426 | 3 | .folds |
(Intercept) | 49.55556 | 5.061304 | 9.791065 | 0.0000000 | 4 | .folds |
diagnosis | -22.30556 | 6.695476 | -3.331437 | 0.0035077 | 4 | .folds |
# Additional information about the model
# and the training process
CV1 %>% select(11:17) %>% kable()
Folds | Fold Columns | Convergence Warnings | Singular Fit Messages | Family | Link | Dependent |
---|---|---|---|---|---|---|
4 | 1 | 0 | 0 | gaussian | identity | score |
CV2 <- cross_validate(data, "diagnosis~score",
fold_cols = '.folds',
family = 'binomial')
# Show results
CV2
#> # A tibble: 1 x 26
#> `Balanced Accur… F1 Sensitivity Specificity `Pos Pred Value`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.736 0.821 0.889 0.583 0.762
#> # … with 21 more variables: `Neg Pred Value` <dbl>, AUC <dbl>, `Lower
#> # CI` <dbl>, `Upper CI` <dbl>, Kappa <dbl>, MCC <dbl>, `Detection
#> # Rate` <dbl>, `Detection Prevalence` <dbl>, Prevalence <dbl>,
#> # Predictions <list>, ROC <list>, `Confusion Matrix` <list>,
#> # Coefficients <list>, Folds <int>, `Fold Columns` <int>, `Convergence
#> # Warnings` <dbl>, `Singular Fit Messages` <int>, Family <chr>,
#> # Link <chr>, Dependent <chr>, Fixed <chr>
# Let's take a closer look at the different parts of the output
# We won't repeat the parts too similar to those in Gaussian
# Results metrics
CV2 %>% select(1:9) %>% kable()
Balanced Accuracy | F1 | Sensitivity | Specificity | Pos Pred Value | Neg Pred Value | AUC | Lower CI | Upper CI |
---|---|---|---|---|---|---|---|---|
0.7361111 | 0.8205128 | 0.8888889 | 0.5833333 | 0.7619048 | 0.7777778 | 0.7685185 | 0.5962701 | 0.9407669 |
Kappa | MCC | Detection Rate | Detection Prevalence | Prevalence |
---|---|---|---|---|
0.4927536 | 0.5048268 | 0.5333333 | 0.7 | 0.6 |
Sensitivities | Specificities |
---|---|
1.0000000 | 0.0000000 |
1.0000000 | 0.0833333 |
0.9444444 | 0.0833333 |
0.9444444 | 0.1666667 |
0.9444444 | 0.2500000 |
0.8888889 | 0.2500000 |
Fold Column | Prediction | Target | Pos_0 | Pos_1 | N |
---|---|---|---|---|---|
.folds | 0 | 0 | TP | TN | 7 |
.folds | 1 | 0 | FN | FP | 5 |
.folds | 0 | 1 | FP | FN | 2 |
.folds | 1 | 1 | TN | TP | 16 |
CV3 <- cross_validate(data, models,
fold_cols = '.folds',
family = 'gaussian',
REML = FALSE)
# Show results
CV3
#> # A tibble: 2 x 18
#> RMSE MAE r2m r2c AIC AICc BIC Predictions Results
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <list> <list>
#> 1 16.4 13.8 0.271 0.271 195. 196. 198. <tibble [3… <tibbl…
#> 2 22.4 18.9 0.0338 0.0338 201. 202. 204. <tibble [3… <tibbl…
#> # … with 9 more variables: Coefficients <list>, Folds <int>, `Fold
#> # Columns` <int>, `Convergence Warnings` <dbl>, `Singular Fit
#> # Messages` <int>, Family <chr>, Link <chr>, Dependent <chr>,
#> # Fixed <chr>
CV4 <- cross_validate(data, mixed_models,
fold_cols = '.folds',
family = 'gaussian',
REML = FALSE)
# Show results
CV4
#> # A tibble: 2 x 19
#> RMSE MAE r2m r2c AIC AICc BIC Predictions Results
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <list> <list>
#> 1 7.95 6.41 0.290 0.811 176. 178. 180. <tibble [3… <tibbl…
#> 2 17.5 16.2 0.0366 0.526 194. 196. 198. <tibble [3… <tibbl…
#> # … with 10 more variables: Coefficients <list>, Folds <int>, `Fold
#> # Columns` <int>, `Convergence Warnings` <dbl>, `Singular Fit
#> # Messages` <int>, Family <chr>, Link <chr>, Dependent <chr>,
#> # Fixed <chr>, Random <chr>
Let’s first add some extra fold columns. We will use the num_fold_cols argument to add 3 unique fold columns. We tell fold()
to keep the existing fold column and simply add three extra columns. We could also choose to remove the existing fold column, if for instance we were changing the number of folds (k). Note, that the original fold column will be renamed to “.folds_1”.
# Set seed for reproducibility
set.seed(2)
# Fold data
data <- fold(data, k = 4,
cat_col = 'diagnosis',
id_col = 'participant',
num_fold_cols = 3,
handle_existing_fold_cols = "keep")
# Show first 15 rows of data
data %>% head(10) %>% kable()
participant | age | diagnosis | score | session | .folds_1 | .folds_2 | .folds_3 | .folds_4 |
---|---|---|---|---|---|---|---|---|
10 | 32 | 0 | 29 | 1 | 4 | 4 | 3 | 1 |
10 | 32 | 0 | 55 | 2 | 4 | 4 | 3 | 1 |
10 | 32 | 0 | 81 | 3 | 4 | 4 | 3 | 1 |
2 | 23 | 0 | 24 | 1 | 2 | 3 | 1 | 2 |
2 | 23 | 0 | 40 | 2 | 2 | 3 | 1 | 2 |
2 | 23 | 0 | 67 | 3 | 2 | 3 | 1 | 2 |
4 | 21 | 0 | 35 | 1 | 3 | 2 | 4 | 4 |
4 | 21 | 0 | 50 | 2 | 3 | 2 | 4 | 4 |
4 | 21 | 0 | 78 | 3 | 3 | 2 | 4 | 4 |
9 | 34 | 0 | 33 | 1 | 1 | 1 | 2 | 3 |
CV5 <- cross_validate(data, "diagnosis ~ score",
fold_cols = paste0(".folds_", 1:4),
family = 'binomial',
REML = FALSE)
# Show results
CV5
#> # A tibble: 1 x 27
#> `Balanced Accur… F1 Sensitivity Specificity `Pos Pred Value`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.729 0.813 0.875 0.583 0.759
#> # … with 22 more variables: `Neg Pred Value` <dbl>, AUC <dbl>, `Lower
#> # CI` <dbl>, `Upper CI` <dbl>, Kappa <dbl>, MCC <dbl>, `Detection
#> # Rate` <dbl>, `Detection Prevalence` <dbl>, Prevalence <dbl>,
#> # Predictions <list>, ROC <list>, Results <list>, `Confusion
#> # Matrix` <list>, Coefficients <list>, Folds <int>, `Fold
#> # Columns` <int>, `Convergence Warnings` <dbl>, `Singular Fit
#> # Messages` <int>, Family <chr>, Link <chr>, Dependent <chr>,
#> # Fixed <chr>
# The binomial output now has a nested 'Results' tibble
# Let's see a subset of the columns
CV5$Results[[1]] %>% select(1:8) %>% kable()
Fold Column | Balanced Accuracy | F1 | Sensitivity | Specificity | Pos Pred Value | Neg Pred Value | AUC |
---|---|---|---|---|---|---|---|
.folds_1 | 0.7361111 | 0.8205128 | 0.8888889 | 0.5833333 | 0.7619048 | 0.7777778 | 0.7685185 |
.folds_2 | 0.7361111 | 0.8205128 | 0.8888889 | 0.5833333 | 0.7619048 | 0.7777778 | 0.7777778 |
.folds_3 | 0.7083333 | 0.7894737 | 0.8333333 | 0.5833333 | 0.7500000 | 0.7000000 | 0.7476852 |
.folds_4 | 0.7361111 | 0.8205128 | 0.8888889 | 0.5833333 | 0.7619048 | 0.7777778 | 0.7662037 |
Evaluate predictions from a model trained outside cvms. Works with linear regression (gaussian
), logistic regression (binomial
), and multiclass classification (multinomial
). The following is an example of multinomial evaluation.
Create a dataset with 3 predictors and a target column. Partition it with groupdata2::partition()
to create a training set and a validation set. multiclass_probability_tibble()
is a simple helper function for generating random tibbles.
# Set seed
set.seed(1)
# Create class names
class_names <- paste0("class_", 1:4)
# Create random dataset with 100 observations
# Partition into training set (75%) and test set (25%)
multiclass_partitions <- multiclass_probability_tibble(
num_classes = 3, # Here, number of predictors
num_observations = 100,
apply_softmax = FALSE,
FUN = rnorm,
class_name = "predictor_") %>%
dplyr::mutate(class = sample(
class_names,
size = 100,
replace = TRUE)) %>%
partition(p = 0.75,
cat_col = "class")
# Extract partitions
multiclass_train_set <- multiclass_partitions[[1]]
multiclass_test_set <- multiclass_partitions[[2]]
multiclass_test_set
#> # A tibble: 26 x 4
#> predictor_1 predictor_2 predictor_3 class
#> <dbl> <dbl> <dbl> <chr>
#> 1 1.60 0.158 -0.331 class_1
#> 2 -1.99 -0.180 -0.341 class_1
#> 3 0.418 -0.324 0.263 class_1
#> 4 0.398 0.450 0.136 class_1
#> 5 0.0743 1.03 -1.32 class_1
#> 6 0.738 0.910 0.541 class_2
#> 7 0.576 0.384 -0.0134 class_2
#> 8 -0.305 1.68 0.510 class_2
#> 9 -0.0449 -0.393 1.52 class_2
#> 10 0.557 -0.464 -0.879 class_2
#> # … with 16 more rows
Train multinomial model using the nnet
package and get the predicted probabilities.
# Train multinomial model
multiclass_model <- nnet::multinom(
"class ~ predictor_1 + predictor_2 + predictor_3",
data = multiclass_train_set)
#> # weights: 20 (12 variable)
#> initial value 102.585783
#> iter 10 value 98.124010
#> final value 98.114250
#> converged
# Predict the targets in the test set
predictions <- predict(multiclass_model,
multiclass_test_set,
type = "probs") %>%
dplyr::as_tibble()
# Add the targets
predictions[["target"]] <- multiclass_test_set[["class"]]
head(predictions, 10)
#> # A tibble: 10 x 5
#> class_1 class_2 class_3 class_4 target
#> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 0.243 0.214 0.304 0.239 class_1
#> 2 0.136 0.371 0.234 0.259 class_1
#> 3 0.230 0.276 0.264 0.230 class_1
#> 4 0.194 0.218 0.262 0.326 class_1
#> 5 0.144 0.215 0.302 0.339 class_1
#> 6 0.186 0.166 0.241 0.407 class_2
#> 7 0.201 0.222 0.272 0.305 class_2
#> 8 0.117 0.131 0.195 0.557 class_2
#> 9 0.237 0.264 0.215 0.284 class_2
#> 10 0.216 0.310 0.303 0.171 class_2
Perform the evaluation. This will create one-vs-all binomial evaluations and summarize the results.
# Evaluate predictions
evaluate(data = predictions,
target_col = "target",
prediction_cols = class_names,
type = "multinomial")
#> $Results
#> # A tibble: 1 x 17
#> `Overall Accura… `Balanced Accur… F1 Sensitivity Specificity
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.154 0.427 NaN 0.143 0.712
#> # … with 12 more variables: `Pos Pred Value` <dbl>, `Neg Pred
#> # Value` <dbl>, AUC <dbl>, `Lower CI` <dbl>, `Upper CI` <dbl>,
#> # Kappa <dbl>, MCC <dbl>, `Detection Rate` <dbl>, `Detection
#> # Prevalence` <dbl>, Prevalence <dbl>, Predictions <list>, `Confusion
#> # Matrix` <list>
#>
#> $`Class Level Results`
#> # A tibble: 4 x 18
#> Class `Balanced Accur… F1 Sensitivity Specificity `Pos Pred Value`
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 clas… 0.476 NaN 0 0.952 0
#> 2 clas… 0.380 0.211 0.286 0.474 0.167
#> 3 clas… 0.474 NaN 0 0.947 0
#> 4 clas… 0.380 0.211 0.286 0.474 0.167
#> # … with 12 more variables: `Neg Pred Value` <dbl>, AUC <dbl>, `Lower
#> # CI` <dbl>, `Upper CI` <dbl>, Kappa <dbl>, MCC <dbl>, `Detection
#> # Rate` <dbl>, `Detection Prevalence` <dbl>, Prevalence <dbl>,
#> # Support <int>, ROC <list>, `Confusion Matrix` <list>
Create baseline evaluations of a test set.
Approach: The baseline model (y ~ 1), where 1 is simply the intercept (i.e. mean of y), is fitted on n random subsets of the training set and evaluated on the test set. We also perform an evaluation of the model fitted on the entire training set.
Start by partitioning the dataset.
# Set seed for reproducibility
set.seed(1)
# Partition the dataset
partitions <- groupdata2::partition(participant.scores,
p = 0.7,
cat_col = 'diagnosis',
id_col = 'participant',
list_out = TRUE)
train_set <- partitions[[1]]
test_set <- partitions[[2]]
Create the baseline evaluations:
baseline(test_data = test_set, train_data = train_set,
n = 100, dependent_col = "score", family = "gaussian")
#> $summarized_metrics
#> # A tibble: 9 x 9
#> Measure RMSE MAE r2m r2c AIC AICc BIC `Training Rows`
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mean 19.7 15.8 0 0 87.0 89.5 87.4 9.63
#> 2 Median 19.2 15.5 0 0 83.3 85.3 83.7 9
#> 3 SD 1.05 0.759 0 0 28.9 27.6 29.6 3.22
#> 4 IQR 1.16 0.264 0 0 45.9 44.3 47.0 5
#> 5 Max 24.1 19.4 0 0 137. 138. 138. 15
#> 6 Min 18.9 15.5 0 0 42.0 48.0 41.2 5
#> 7 NAs 0 0 0 0 0 0 0 0
#> 8 INFs 0 0 0 0 0 0 0 0
#> 9 All_rows 19.1 15.5 0 0 161. 162. 163. 18
#>
#> $random_evaluations
#> # A tibble: 100 x 13
#> RMSE MAE r2m r2c AIC AICc BIC Predictions Coefficients
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <list> <list>
#> 1 20.0 16.3 0 0 72.5 74.9 72.7 <tibble [1… <tibble [1 …
#> 2 19.0 15.5 0 0 137. 138. 138. <tibble [1… <tibble [1 …
#> 3 20.2 15.7 0 0 61.3 64.3 61.2 <tibble [1… <tibble [1 …
#> 4 20.0 15.7 0 0 97.7 99.2 98.5 <tibble [1… <tibble [1 …
#> 5 19.3 15.6 0 0 73.3 75.7 73.5 <tibble [1… <tibble [1 …
#> 6 20.4 15.9 0 0 44.4 50.4 43.6 <tibble [1… <tibble [1 …
#> 7 19.0 15.5 0 0 118. 120. 119. <tibble [1… <tibble [1 …
#> 8 19.4 15.5 0 0 93.3 95.1 94.0 <tibble [1… <tibble [1 …
#> 9 20.7 16.2 0 0 71.2 73.6 71.3 <tibble [1… <tibble [1 …
#> 10 20.8 17.1 0 0 43.7 49.7 42.9 <tibble [1… <tibble [1 …
#> # … with 90 more rows, and 4 more variables: `Training Rows` <int>,
#> # Family <chr>, Dependent <chr>, Fixed <chr>
Approach: n random sets of predictions are evaluated against the dependent variable in the test set. We also evaluate a set of all 0s and a set of all 1s.
Create the baseline evaluations:
baseline(test_data = test_set, n = 100,
dependent_col = "diagnosis", family = "binomial")
#> $summarized_metrics
#> # A tibble: 10 x 15
#> Measure `Balanced Accur… F1 Sensitivity Specificity `Pos Pred Value`
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mean 0.502 0.495 0.478 0.525 0.498
#> 2 Median 0.5 0.5 0.5 0.5 0.500
#> 3 SD 0.147 0.159 0.215 0.210 0.194
#> 4 IQR 0.167 0.252 0.333 0.333 0.200
#> 5 Max 0.833 0.833 0.833 1 1
#> 6 Min 0.167 0.182 0 0 0
#> 7 NAs 0 4 0 0 0
#> 8 INFs 0 0 0 0 0
#> 9 All_0 0.5 NA 0 1 NaN
#> 10 All_1 0.5 0.667 1 0 0.5
#> # … with 9 more variables: `Neg Pred Value` <dbl>, AUC <dbl>, `Lower
#> # CI` <dbl>, `Upper CI` <dbl>, Kappa <dbl>, MCC <dbl>, `Detection
#> # Rate` <dbl>, `Detection Prevalence` <dbl>, Prevalence <dbl>
#>
#> $random_evaluations
#> # A tibble: 100 x 19
#> `Balanced Accur… F1 Sensitivity Specificity `Pos Pred Value`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.417 0.364 0.333 0.5 0.4
#> 2 0.5 0.5 0.5 0.5 0.5
#> 3 0.417 0.364 0.333 0.5 0.4
#> 4 0.667 0.6 0.5 0.833 0.75
#> 5 0.583 0.667 0.833 0.333 0.556
#> 6 0.667 0.6 0.5 0.833 0.75
#> 7 0.25 0.308 0.333 0.167 0.286
#> 8 0.5 0.4 0.333 0.667 0.500
#> 9 0.25 0.182 0.167 0.333 0.20
#> 10 0.417 0.222 0.167 0.667 0.333
#> # … with 90 more rows, and 14 more variables: `Neg Pred Value` <dbl>,
#> # AUC <dbl>, `Lower CI` <dbl>, `Upper CI` <dbl>, Kappa <dbl>, MCC <dbl>,
#> # `Detection Rate` <dbl>, `Detection Prevalence` <dbl>,
#> # Prevalence <dbl>, Predictions <list>, ROC <list>, `Confusion
#> # Matrix` <list>, Family <chr>, Dependent <chr>
Approach: Creates one-vs-all (binomial) baseline evaluations for n sets of random predictions against the dependent variable, along with sets of “all class x,y,z,…” predictions.
Create the baseline evaluations:
multiclass_baseline <- baseline(
test_data = multiclass_test_set, n = 100,
dependent_col = "class", family = "multinomial")
# Summarized metrics
multiclass_baseline$summarized_metrics
#> # A tibble: 12 x 16
#> Measure `Overall Accura… `Balanced Accur… F1 Sensitivity
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Mean 0.250 0.501 0.283 0.252
#> 2 Median 0.231 0.494 0.280 0.243
#> 3 SD 0.0841 0.0567 0.0737 0.0853
#> 4 IQR 0.115 0.0795 0.0920 0.121
#> 5 Max 0.538 0.786 0.667 1
#> 6 Min 0.0769 0.262 0.111 0
#> 7 NAs NA 0 61 0
#> 8 INFs NA 0 0 0
#> 9 All_cl… 0.192 0.5 NA 0.25
#> 10 All_cl… 0.269 0.5 NA 0.25
#> 11 All_cl… 0.269 0.5 NA 0.25
#> 12 All_cl… 0.269 0.5 NA 0.25
#> # … with 11 more variables: Specificity <dbl>, `Pos Pred Value` <dbl>,
#> # `Neg Pred Value` <dbl>, AUC <dbl>, `Lower CI` <dbl>, `Upper CI` <dbl>,
#> # Kappa <dbl>, MCC <dbl>, `Detection Rate` <dbl>, `Detection
#> # Prevalence` <dbl>, Prevalence <dbl>
# Summarized class level results for class 1
multiclass_baseline$summarized_class_level_results %>%
dplyr::filter(Class == "class_1") %>%
tidyr::unnest(Results)
#> # A tibble: 10 x 16
#> Class Measure `Balanced Accur… F1 Sensitivity Specificity
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 clas… Mean 0.514 0.284 0.28 0.748
#> 2 clas… Median 0.529 0.286 0.2 0.762
#> 3 clas… SD 0.102 0.106 0.191 0.0979
#> 4 clas… IQR 0.124 0.182 0.2 0.0952
#> 5 clas… Max 0.786 0.526 1 0.952
#> 6 clas… Min 0.262 0.125 0 0.524
#> 7 clas… NAs 0 18 0 0
#> 8 clas… INFs 0 0 0 0
#> 9 clas… All_0 0.5 NA 0 1
#> 10 clas… All_1 0.5 0.323 1 0
#> # … with 10 more variables: `Pos Pred Value` <dbl>, `Neg Pred
#> # Value` <dbl>, AUC <dbl>, `Lower CI` <dbl>, `Upper CI` <dbl>,
#> # Kappa <dbl>, MCC <dbl>, `Detection Rate` <dbl>, `Detection
#> # Prevalence` <dbl>, Prevalence <dbl>
# Random evaluations
# Note, that the class level results for each repetition
# is available as well
multiclass_baseline$random_evaluations
#> # A tibble: 100 x 21
#> Repetition `Overall Accura… `Balanced Accur… F1 Sensitivity
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.154 0.445 NaN 0.171
#> 2 2 0.269 0.518 NaN 0.279
#> 3 3 0.192 0.460 0.195 0.193
#> 4 4 0.385 0.591 0.380 0.386
#> 5 5 0.154 0.430 NaN 0.143
#> 6 6 0.154 0.438 NaN 0.157
#> 7 7 0.154 0.445 NaN 0.171
#> 8 8 0.346 0.574 0.341 0.364
#> 9 9 0.308 0.541 0.315 0.314
#> 10 10 0.308 0.536 0.322 0.3
#> # … with 90 more rows, and 16 more variables: Specificity <dbl>, `Pos Pred
#> # Value` <dbl>, `Neg Pred Value` <dbl>, AUC <dbl>, `Lower CI` <dbl>,
#> # `Upper CI` <dbl>, Kappa <dbl>, MCC <dbl>, `Detection Rate` <dbl>,
#> # `Detection Prevalence` <dbl>, Prevalence <dbl>, Predictions <list>,
#> # `Confusion Matrix` <list>, `Class Level Results` <list>, Family <chr>,
#> # Dependent <chr>
There are currently a small set of plots for quick visualization of the results. It is supposed to be easy to extract the needed information to create your own plots. If you lack access to any information or have other requests or ideas, feel free to open an issue.
Instead of manually typing all possible model formulas for a set of fixed effects (including the possible interactions), combine_predictors()
can do it for you (with some constraints).
When including interactions, >200k formulas have been precomputed for up to 8 fixed effects, with a maximum interaction size of 3, and a maximum of 5 fixed effects per formula. It’s possible to further limit the generated formulas.
We can also append a random effects structure to the generated formulas.
combine_predictors(dependent = "y",
fixed_effects = c("a","b","c"),
random_effects = "(1|d)")
#> [1] "y ~ a + (1|d)"
#> [2] "y ~ b + (1|d)"
#> [3] "y ~ c + (1|d)"
#> [4] "y ~ a * b + (1|d)"
#> [5] "y ~ a * c + (1|d)"
#> [6] "y ~ a + b + (1|d)"
#> [7] "y ~ a + c + (1|d)"
#> [8] "y ~ b * c + (1|d)"
#> [9] "y ~ b + c + (1|d)"
#> [10] "y ~ a * b * c + (1|d)"
#> [11] "y ~ a * b + c + (1|d)"
#> [12] "y ~ a * c + b + (1|d)"
#> [13] "y ~ a + b * c + (1|d)"
#> [14] "y ~ a + b + c + (1|d)"
#> [15] "y ~ a * b + a * c + (1|d)"
#> [16] "y ~ a * b + b * c + (1|d)"
#> [17] "y ~ a * c + b * c + (1|d)"
#> [18] "y ~ a * b + a * c + b * c + (1|d)"
If two or more fixed effects should not be in the same formula, like an effect and its log-transformed version, we can provide them as sublists.